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Abstract— This paper presents the first-ever compile-
time method for allocating a portion of the heap data
to scratch-pad memory. A scratch-pad is a fast directly
addressed compiler-managed SRAM memory that replaces
the hardware-managed cache. It is motivated by its better
real-time guarantees vs cache and by its significantly lower
overheads in access time, energy consumption, area and
overall runtime. Existing compiler methods for allocating
data to scratch-pad are able to place only global and stack
data in scratch-pad memory; heap data is allocated entirely
in DRAM, resulting in poor performance. Runtime methods
based on software caching can place heap data in scratch-
pad, but because of their high overheads from software
address translation, they have not been successful, especially
for heap data.

In this paper we present a dynamic yet compiler-directed
allocation method for heap data that for the first time, (i)
is able to place a portion of the heap data in scratch-pad;
(ii) has no software-caching tags; (iii) requires no run-time
per-access extra address translation; and (iv) is able to
move heap data back and forth between scratch-pad and
DRAM to better track the program’s locality characteristics.
With our method, global, stack and heap variables can
share the same scratch-pad. When compared to placing all
heap variables in DRAM and only global and stack data
in scratch-pad, our results show that our method reduces
the average runtime of our benchmarks by 34.6%, and the
average power consumption by 39.9%, for the same size of
scratch-pad fixed at 5% of total data size.

Index Terms— heap allocation, scratch pad, SRAM,
tightly coupled memory, TCM, dynamic allocation.

I. INTRODUCTION

The proposed research presents an entirely new ap-
proach to heap allocation for embedded systems with
scratch-pad memory. In embedded systems, program data
is usually stored in one of two kinds of write-able mem-
ories – SRAM or DRAM (Static or Dynamic Random-
Access Memories). SRAM is fast but expensive while
DRAM is slower (by a factor of 10 to 100) but less
expensive (by a factor of 20 or more). To combine their
advantages, often a large DRAM is used to build low-
cost capacity, and then a small SRAM is added to reduce
runtime by storing frequently used data. The gain from
adding SRAM is likely to increase in the future since the
speed of SRAM is increasing by 60% a year versus only
7% a year for DRAM [28].

In desktops, the usual approach to adding SRAM is to
configure it as a hardware cache. The cache dynamically

stores a subset of the frequently used data. Caches have
been a success for desktops – a trend that is likely to
continue in the future. One reason for their success is
that code compiled for caches is portable to different
sizes of cache; on the other hand, code compiled for
scratch-pad is usually customized for one size of scratch-
pad. Binary portability is valuable for desktops, where
independently distributed binaries must work on any
cache size. In embedded systems, however, the software
is usually considered part of the co-design of the system:
it resides in ROM, and cannot be changed. Thus, there is
really no harm to the binaries being customized to one
memory size, as required by scratch pad. Source code
is still portable, however: re-compilation with a different
memory size is automatically possible in our framework.
This is not a problem, as it is already standard practice
to re-compile for better customization.

For embedded systems, the serious overheads of caches
are less defensible. Caches incur a significant penalty in
area cost, energy, hit latency and real-time guarantees.
All of these other than hit latency are more important
for embedded systems than desktops. A detailed recent
study [11] compares caches with scratch pad. Their re-
sults are startling: a scratch pad has 34% smaller area and
40% lower power consumption than a cache of the same
capacity. These savings are significant since the on-chip
cache typically consumes 25-50% of the processor’s area
and energy consumption, a fraction that is increasing with
time [11]. Even more surprising, the runtime cycle count
they measured was 18% better with a scratch pad using
a simple static knapsack-based [11] allocation algorithm,
compared to a cache. Defying conventional wisdom, they
found absolutely no advantage to using a cache, even
in high-end embedded systems in which performance is
important. With the superior dynamic allocation schemes
proposed here, the runtime improvement will be larger.
Given the power, cost, performance and real time advan-
tages of scratch-pad, and no advantages of cache, it is
not surprising that scratch-pads are the most common
form of SRAM in embedded CPUs today (e.g., [20],
[1], [40], [54], [39]), ahead of caches. Trends in recent
embedded designs indicate that the dominance of scratch-
pad will likely consolidate further in the future [48], [11],
for regular as well as network processors.

Although many embedded processors with scratch-
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pad exist, compiling program data to effectively use
the scratch-pad has been a challenge. The challenge is
different for global and stack variables, on one hand, and
heap variables, on the other. This is explained below.

Recent advances have made much progress in compil-
ing global and stack variables into scratch-pad memory.
Two classes of compiler methods for allocating global and
stack variables to scratch-pad exist. First, static allocation
methods are those in which the allocation does not change
at runtime; these include [10], [51], [29], [9], [50] and
others not listed here. In such methods, the compiler
places the most frequently used variables, as revealed by
profiling, in scratch pad. Placing a portion of the stack
variables in scratch-pad is not easy – [10] is the first
method to solve this difficulty by partitioning the stack
into two stacks, one for scratch-pad and one for DRAM.
Second, recently proposed dynamic methods improve
upon static methods by allowing variables to be moved at
runtime; we know of two dynamic methods [56], [37].
Being able to move variables enables tailoring the allo-
cation to each region in the program rather than having a
fixed allocation as in a static method. Dynamic methods
aim to keep variables that are frequently accessed in a
region in scratch-pad during the execution of that region.
The methods in [56], [37] explicitly copy variables from
DRAM into scratch-pad just before a region in which they
are expected to the frequently accessed. Other variables
are evicted to DRAM by explicit copy out instructions to
make space for incoming variables. The method in [37] is
restricted to arrays accessed through affine functions; the
method in [56] is fully general and can place all global
and stack variables in scratch pad dynamically, even in
the presence of unrestricted pointers.

Allocating heap data to scratch-pad has proven far
more difficult. Indeed, as far as we know, no one has
proposed a successful method to allocate a portion of the
heap variables to scratch-pad memory. To see why, it is
useful to understand heap variables and their available
analysis techniques; an overview follows. Heap objects
are allocated in programs by dynamic memory allocation
routines, such as malloc in C and new in Java. They
are often used to store dynamic data structures such as
linked lists, trees and graphs in programs. Many com-
piler techniques for heap analysis group all heap objects
allocated at a single site into a single heap ”variable”.
Additional techniques such as shape analysis have aimed
to identify logical heap structures, such as trees. Finally,
in languages with pointers, pointer analysis [24], [52] is
able to find all possible heap variables that a particular
memory reference can access.

Having understood heap variables, let us consider why
heap data is difficult to allocate to scratch-pad memory at
compile-time. Two reasons for this difficulty are as fol-
lows. First, heap variables are usually of unknown size at
compile-time. For example, linked lists, trees and graphs
allocated on the heap typically have a data-dependent

number of elements, and thus a compile-time-unknowable
size. Thus it is difficult to guarantee at compile-time that
the heap variable will fit in scratch-pad. Such a guarantee
is needed for a compiler to place that heap variable
in scratch-pad. Second, moving data at runtime, as is
required for any dynamic allocation method to scratch-
pad, usually leads to the invalid pointer problem if the
moved data is a heap object. To see why, consider that
heap data often contains pointers to other heap data, such
as the child pointers in a tree node. When a heap object is
moved between scratch-pad and DRAM, all the pointers
into it become invalid. Updating all these pointers at
runtime is prohibitely expensive since it involves scanning
through entire, possibly large, heap structures at each
move. Static methods avoid this problem, but lack the
better per-region customization of dynamic methods.

Lacking compile-time methods for heap allocation to
scratch-pad, people have investigated runtime methods,
i.e., methods that decide what to place in scratch-pad only
at runtime; however largely they have not been successful.
Primary among runtime methods is software caching [38],
[27]. This class of methods emulate the behavior of a
hardware cache in software on the scratch-pad. Since
caches decide their contents at runtime, software caching
decides the subset of heap data to store in scratch-pad
at runtime. Software caching is implemented as follows.
A tag consisting of the high-order bits of the address
is stored for each cache line in software. Before each
load/store, additional instructions are compiler-inserted to
mask out the high-order bits of the address, access the
tag, compare the tag with the high-order bits and then
branch conditionally to hit or miss code. Some methods
are able to reduce the number of such inserted overhead
instructions [38], but much of it remains, especially for
non-scientific programs and for heap data. This imple-
mentation points to the primary drawbacks of software
caching: the inserted code before each load/store adds
significant overhead, including (i) additional runtime; (ii)
higher code size and dollar cost; (iii) higher data size and
cost from tags; and (iv) higher power consumption. These
overheads, especially for heap data, can easily exceed the
gains from locality.

