
Reducing Code Size in VLIW Instruction Scheduling

Steve Haga, Yi Zhang, Andrew Webber, Rajeev Barua

Department of Electrical & Computer Engineering

University of Maryland

College Park, MD 20742, U.S.A

Abstract

Code size is an important concern in embedded systems. VLIW architectures are popular for
embedded systems, but often increase code size, by requiring NOPs to be inserted into the code
to satisfy instruction placement constraints. Existing VLIW instruction schedulers target run-time
but not code size. Indeed, current schedulers often increase code size, by generating compensation
copies of instructions when moving them across basic block boundaries. Our approach, for the first
time, uses the power of scheduling instructions across blocks to reduce code size and not just run-
time, for a certain class of VLIWs. We therefore show that trace scheduling, previously synonymous
with increased code size, can in fact be used to reduce code size on such VLIWs. Our scheduler uses
a cost-model driven, back-tracking approach that starts with an optimal algorithm for searching the
solution space in exponential time, but then also employs branch-and-bound techniques and non-
optimal heuristics to keep the compile time reasonable (within a factor of 2). Our method reduces
the code size for our benchmarks by 16% versus the best existing across-block scheduler, while
being within 0.8% of its run-time.

1 Introduction
Very Long Instruction Word architectures (VLIWs) are the predominant design for high performance

embedded systems because they offer comparable performance to the superscalars used in most desk-

tops, but at a lower cost [10, 25]. The drawback of VLIWs is that they rely more heavily upon good

compiler technology. The compiler must identify independent instructions for execution in parallel,

and then place them together into fixed-length instructions groups called long words.

Instruction scheduling consists of two basic phases: 1) across-blockand 2) within-trace. In the first

phase, trace scheduling [11] or its later improvements [16, 22] derive traces– sequences of basic blocks

with a high probability of following one after another. This phase also provides a migration mechanism

for moving instructions between the basic blocks of a trace. The second phase actually schedules the

instructions of the trace, utilizing the migration mechanism from the first phase to move instructions

between blocks when beneficial. The second phase also considers the instruction-type restrictions per

VLIW issue slot and the instruction dependencies. The problem of finding the best schedule is NP-

complete [23] and so heuristics are used. Existing second-phase methods for scheduling within a trace

1

include list scheduling [23], finite state automata [3], and dynamic programming [18]. Most second

phase schedulers use one-pass (greedy) heuristics, and yet are fairly effective at finding a fast schedule.

A significant drawback of existing scheduling methods is that they only aim to reduce the run-

time of the executable, while ignoring the code size impact. In the across-block phase, the migration

mechanism requires instructions to be duplicated, resulting in code bloat. In the within-trace phase,

identifying a fast schedule does not necessarily imply that it is a compact schedule. Instead, there are

often many available schedules, each equally fast but having different code sizes.

Existing methods ignore code size because they were designed either for older VLIWs where our

methods would not apply, or for desktop processors where code size is not important. In embedded

systems, however, code size is very important [6] for reasons of cost – code is usually stored in Read-

Only-Memory (ROM), and smaller code implies a smaller (i.e., cheaper) ROM that uses less power.

Like existing approaches, our algorithm has an across-blockphase and a within-tracephase. But unlike

today’s approaches, our methods reduce code size while maintaining the run-timeof current techniques.

Our across-block phase’s migration mechanism differs from those now used. Since moving instruc-

tions across blocks may cause code bloat, we choose to restrict such moves to cases that do not increase

code size, either because duplication is not needed or because the duplicate instruction