In conclusion, lacking compile-time methods and suc-
cessful runtime methods for heap allocation to scratch-
pad, heap data is usually not allocated to scratch-pad
at all in modern embedded systems; instead it is placed
entirely in DRAM.
Heap allocation method This paper proposes a new
dynamic method for allocating a portion of the heap to
scratch-pad. The method is outlined in the following three
steps. First, it partitions the program into regions such
that the start and end of every procedure and every loop
is the beginning of a new region, which continues until
the next region begins. This is not the only possible
choice of regions; the reasons for this choice are in
section IV. Second, straightforward analysis is done to
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determine the time-order between the regions by finding
the set of possible predecessors and successors of each
region. Third, copying code is inserted by the compiler
at the beginnings of regions to copy in portions of heap
variables into the scratch-pad; these portions are called
bins. A cost-model driven heuristic method is used to
determine which variables to copy in and what size their
bins should be.

At first glance, the above method is similar in flavor to
our compile-time dynamic method for global and stack
data [56] in that it copies in data when the compiler
expects that it will be frequently used in the next region.
However its real novelty is seen in how it solves the
unknown size problem and the invalid data problem
mentioned earlier. How these problems are solved result
in virtually every aspect of the algorithm being different
from our earlier method. The solutions to the unknown
size problem and the invalid data problem are described
in the next two paragraphs.

First, our heap method solves the problem of unknown-
size heap variables by not storing all the elements of a
heap allocation site in its SRAM bin, but only a fixed-size
subset. (From here on “site” is used to mean the objects
allocated at a site). This fixed-size portion for each site in
scratch-pad is called the bin for that site.. Fixed-size bins
make possible compile-time guarantees that they will fit
in scratch-pad. For example consider a linked list having
nodes of size 16 bytes and an unknown number of nodes.
Here, the compiler may allocate a bin of size 192 bytes
for the allocation site of the list – this will hold only
192/16 = 12 nodes from the list. The total number of
nodes may be larger, but only twelve are allocated to the
bin and the rest to DRAM. A bin is copied into SRAM
just before every region where it is accessed (unless it
is already in SRAM) and is subsequently evicted before
a region where it is not1. When a bin is evicted it is
maintained as a contiguous block in DRAM; it is copied
back later to SPM contiguously if needed. This ensures
that the offset of a particular data object inside its bin is
not changed during its lifetime, regardless of whether the
bin is in SRAM or DRAM.

It is important to understand that objects may be
allocated or freed from either memory – separate free
lists are maintained for each bin, and there is a unified
free list for heap data that are not in bins. The bins are
moved between SRAM and DRAM, but non-bin data is
always in DRAM. New objects from a site are allocated
to its bin if space is available, and to DRAM otherwise.
Sites having a higher data re-use factor are assigned larger
bins to increase the total runtime gain from using bins.
Figure 1(a) is an example showing the five allocation sites
for a hypothetical program and bin size and regions-of-
access for each site. Four regions 1-4 are assumed in the

1This is the default behavior but it is selectively changed for some
regions by the optimizations in section IX.

program, numbered in order of their timestamps (defined
in section V).

Second, our heap method solves the problem of invalid
pointers by never changing the bin offset or size for any
site in the regions it is accessed. For example, figure 1(c)
shows the bin layout in scratch-pad for the sites in
figure 1(a), for each of the four regions in the program.
(Ignore figure 1(b) for now.) It shows that the offset
of each bin is always the same when it is present. For
example, site A is allocated at the same offset 512 in both
regions 2 & 4 it is accessed. An entire bin may be evicted
to DRAM in a region it is not accessed (as revealed by
pointer analysis). For example, site A is copied to DRAM
in region 3. Moving a bin to DRAM temporarily results
in invalid pointers that point to objects in the bin, but
those invalid pointers are never dereferenced as they occur
only during regions that pointer analysis has proven to not
access the site.

Our heap method effectively improves runtime for three
reasons. First, like a cache it allocates more frequently
used data to SRAM. This is achieved by assigning larger
bins to sites with high frequency-per-byte of access. Heap
area is traded off with global and stack data as well – the
frequency-per-byte of variables of all types (from profile
data) are compared to determine which ones are actually
copied to SRAM2. Any variable is placed in scratch-
pad only if the cost model estimates that the benefits of
locality exceed the cost of copying. Second, like caching
our heap method is able to change the contents of the
SRAM at runtime to match the requirements of different
phases of the program. The allocation is dynamic, but is
decided at compile-time. Third, unlike software caching,
our method has no tags and no per-memory-access over-
head.
Comparison with caches The primary measure of
success of our heap method is not its performance vs.
hardware caches, but vs. all-DRAM heap allocation, the
only existing method for scratch-pad. (Software caching
has not been a success). There are a great many chips that
have scratch-pad memory (SPM) and DRAM but no data
cache; examples include low-end CPUs [43], [2], [46],
mid-grade CPUs [3], [8], [7], [30], [33] and high-end
CPUs [4], [31], [42]. We found at least 80 such embedded
processors with SPM and DRAM but no D-cache in our
search but have listed only the above eleven for lack of
space. Thus our method delivers its full promised benefits
for a great variety of chips.

It is nevertheless interesting to see a quantitative
comparison of our method for SPM against a cache.
Section XI presents such a comparison. It shows that our
compile-time method is at least comparable to, or out-
performs, a cache of the same area in both run-time and

2The use of frequency-per-byte itself is not new. It has been used
earlier for allocating global and stack variables to SPM [50], [44]. The
novelty in this paper is in the solution to the unknown size and invalid
pointer problems; this allows heap data to be placed in SPM.
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Site Bin Regions
size accessed
(bytes)

A 256 2,4
B 256 1,2,3
C 256 3,4
D 512 3
E 256 4

offset
Memory

1 2 3 4

Regions

256

0

512

768

1024

A A

B B B

C C
offset
Memory

1 2 3 4

Regions

256

0

512

768

1024

B B

A

B

C

D
A

E

C

(a) (b) (c)
Fig. 1. Example of heap allocation using our method showing (a) heap Allocation sites; (b) greedy compiler algorithm for layout
– D does not fit; and (c) layout after backtracking – D fits.

energy usage.
Below, section II considers recent methods to convert

heap data to stack data, to see if they can be used to
allocate the heap. Section III overviews related work.
Section IV overviews the steps for our method for allo-
cating heap data, along with how it interacts with existing
methods for global and stack data. Section V describes
how the program is partitioned into regions. Section VI
describes how the bin size for each heap variable is com-
puted. Section VII describes layout assignment, which
shows how the memory offset for each object in scratch-
pad memory is computed. Section VIII how our method
can be iteratively applied to find multiple allocation
solutions, and choose the one with lowest estimated
runtime. Section IX describes two optimizations for our
method and code generation. Section X presents results.
Section XI presents a comparison versus architectures
containing caches. Section XII concludes.

II. CAN WE USE HEAP TO STACK CONVERSION TO

ALLOCATE TO SCRATCH PAD?

At first glance, it seems that recent work on converting
heap data to stack data [18], [19], [22] or to stack-like
constructs called regions [17], [26] may help in allocating
heap data to scratch-pad. Here is some background on
these methods. These methods use escape analysis [45],
[60] to try to prove that a heap data structure is never
accessed outside a certain procedure. If so, the heap
variable can be placed on the procedure’s stack frame,
instead of the heap. The advantage of stack allocation
is that the high overhead of heap allocation and de-
allocation is avoided. Heap de-allocation is particularly
expensive for object-oriented languages since it is done
using garbage collection. In contrast, heap data on the
stack is de-allocated at low cost when its corresponding
procedure exits. One restriction with stack allocation is
that it requires fixed-size heap variables, except in some
cases when the data is on the frame on the top of the stack.
Since this is restrictive, region-based schemes [17], [26]
have been proposed for when heap data is of unknown
size. Regions, like stack frames, are associated with
procedures but are physically allocated on the heap so
that they can grow and shrink at runtime. A region is
de-allocated when its corresponding procedure exits.

If some heap variables can be allocated to stacks
or regions using these methods, then, we ask, can our
global/stack method be used to allocate most heap vari-
ables to scratch-pad? Unfortunately this approach fails
for most heap variables for two reasons. First, heap
data structures with compile-time-unknown size cannot
be allocated to scratch pad even if they can be converted
to stack or region allocation. Dynamic data structures
such as linked lists, trees and graphs almost always have
compile-time-unknown size, and thus cannot be allocated
to scratch-pad by stack/region conversion. Second, the
fraction of heap data that is of fixed size, and can be
converted to stack allocation using escape analysis, is
small. Such data can be allocated to scratch pad using
our stack/global method, but [22] reports that only 19%
of the heap data in their benchmarks could be converted to
fixed-size stack data. This low percentage is not surprising
– most heap data is in dynamic data structures. Fixed-size
heap variables occur mostly in object-oriented languages,
where objects are often allocated on the heap so that
they can be returned as results from their method (object-
oriented function) of allocation. For most heap variables,
since they are not of fixed size, stack or region allocation
does not help in scratch-pad allocation.

In conclusion, allocating heap data to stack or regions
reduces allocation and de-allocation overhead in all emb-
edded systems, but cannot be used to allocate most heap
data to scratch-pad.

III. RELATED WORK

Static methods to allocate data to SPM include [50],
[51], [11], [44], [29], [9], [10]. Static methods are those
whose SPM allocation does not change at run-time.
Some of these methods [50], [11], [44] are restricted
to allocating global variables to SPM; others [51], [29],
[9], [10] can allocate both global and stack variables to
SPM. Some of these methods use greedy strategies to
find a solution; others model the problem as a knapsack
problem or an integer-linear programming problem to find
a solution.

Some static allocation methods [6], [59] aim to allocate
code to SPM rather than data. Other static methods [61],
[53] can allocate both code and data to SPM. Their data
allocation is restricted to global and stack data. The the
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Step 1. Partition program into regions. /* Section V */
Step 2. Compute initial heap bin sizes. /* Section VI */
Step 3. Compute consensus heap bin sizes. /* Section VI */
Step 4. Indirection optimization: /* Section IX */

(a) Perform indirection optimization on regions where profitable.
(b) If (indirection optimization was applied anywhere)

Goto Step 2. /* Inner iteration */
Step 5. Do heap layout assignment. /* Section VII */
Step 6. Do global and stack placement. /* Section VII */
Step 7. Do global and stack layout assignment. /* Section VII */
Step 8. Lazy leave-in optimization. /* Section IX */
Step 9. Iterative step: /* Outer iteration */ /* Section VIII */

(a) If (estimated runtime of current solution < estimated runtime of best solution so far)
Update best solution so far.

(b) If (estimated runtime of current solution == estimated runtime of solution in last iteration)
Goto Step 10. /* See same solution again ⇒ end search */

(c) If (number of iterations < THRESHOLD)
Goto Step 2. /* Otherwise end search and proceed to Step 9 */

Step 10. Do code generation to implement best allocation found. /* Section IX */

Fig. 2. Algorithm for allocating global, stack and heap data to scratch-pad memory.

goal of the work in [5] is yet another: to map the data
in the scratch-pad among its different banks in multi-
banked scratch-pads; and then to turn off (or send to a
lower energy state) the banks that are not being actively
accessed.

Dynamic methods to allocate data to SPM include [37],
[56]; these are methods which can change the SPM
allocation during run-time. The method in [37] can place
global and stack arrays accessed through affine functions
of enclosing loop induction variables in SPM. No other
variables are placed in SPM; further the optimization for
each loop is local in that it does not consider other code in
the program. Our earlier method in [56] is a fully general
dynamic method that can place all kinds of global and
stack variables in SPM. It uses a whole-program analysis
that aims to consider the interactions between neighboring
code regions to minimize the transfer of data between
SPM and DRAM while maximizing the fraction of data
found in SPM.

Summarizing the above work, we can see that all of
them are restricted to global and stack data. As far as
we know, our method is the first and only method to be
able to place a portion of the heap data in SPM under
compiler control.

Runtime methods such as software caching [38], [27]
emulate a cache in SRAM using software. The tag, data
and valid bits are all managed by compiler-inserted code
at each memory access. Software overhead is incurred to
manage these fields, though compiler optimizes away the
overhead in some cases [38]. Software caching schemes
suffer from large overheads from inserted checks before
every memory instruction, which are hard to optimize
away especially for heap data. Lacking good methods
for heap data, the current practice is to place all heap
data to DRAM in systems with scratch-pad. Our proposed
dynamic method promises to be the first to successfully
place heap data in scratch-pad.

Some software caching schemes have been proposed
for desktops that use dynamic compilation [32] which

changes the program at runtime in RAM. Most embedded
systems, however, store the program in unchangeable
ROM, and dynamic compilation cannot be used. Other
software caching schemes have been proposed with dif-
ferent goals and/or non-applicable platforms [58], [15],
[21], [47], [16], [34]. For lack of space, we do not discuss
these further.

Offline paging [14] derives an optimal page replace-
ment strategy when future page references are known
in advance. It cannot be used for our purposes since
it makes its page transfer decisions at runtime (address
translation done by virtual memory), while any compile-
time dynamic method for heap data needs to associate
memory transfers with static program points.

IV. METHOD OVERVIEW

Figure 2 shows the steps that our method takes to
allocate all types of data – global, stack and heap –
to scratch-pad memory. Although the contribution of
this paper is the method for heaps, the figure shows
how the heap method interacts with an existing allocator
for global and stack variables, such as [56], to give
a complete allocation method. The memory allocation
algorithm is run in the compiler just after parsing and
initial optimizations but before register allocation and
code generation. This allows the compiler to integrate
the transfer code insertions with the rest of the program
before later compiler optimizations and final register
allocation and code generation.

Here we overview the steps shown in figure 2. Details
are found later in the sections listed in the right margin
for each step in the figure. Step 1 partitions the program
into a series of regions. The region boundaries are the
only program points where the allocation can change
though compiler-inserted copying code. Step 1 also places
timestamps on each region at compile-time showing the
expected order that the regions are visited at runtime. Step
2 computes an initial desired bin size for each heap vari-
able for each region based upon the relative frequency-
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per-byte of all variables accessed in that region. Variables
of any kind with a higher frequency-per-byte of access
are thus preferred. Step 3 computes a single bin size
for each heap ”variable” (allocation site) equal to the
weighted average of the initial bin sizes for that variable
across all regions which access that variable; weighted by
frequency-per-byte of that variable in each region. Step
4 performs the indirection optimization which aims to
reduce the number of transfers. Step 5 computes the
layout of the heap bins in scratch-pad by computing
the exact memory offset for each bin. Step 6 decides
which global and stack variables to keep in scratch-
pad in each region, after taking into account the space
remaining after heap layout. Step 7 computes the layout
for global and stack variables. Step 8 performs the lazy
leave-in optimization, which leaves bins in scratch-pad in
regions where they are not accessed, if the cost of eviction
exceeds the gain from that space from other variables.
Step 9 performs an iterative step on the algorithm. Step
9(a) maintains the best solution seen so far. Step 9(b)
terminates the algorithm if the iterative search is making
no progress. Step 9(c) is the heart of the iteration in that
it repeats the entire allocation computation, but this time
with feedback from the results of this iteration. After the
iterative process has exited, step 10 generates code to
implement the best allocation found among all iterations.

V. DERIVING REGIONS AND TIMESTAMPS

Our method defines regions and timestamps in the same
way as for our method for global and stack data [56]. The
presentation is restated here for completeness. A region
is a contiguous portion of code in which the allocation
to scratch-pad is fixed. Boundaries of regions are called
‘program points’, and thus regions can be defined by
defining a set of program points. Code to transfer data
between scratch-pad and DRAM is inserted only at the
program points.

Program points and hence regions are found as follows.
Promising program points are (i) those after which the
program has a significant change in locality behavior, and
(ii) those whose dynamic frequency is preferably less than
the frequency of its following region, so that the cost of
copying into SRAM can be recouped by data re-use from
SRAM in the region. For example, sites just before the
start of loops are promising program points since they are
infrequently executed compared to the insides of loops.
Moreover, the loop often re-uses data, justifying the cost
of copying into SRAM. With the above two criteria in
mind, we define program points as (i) the start and end
of each procedure; and (ii) just before and just after each
loop (even inner loops of nested loops).

Figure 3 shows an example illustrating how a pro-
gram is marked with timestamps at each program point.
Figure 3(a) shows the program outline. It consists of
four procedures, namely main(), proc-A(),proc-B() and

proc-C(), two loops that we name Loop 1 and Loop2,
and accesses to two variables X and Y . Only loops,
procedure declarations and procedure calls are shown –
other instructions and constructs are not.

Figure 3(b) shows the Data-Program Relationship
Graph (DPRG) for the program in figure 3(a). The DPRG
is a data structure introduced in [56] that helps in the
marking of timestamps and thus the identification of
regions. The DPRG is the program’s call graph appended
with new nodes for loops and variables. In the DPRG
shown in figure 3(b), there are four procedures, two loops
and two variables represented by nodes. We see that oval
nodes represent procedures, circular nodes represent loops
and square nodes represent variables. Edges to procedure
nodes represent calls; edges to loop nodes shows that the
loop is in its parent; and edges to variable nodes represent
memory accesses to that variable from its parent. The
DPRG is usually a directed acyclic graph (DAG), except
for recursive programs, where cycles occur.

Figure 3(b) also shows the timestamps (1-14) for all
program points, namely the beginnings (shown on left
of nodes) and ends (shown on right) of every procedure
& loop node. The goal is to number timestamps in the
order they are encountered during the execution. This
numbering is computed at compile-time by the well-
known depth-first-search (DFS) graph traversal algorithm.
Our DFS marks program points in the order seen with
successive timestamps. Our DFS is modified, however, to
traverse and timestamp nodes every time they are seen,
rather than only the first time. This still terminates since
the DPRG is a DAG for non-recursive functions. Such
repeated traversal results in nodes that have multiple paths
to them from main() getting multiple timestamps. For
example, node proc-c() gets timestamps 3 & 7 at its
beginning, and 4 & 8 at its end3.

The handling of conditional paths in programs is
detailed in our earlier paper on global and stack vari-
ables [56]. That paper’s section 5 lists how conditional
paths impact the DPRG, the regions and the timestamps.

Timestamps are useful since they reveal dynamic ex-
ecution order: the runtime order in which the program
points are visited is roughly the order of their timestamps.
The only exception is when a loop node has multiple
timestamps as descendants. Here the descendants are
visited in every iteration, repeating earlier timestamps,
thus violating the timestamp order. Even then, we can
predict the common case time order as the cyclic order,
since the end-of-loop backward branch is usually taken.
Thus we can use timestamps, at compile-time, to reason
about dynamic execution order across the whole program.

3This numbering of timestamps is slightly different from that in [56].
That paper used a numbering scheme where the numbering of a node
depended on the numbering of its parent, e.g., if the parents number was
x then the nth child was x.n; further an ordering between timestamps was
defined. The numbering in this paper is exactly functionally equivalent
and directly numbers the nodes in the order of their timestamps – this
version is simpler to understand.
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main () {
proc-A()
proc-B()
while (. . . ){X =. . .} /* Loop 1 */

}

proc-A () {
proc-C()

}

proc-B () {
proc-C()
for (. . . ){Y =. . .} /* Loop 2 */

}

proc-C () { . . .}

main()

X

4,8

1

11 13

14

3,7

652 12

109

Y

proc_B()

proc_C()

Loop 1

Loop 2

proc_A()

(a) (b)
Fig. 3. Example showing (a) a program outline; and (b) is its DPRG showing nodes, edges & timestamps.

Timestamps have their limitations in that they cannot
be derived for unstructured control flow or for inside re-
cursive procedures. Fortunately, unstructured control flow
is exceedingly rare nowadays in any domain – we only
refer to arbitrary goto statements here; other constructs
such as break and continue statements within loops, and
switch statements, are okay for timestamps. Regarding
recursive functions, our method is to collapse recursive
cycles in the DPRG into single composite nodes, and
thereafter place all stack and heap data allocated inside of
recursive procedures in DRAM. After collapsing, data in
other (non-recursive) procedures in the DPRG can still be
placed in scratch-pad. Collapsing the cycles into nodes
restores the acyclic nature of the DPRG, allowing our
region-creation depth-first search to terminate. Recursive
programs are rare in embedded programs, so we have not
been motivated to investigate a more sophisticated fix. No
previous method can place any data in recursive functions
in scratch-pad either.

VI. BIN SIZE COMPUTATION

The bin size assignment heuristic assigns a single bin
size for each heap variable in two steps. First, each
region requests an initial bin size for each heap variable
considering only its own accesses (Step 2 in figure 2).
Second, a single consensus bin size is computed for each
heap variable (Step 3 in figure 2) as a weighted average
of the initial bin sizes of regions accessing that variable.
This section discuss these two steps in detail.

Before looking at the algorithm for bin size com-
putation, let us consider two intuitions on which the
algorithm is based. The first intuition is that the bin
size assignment heuristic assigns larger bins to sites
having greater frequency-per-byte of access. The reason
is that the expected runtime gain from placing a heap
bin in scratch-pad instead of DRAM is proportional to
the expected number of accesses to the bin. Thus for a
fixed amount of scratch-pad space, the gain from that
space is proportional to the number of accesses to it,
which in turn is proportional to the frequency-per-byte

of data in that space. A second intuition is also needed:
the constraint of fixed-sized bins implies that even heap
variables of lower frequency-per-byte should get a share
of the scratch-pad. This intuition counter-balances the
first intuition. To see why this is needed, consider that
according to the first intuition alone, a heap variable with
the highest frequency-per-byte in a certain region should
be given all the scratch-pad space available. This may
not be wise because of the fixed size constraint: doing so
would mean a huge bin for the variable that would crowd
out all other heap objects in all regions it is accessed, even
those with higher frequency-per-byte in other regions. A
better overall performance is likely if we ‘diversify the
risk’ by allocating all bins some scratch-pad, even those
with lower frequency-per-byte.

The initial bin size computation algorithm is shown in
procedure find initial bin size() in figure 4. It proceeds
as follows. For every region in the program (line 1), all
the variables accessed in that region are considered one
by one, in decreasing order of their frequency-per-byte of
access in that region (line 3). In this way, more frequently
accessed variables are preferentially allocated to scratch-
pad. For each variable, if it is a global or stack variable,
then space is reserved for it (line 5). This reserved space
is merely an estimate, however – the global or stack
variable is not actually assigned to SRAM (scratch-pad)
yet; that is done after bin size assignment by Step 6 in
figure 2. This design allows for our heap method to be
de-coupled from the global-stack method, allowing the
use of any global-stack method.

Returning to initial bin size assignment, if the variable
v is heap variable (line 6 in figure 4) then an initial
bin size is computed for it (lines 7-12). Only when the
frequency-per-byte of the site in the region exceeds one
(i.e., there is reuse of the site’s data in the region),
is a non-zero bin size is requested (lines 8-10). Then,
the bin size is computed by proportioning the available
SRAM in the ratio of frequency-per-byte among all sites
accessed by that region (line 8). Only sites that having
freq per byte(Si,R) > 1 are included in the formula’s
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denominator. The bin size is revised to never be larger
than the variable’s total size in the profile data (line
9): this heuristic prevents small variables from being
allocated too-large bins. Finally, the bin size is revised to
be a multiple of the heap object size (line 10), to avoid
internal fragmentation inside bins.

Finally, a single final bin size is computed as a con-
sensus among the initial bin size assignments above, as
shown in procedure find consensus bin size() in figure 4.
For each heap variable v, the consensus bin size (line 16)
is computed as the weighted average of the initial bin size
assignments for that site across all regions that access S,
weighted by the frequency-per-byte of that variable in that
region.

VII. LAYOUT ASSIGNMENT

Given the sizes of the bins computed above, the next
step in our method is to compute the layout of all
variables in scratch-pad memory (Steps 5-7 in figure 2).
The layout refers to the offsets of variables in memory.
Computing the layout is done in three steps. First, the
layout of heap variables is computed (Step 5). Second,
the placement of global and stack variables is computed
(i.e., which global and stack variables to keep in scratch-
pad is decided) (Step 6). The placement takes into account
the amount of space remaining in scratch-pad after heap
layout. Third, the layout for global and stack variables
is computed by allocating such variables in the spaces
remaining in scratch-pad after heap layout. This section
only discusses how the heap layout is computed. The
placement and layout of global and stack variables is
independent of this paper, and any dynamic method for
global and stack variables can be used, such as [56].

Before we compute the heap layout, it is instructive to
consider why heap layout is done before the placement
and layout of global and stack variables. The reason
the heap layout is done first is that the layout of heap
bins is more constrained than that of global and stack
variables. In particular, heap bins must always be laid
out at the same offset in every region they are accessed.
Thus, allowing the heap layout to have full access to
the whole scratch-pad memory increases the chance of
finding a layout with the largest possible number of heap
variables in scratch-pad. The less constrained global and
stack variables, which typically can be placed in any
offset [56], can be placed in whatever spaces that remain
after heap layout. Placing heap data first does not mean,
however, that heap variables are preferentially allocated
in scratch-pad. Global, stack and heap variables were
given an equal chance to fit in scratch pad in the initial
bin size computation phase. At that point, we had already
reserved space for global and stack variables of high
frequency-per-byte.

The layout of heap bins is computed as follows.
Finding the layout involves computing the single fixed
offset for each bin for all regions in which the bin’s site

is accessed. Further, different bins must not conflict in
any region by being allocated to the same memory. We
use a greedy heuristic that allocates bins to scratch pad
in decreasing order of their overall frequency per byte of
access, so the most important bins are given preference.
Each bin is placed into the first block in memory that is
free for all the regions accessing the bin’s site. Figure 1(b)
shows the result of the greedy heuristic on sites A-C listed
in figure 1(a). This heuristic can, however, fail to find a
free block for a bin. Figure 1(b) shows this situation –
the bin for D cannot be placed since no contiguous block
of size 512 is available in region 3.

To increase the number of bins allocated to scratch-pad,
we selectively use a back-tracking heuristic whenever the
greedy approach fails to place a bin. Figure 1(b) shows
how the greedy heuristic fails to place bin D. Figure 1(c)
shows how D can be placed if the offset choices for
A and C are revisited and changed as shown. To find
the solution in figure 1(c), our back-tracking heuristic
tries to place such a bin by moving a small set of bins
placed earlier to different offsets. This heuristic is written
as a recursive algorithm as follows. To try to place a
bin that does not fit, it finds the offset in scratch-pad at
which the fewest number of other bins, called conflicting
bins, are assigned. Then it recursively tries to move
all the conflicting bins to non-conflicting locations. If
successful, the original bin is placed in the space cleared
by the moved conflicting bins. The recursive procedure is
bounded to three levels to ensure a reasonable compile-
time. Four levels increased the compile-time significantly
with little additional benefit. An example of this method is
when block D cannot be placed in figure 1(b). The offset
with the minimum number of conflicts (2) is 512, and the
conflicting block set is C. Thus block D is placed at offset
512 by moving C, which in turn recursively moves block
A. The conflict-free assignment in figure 1(c) results. Of
course, even this recursive search may fail to place a bin –
in this case the corresponding heap allocation site places
all its data in DRAM.

VIII. OUTER ITERATIVE STEP

Although the scratch-pad allocation algorithm is es-
sentially complete after layout assignment, there is an
opportunity to do better by iteratively running the entire
algorithm again and again, each time taking into account
feedback from the previous iteration. This iterative pro-
cess is depicted in step 9 of figure 2. Step 9(a) maintains
the best allocation solution seen amongst all iterations
seen so far. Step 9(b) terminates the algorithm if the
iterative search is making no progress. Step 9(c) jumps
back to step 2 to repeat the entire allocation computation,
but this time with feedback from the results of the
previous iteration.

The core of the iterative process is understanding what
the current iteration can learn from the previous iteration.
The nature of the feedback is what was found to actually
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void find initial bin size() {
1. for (each region R in any order) do
2. SRAM remaining = MAX SRAM SIZE
3. for (each variable v of any kind accessed in R sorted in decreasing frequency-per-byte(v,R) order) do
4. if (v is a global or stack variable)
5. SRAM remaining = SRAM remaining - size(v)
6. else { /* v is heap variable */
7. if (freq per byte(v,R) > 1) /* if variable v is reused in R */

8. initial bin size(v,R) = SRAM available × freq per byte(v,R)
Σall accessed variablesuiin R freq per byte(ui ,R) which are > 1

9. initial bin size(v,R) = MIN(initial bin size(v,R), size of v in profile data)
10. initial bin size(v,R) = next-higher-multiple-of-heap-objects-size(initial bin size(v,R))
11. else /* no reuse in variable v in R */
12. initial bin size(v,R) = 0
13. SRAM remaining = SRAM remaining - initial bin size(v,R)
14. return

void find consensus bin size() {
15. for (each heap variable v in any order) do
16. consensus bin size(v) = Σall R initial bin size(v,R)×freq per byte(v,R)

Σall R freq per byte(v,R)
17. return

Fig. 4. Bin size computation for heap variables.

fit in scratch-pad memory in the previous iteration, given
the constraints of layout assignment. To incorporate this
feedback in the next iteration, initial bin size computation
(step 2) is modified in three ways. First, global and stack
variables that did not fit in scratch-pad in the previous
iteration do not reserve space for themselves in line 5
of figure 4. Second, heap variables that did not fit in
scratch-pad in the previous iteration have their bin size
reduced. In particular, the initial bin size is reduced to
be the largest size that would have fit in the previous
iteration. It is easy to obtain and store this information at
the point the heap layout heuristic is unable to place that
particular bin. Third, heap variables that fit in scratch-pad
have their bin size increased to the largest size that would
have fit in the previous iteration. This is determined after
layout by looking at the total amount of free space left
in the system and increasing the sizes of each heap bin
that fit, in order of decreasing frequency-per-byte for the
heap sites, until no more free space is left. This is just a
heuristic – if no layout can be found with the increased
bin size then a subsequent iteration will likely decrease
the bin size back down.

The iterative process described above is a heuristic, and
is not guaranteed to improve runtime at each iteration.
Indeed, the runtime cost may even increase, and after
some number of iterations it often does, so for this
reason, rather than use the results of the last iteration as
the final allocation, the solution with the best estimated
runtime among all iterations is maintained. It is fairly
straightforward to estimate the runtime cost of a solution
at compile-time by counting how many references are
converted from accessing DRAM to scratch-pad by a
given allocation for the profile data.

A desirable feature of our iterative approach is that it is
tunable to any given amount of desired compile-time by
modifying the threshold for exiting the iterations in step
9(c). In practice, however, we found that we find close to

the best solution in a small number of iterations; usually
less than three to five iterations. Thereafter it may get
worse, but that is no problem as the best solution seen
so far is stored, and worse solutions are discarded. After
exiting the iterative process (step 10 of figure 2), the best
solution seen so far is implemented.

IX. OPTIMIZATIONS AND CODE GENERATION

This section discusses three optimizations to our base-
line method for heap data, and code generation.
Reducing runtime and code size of data transfer code
Our method copies heap bins back and forth between
SRAM and DRAM. This overhead is not unique to our
approach – hardware caches also need to move data
between SRAM and DRAM. The simplest way to copy
is a for loop for each bin which copies a single word
per iteration. We speed up this transfer in the following
three ways. First, we generate assembly-level routines
that implement optimized transfers suited to the block
size being copied. Copying blocks of sizes larger than a
few words are optimized by unrolling the for loop by a
small constant. Second, code size increase from the larger
generated copying code are almost eliminated by placing
the code in a memory block copy procedure that is called
for each block transfer. Third, faster copying is possible
in processors with the low-cost hardware mechanisms
of Direct Memory Access (DMA) (e.g., [20], [25]) or
pseudo-DMA(e.g., [40]). DMA accelerates data trans-
fers between memories and/or I/O devices. Pseudo-DMA
accelerates transfers from memory to CPU registers, and
thus can be used to speed memory-to-memory copies via
registers.
Indirection optimization A opportunity for improving
our algorithm arises because of the following undesirable
situation that can arise. In our strategy it is possible that
in a certain region, the cost of copying a bin into scratch-
pad before that region can exceed the gain in latency of
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accesses in the region. Leaving the bin in DRAM in such
a case would improve runtime, but unfortunately this vi-
olates correctness because of the fixed-offset requirement
of our method. To see why correctness is violated consider
that a heap bin must be in the same memory bank in all
regions that access it, as otherwise, if the bin remained
in a different memory bank in a some of those regions,
pointers into objects in the bin might be incorrect. Thus
the optimization of leaving the bin in DRAM cannot be
applied.

Fortunately, there is a way to make this optimization
legal. It is legal to leave the bin in DRAM when it is
not profitable to copy it into scratch-pad at the start of
a region, provided, in addition all accesses to the bin
in the region are translated at runtime to convert their
addresses from scratch-pad to DRAM addresses. Doing so
will ensure that all pointers to the bin – which are really
invalid since they point incorrectly to scratch-pad – will
become valid after translation. Scratch-pad addresses can
be translated at runtime to DRAM addresses by inserting
code before every memory reference that adds to each
address the difference between the starting memory offset
of the bin in DRAM and SRAM. In this way, a level
of indirection is introduced in addressing, and hence the
name of this optimization.

One may wonder why the indirection optimization is
used as an optimization, and not the default scheme.
Recall than the default scheme ensures that a bin is
allocated at the same offset in SRAM whenever it is
accessed, and uses indirection only as an exception. The
reason that indirection is not used as the default is that
indirection has a cost – extra code must be inserted
before every access to check if its address is in SRAM
and if so, to add a constant to translate it to a DRAM
address. This extra code consumes run-time and energy.
It is therefore profitable to apply indirection only if the
cost of the transfer exceeds the overhead of indirection.
For regions where a bin is frequently used, the opposite
is true – the overhead, which increases with frequency of
use, will increase and often far exceed the cost of transfer;
so indirection is not profitable. Since regions where bins
are accessed frequently make up most of the run-time
the default behavior should match their requirements;
indirection is used sparingly for other regions where its
overhead is justified.

The indirection optimization (step 4 in figure 2) is
applied as follows. For every heap variable v in the
program in any order, the compiler looks at all groups
of contiguous regions in which v is accessed. For each
such group of regions, it estimates whether the cost of
copying the bin into scratch-pad at the start of the group
(a known function of the size of the block to be copied) is
justified by the profile-estimated gain in access latency of
accesses to v in the group. If the estimated cost exceeds
the estimated gain, then the transfer of the bin to scratch-
pad is deleted, and instead all references to v in the

group are address-translated as described in the previous
paragraph. The address translations themselves add some
cost, which is included as an increase in the estimated
cost above.

A consequence of the indirection optimization is that
scratch-pad space for a some bins is freed in address-
translated regions. To profitably use this freed space,
we iteratively return to the start of our allocation to re-
compute the bin sizes. This iteration is shown in step
4(b) of figure 2. The iterative process exits to step 5 only
when the indirection optimization cannot be applied to
any additional groups of regions in an iteration.
Lazy leave-in optimization The lazy leave-in opti-
mization tackles the opposite problem to the indirection
optimization. Our default behavior is to copy a bin out
to memory in regions where it is not accessed. Instead in
some cases, it may be profitable to leave a bin in scratch-
pad even in regions where it is not accessed, if the cost
of copying the bin out to DRAM exceeds the benefit of
using that scratch-pad space for other variables. Unlike
the indirection optimization there are no legality concerns
since there is no correctness constraint for regions which
do not access a variable.

One way to do this optimization here as a post-pass to
layout assignment. This is shown in step 8 of figure 2.
After layout assignment we know what other variables
were assigned to the space evicted by a bin. If the profile-
estimated net gain in latency from these other variables
is less than the estimated cost of the transfer, then the
compiler lazily leaves the bin in scratch-pad and does
not bring the other variables in. The implementation of
this optimization is similar to that for the indirection
optimization in that an estimated gain vs. estimated cost
comparison is applied to contiguous groups of regions,
but this time the groups are of regions which do not access
a bin. A special iterative step for this optimization is not
needed since the entire algorithm iterates in the next step
any way (step 9 of figure 2).
Code generation Once the iterative process is complete,
the code generation for the method happens in step 10
of figure 2. The code generation is straight-forward and
has three aspects. First, the memory transfers are inserted
where-ever the method has decided. Second, addressing
of heap variables does not need modification since they
are addressed (usually through pointers) in the same
way. Third, calls to malloc() are replaced by calls to a
new wrapper function around malloc(). This wrapper first
searches for space in fast memory for that bin using a new
free-list for fast memory. An argument is passed to the
wrapper malloc specifying which site is calling it. In this
way the wrapper becomes aware of which site is calling
it, so that it can look in the bin free list for that site.
If space cannot be found in that site’s bin free list, then
malloc is called on the original unified free-list in slow
memory. The code for malloc() is the same for fast and
slow memory, but works on different free lists. Similar
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Application Source Description Lines Data size Run-time % of accesses % of data
of code (bytes) (Mcycles) to heap that is heap

Huff Public Domain Adaptive Huffman encoding 1012 17844 56.1 27.83 55.41
Dhrystone1.1 Dhrystone Performance benchmark

application 455 10912 14.63 14.9 0.01
Susan MIBench Image smoothing

edge/corner detection 2125 378110 113.9 13.14 38.45
GSM EU GSM RPE/LTP speech

consortium compression 6828 16466 506.5 8.18 3.88
KS PtrDist Minimum Spanning

Tree for graphs 686 29316 2.6 25.38 18.12

Fig. 5. Application programs.

modifications are made for other heap memory allocation
routines such as calloc() and realloc(). Free() functions are
also modified to release the block to the either the site’s
bin free list or the unified non-bin free list, depending on
the address of the object to be freed.

X. PRELIMINARY RESULTS

This section presents preliminary results by comparing
our proposed method for heap data against the usual
practice of placing heap data in DRAM, for a variety of
compiler and architecture configurations. We have imple-
mented our algorithm in a GCC cross-compiler targeting
the Motorola M-Core [40] embedded processor. The
dynamic method for global and stack variables in [56]
is also implemented in the same GCC M-Core compiler.
The results presented in this work do not include two
optimizations discussed earlier, those being (1) indirec-
tion optimization and (2) recursive back-tracking. The
indirection optimization is optional and is not applied.
In the layout phase, instead of recursive back-tracking a
simplified two-level search and swap heuristic is used.
We note that adding in these two optimizations to our
overall method can only improve its performance. A
cycle-accurate M-Core simulator is used to collect results.

The memory characteristics and applications are as
follows. An external DRAM with 20-cycle latency and
an internal SRAM (scratch-pad) with 1-cycle latency
is simulated in the default configuration. The default
configuration has an SRAM size which is 5% of the total
data size in the program. In addition, the effect of varying
DRAM latency and SRAM size are measured in the
experiments. The DRAM size, of course, is assumed to be
large enough to hold all program data. The applications
evaluated are shown in figure 5. The applications selected
all have at least some heap data.

Pseudo-DMA and DMA are simulated by counting the
estimated costs of those mechanisms in the simulator.
A pseudo-DMA function is an software implementation
of a direct memory access control function that can be
used with many low-end embedded processors that lack
hardware DMA controllers for external memory traffic.
It relies on hardware support to load multiple registers
at once from memory. We apply this to transfer blocks
of 24 bytes or larger by issuing a pair of instructions

that load a range of registers at once starting from a base
memory location in a dram memory bank. This allows
pipelined access of these contiguous memory words to be
loaded much faster than truly random accesses to a dram
bank issued with individual load and store instructions.
An N-word transfer involves N*DRAM LATENCY/2 for
the memory cycle cost, and a 10 instruction cycle base
overhead plus an additional cycle for every 4 words
transferred. Real DMA accelerates memory transfers from
external memory banks without involving the cpu di-
rectly and are present in most modern mid to high-
level embedded systems containing scratchpad, cache or
both as their first-level memory hierarchy and external
memory controllers. We model this as a cycle cost of
N*DRAM LATENCY/4 cycles per N words plus a 10
cycle overhead for the DMA transfer function for each
variable transferred.
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Fig. 6. Runtime gain from using our method vs. allocating heap
data in DRAM.

Runtime gain Figure 6 compares the normalized run-
time from our method versus from the existing practice
of placing all heap data in DRAM. For each benchmark
the SRAM size is the same in both configurations –
5% of the combined global, stack and heap data size
in that program. Without our method, this SRAM is
used only by global and stack data; with our method
the SRAM is shared by global, stack and heap data. In
both cases, global and stack data is allocated by the best
existing method for global and stack data, which is the
one in [56]. The figure shows that the average runtime
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reduces by 34.6% by using our method for the exact same
architecture. The large improvements show the potential
of our method to reduce runtime of the application beyond
the state-of-the-art today. The results in figure 6 and the
rest of the paper use DMA for the memory transfers in
our method. However we have measured that the gain
from our method only reduces slightly to 32.7% with
all-software transfers (not shown); this shows that our
method is profitable even without DMA. The reason the
gain reduces only slightly without DMA is that both our
method and the baseline for global and stack [56] rely on
memory transfers; a change in the transfer mechanism
affects both and changes their ratio only a little. The cost
of the transfers is quantified later.
Why do we do well? Before looking at additional exper-
iments, it is insightful to look at why an improvement of
34.6% can be obtained with an SRAM of only 5% of the
total data size of the program. We identify three reasons.
First, it is well-known that a small fraction of frequently
used data usually accounts for a large fraction of the ac-
cesses in the program. This is often referred to informally
as the ninety-ten rule [28]: on average 10% of the data
accounts for 90% of the accesses. Consequently, we find
that our method is able to place the most frequently used
heap variables, either fully or in large part, in SRAM –
this is verified later in figure 9. Without our method, they
all go to DRAM, which is much slower. A second reason
for the significant improvement is that our earlier global
and stack method, and our current heap method, are both
dynamic. Thus even though the SRAM is 5% of the total
data size, by sharing this space across different frequently
used data variables in different regions, it is possible
to place more than 5% of the frequently used data in
SRAM. Note that a scratch-pad improves performance
for the same reasons as a cache. Just as even a small
cache can significantly improve run-time [28], it is not
surprising that a small scratch-pad can too. Third, the
benchmarks selected have a significant fraction of their
accesses going to heap, and thus our method to optimize
for heaps does well. For other benchmarks (not selected)
where the fraction of heap accesses is zero or small, heap
allocation is, of course, not a problem, and hence, it does
not need SRAM placement.

Here we look at two examples from our benchmarks
which illustrate why some heap data is accessed fre-
quently. First, Susan is a typical image-processing ap-
plication which stores the image in a large stack array.
It performs iterative smoothing on small chunks of the
image at a time; the chunks and associated look-up tables
needed for smoothing are stored on the stack and on
the heap. Because smoothing accesses each pixel many
times, the most-frequently used chunk data is allocated
to SRAM, but the infrequently used large image array
and less-frequently used chunk data are placed in DRAM.
Second, Huffman performs Huffman encoding, meant for
data compression. Here most of the program data is on

the heap and there is little other data. There are four heap
variables of total sizes 60 bytes, 260 bytes, 14Kb, and
4Kb. The first is used to store the encoder structure; the
second holds the coded bits of the character currently
being encoded; the third stores the alphabet used; and the
fourth holds the current block array used in encoding. The
last two are somewhat frequently used with frequency-
per-byte of about 150 but only a small portion of them
fit in SRAM. The first two, however, are very highly
used with frequency-per-bytes of about 40000 and 1000,
respectively, and our method is able to place them in
SRAM.
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Fig. 7. Improvement in energy consumption.

Energy gain Figure 7 compares the energy consumption
of application programs with our method for heap data
versus placing heap data in DRAM. An M-core power
simulator [13], [12], kindly donated by that group, is
used to obtain energy estimates for instructions and
SRAM. This is an instruction-level power simulator sim-
ilar to [49], [55]; its instruction power numbers were
measured using an ammeter connected to an M-core
hardware board. DRAM power is estimated by a detailed
DRAM power simulator we built into the M-core simu-
lator. It uses the DRAM power model described in [35],
[36] for the MICRON external DDR Sychronous DRAM
chip. The DRAM chip size is set equal to the data size
in the energy model. Both the CPU and DRAM use
aggressive energy saving technologies. The figure shows
that we measure an average reduction of 39.9% in energy
consumption for our applications by using our method vs.
placing heap data in DRAM. This result demonstrates that
our approach has the potential to not only significantly
improve runtime, but also energy consumption.

The rest of section presents additional numbers which
provide more insight into the method, or show the effect
of varying certain architectural parameters on our method.
Additional experiments Figure 8 lists some method
statistics for each application. Columns two and three
list the number of regions and the number of heap
allocation sites, respectively, for each benchmark. Column
four shows the average code size increase from the
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Appli- # of # of Code Transfer Transfer
-cation regions heap growth run-time energy

sites (%) (%) (%)
Huff 78 4 1.41 9.1 8.1
Dhry 61 2 4.40 12.5 11.3
Susan 81 4 0.17 0.0 0.0
GSM 294 3 0.54 7.7 9.7
KS 116 5 2.85 0.4 0.4

Average 1.87 5.9 5.9

Fig. 8. Method statistics.

inserted memory transfer code; it averages a modest
increase of 1.87% of the original code-size without our
method. Columns five and six list the run-time and energy
consumption of our inserted transfer code, respectively,
as a percentage of the run-time and energy consumption
of the original code without our method. The overheads
of the transfers may seem high at 5.9% each for both
run-time and energy, but these overhead numbers have
already been accounted for in all other results in this
paper. For example, the run-time improvement from our
method averages 34.6% net with these overheads; without
transfers the run-time improvement would have been 34.6
+ 5.9 = 40.5%. In conclusion, the gain from memory
latency far outweighs the cost of the transfers.
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Fig. 9. Percentage of heap memory accesses going to DRAM
for each benchmark.

Figure 9 shows the net reduction in percentage of
memory accesses to heap data going to DRAM because of
the improved locality to SRAM afforded by our method.
The number of DRAM accesses is increased by the
transfer code but is reduced much more by the increased
locality afforded by the SRAM bins. Considering both
effects, the average net reduction across benchmarks is a
very significant 86.2% reduction in heap DRAM accesses.
Analyzing the results shows that our method was able
to place many important heap variables into SRAM
without involving transfers, explaining the high reduction
in DRAM accesses for heap data and showing the benefit
of the lazy leave-in optimization. This was correlated with
a small increase in transfers for less important stack and
global variables, which were evicted to make room for

the more frequently accessed heap variables allocated.
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Fig. 10. Effect of varying DRAM latency on runtime gain from
our method.

Figure 10 shows the effect of increasing DRAM latency
on the runtime gain from our method. Since our method
reduces the number of DRAM accesses, the gain from
our method is greater with higher DRAM latencies. The
figure shows that the runtime gain from our method vs
heap allocation in DRAM increases from 34.6% with
a 20-cycle DRAM latency to 55.3% with a 100-cycle
DRAM latency.
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Fig. 11. Effect of varying SRAM size on runtime gain from our
method, where SRAM size is expressed as percentage of total
data size for application.

Figure 11 shows the effect of increasing SRAM size
on the percentage gain in runtime from our method. The
SRAM size is expressed as the percentage of the total
data size for the application. The runtime gain from our
method varies from 34.6% to 41.1%, when the scratch-
pad size percentage is varied from 5% to 25%. From this
we see that increasing the SRAM space beyond 5% gives
only a small additional benefit. This is because of only
a small fraction of the program data is frequently used.
A similar effect is seen for caches: a very large cache
does not yield much better performance than a moderately
sized cache [28].
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Fig. 12. Effect of varying number of iterations of our search
process on runtime.

Figure 12 shows the effect of varying the number of
iterations of our iterative search on the runtime of the
application. The iterative step referred to is shown in
step 9 of figure 2. From figure 12 we see that most of
the gain (34.6%) is obtained from the first 3 iterations.
Only an additional 0.3% gain in runtime is seen from
using thirty iterations. Considering the small gain from
many iterations, to limit compile-time we have limited
our search process to 3 iterations for the rest of the paper.

XI. COMPARISON WITH CACHES

This section compares the performance of our method
for scratch-pad memories (SPM) versus alternative archi-
tectures using either caches alone; or cache and SPM
together.

It is important to note that our method is useful
regardless of the results of a comparison with caches
because there are a great number of embedded archi-
tectures which have a SPM and DRAM directly ac-
cessed by the CPU, but have no data cache. Exam-
ples of such architectures include low-end chips such
as the Motorola MPC500 [43], Analog Devices ADSP-
21XX [2], Motorola Coldfire 5206E [41]; mid-grade
chips such as the Analog Devices ADSP-21160m [3],
Atmel AT91-C140 [8], ARM 968E-S [7], Hitachi M32R-
32192 [30], Infineon XC166 [33] and high-end chips such
as Analog Devices ADSP-TS201S [4], Hitachi SuperH-
SH7050 [31], and Motorola Dragonball [42]. We found
at least 80 such embedded processors with no D-cache
but with SRAM and external memory (usually DRAM)
in our search but have listed only the above eleven for
lack of space. These architectures are popular because
SPMs are simple to design and verify, and provide better
real-time guarantees for global and stack data [62], power
consumption, and cost [6], [53], [59], [11] compared to
caches. For these architectures our method delivers run-
time and energy reductions averaging 34.6% and 39.9%,
respectively, compared to the best previous method.

Nevertheless, it is interesting to see how our method
compares against processors containing caches. We com-
pare three architectures (i) an SPM-only architecture; (ii)
a cache-only architecture; and (iii) an architecture with
both SPM and cache of equal area. To ensure a fair
comparison the total silicon area of fast memory (SPM or
cache) is equal in all three architectures and roughly equal
to the silicon area of the SPM in section X (which holds
5% of the data for each benchmark)4. For an SPM and
cache of equal area the cache has lower data capacity
because of the area overhead of tags and other control
circuitry. Area and energy estimates for cache and SPM
are obtained from Cacti [23], [63]. The cache simulated
is direct-mapped (this is varied later), has a line size of 8
bytes, and is in 0.5 micron technology. The SPM is of the
same technology but we remove the decoder, tag memory
array, tag column multiplexers, tag sense amplifiers and
tag output drivers in Cacti that are not needed for SPM.
The Dinero cache simulator [57] is used to obtain run-
time results; it is combined with Cacti’s energy estimates
per access to yield the energy results.

Figure 13 shows the normalized run-time for different
architecture/compiler pairs. The first and second bars for
each benchmark are with and without our heap allocation
method for the SPM-only design. Global and stack vari-
ables are mapped to SPM in either case. The third bar is
for the cache only architecture. The fourth and fifth bars
are with and without our heap allocation method for the
SPM and cache design. In the fourth bar when our method
is used with a cache, then all the less-frequently used data
that our method presumes is in DRAM is placed in cached
DRAM address space instead; thus the slow memory
transfers are accelerated. By comparing the second and
third bars we see that our method on an SPM virtually
equals the run-time of a cache-only architecture; both
provide significant acceleration over the heap in DRAM
case(first bar). By comparing the fourth and fifth bar we
see that our method gives an average run-time which is
10.6% faster for the SPM + cache case.

Figure 14 shows the normalized energy consumption
for the same configurations as in figure 13. By comparing
the second and third bars we see that our method on an
SPM has 8.1% lower energy consumption than a cache-
only architecture. By comparing the fourth and fifth bar
we see that our method gives an average energy usage
which is 10.6% lower for the SPM + cache case.

In conclusion the results in figures 13 and 14 show
that our method equals or slightly outperforms a cache-
only architecture; and provides slightly better run-time
and energy in an SPM + cache architecture. The differ-
ences are not great though; so we can only say that the

4Actually since cache must be a power of two in size and Cacti has
a minimum line size of 8 bytes, the sizes of caches are not infinitely
adjustible. To overcome this difficulty we first fix the size of cache
whose SPM-equivalent in area holds the nearest to 5% of the data size.
Then an SPM of the same area is chosen; this is easier since SPM sizes
are less constrained.
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Fig. 13. Normalized run-time for different architecture/compiler
pairs for architectures containing different combinations of SPM
and cache.
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Fig. 14. Normalized energy usage for different architec-
ture/compiler pairs for architectures containing different combi-
nations of SPM and cache.

numbers are comparable or slightly better. We believe it
is remarkable for a compile-time method for heap data to
equal or out-perform a cache – something many thought
was not possible.

It is interesting to speculate on strengths and weak-
nesses of our method vs. caches. First, like caches our
method gives preference to more frequently accessed
sites by allocating them larger bins in SPM. Second, one
downside of our method is that a cache retains the used
subset of a heap variable in SRAM, while our method
retains a fixed subset. Third, an advantage of our method
is that it avoids copying infrequently used data to fast
memory; a cache copies in infrequent data when accessed,
possibly evicting frequent data. On the whole, the results
indicate that we come out slightly ahead vs. caches.

Despite the comparable performance vs. caches our
method still has merit because of two other advantages of
SPMs over caches not apparent from the results above.
First, it is widely known that for global and stack data,
SPMs have significantly better real-time guarantees than
caches [62], [53], [10]. Second, other researchers have

repeatedly demonstrated a significant energy and run-time
savings for benchmarks containing only global and stack
data for an SPM vs. a cache of the same area [6], [53],
[59], [11]. For these reasons, if an embedded task set
contains some tasks of only global and stack data and
other tasks having heap data as well, our method will
enable the designer to use a SPM alone and avail of the
advantages above to the fullest extent; instead of using an
SPM + cache architecture necessary without our method
for the heap.

Figures 15 and 16 measure the impact of varying
cache associativity on the run-time and energy usage,
respectively, on our cache-only architecture. The figures
show that the run-time is comparable with increasing
associativity and the energy gets worse; for this reason
a direct-mapped cache is used in the earlier experiments
in this section. The numbers for 4-way associative for
two benchmarks are unavailable because for those bench-
marks, the size of the 5% data size cache becomes smaller
than for a cache with a single cache line (8 bytes)
because of the significant area overhead of the parallel
comparators and other control logic.
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Fig. 15. Normalized run-time for different set associativities for
a cache-only configuration.
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Fig. 16. Normalized energy usage for different set associativities
for a cache-only configuration.
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XII. CONCLUSION

This paper presents the first compile-time method
for allocating a portion of the heap data in scratch-
pad memory. Compile-time placement of heap data in
scratch-pad is complicated by two factors. First, the
size of heap structures is usually data-dependent and
thus is not knowable at compile-time. Consequently it
is difficult guarantee at compile-time that a given heap
structure will fit in scratch-pad. Second, moving heap
data between scratch-pad and DRAM, required by all
dynamic allocation methods, results in pointers pointing
into a moved block to become invalid after movement,
violating correctness.

The presented method for allocating heap data to
scratch-pad solves the above problems as follows. First,
the problem of unknown size heap structures is solved
by placing only a fixed-size portion of the heap structure,
called a bin, in scratch-pad memory. Second, the problem
of invalid pointers upon movement of bins is solved by
ensuring that the bin location is the same at all program
points where the heap structure is accessed. However, for
better scratch-pad utilization, bins can be moved to other
locations at program points where the heap structure is not
accessed. More frequently accessed heap structures are
allocated larger bins in scratch-pad to improve runtime.
With our method, global, stack and heap variables can
share the same scratch-pad. When compared to placing all
heap variables in DRAM and only global and stack data
in scratch-pad, our results show that our method reduces
the average runtime of our benchmarks by 34.6%, and
the average power consumption by 39.9%, for the same
size of scratch-pad fixed at 5% of total data size.
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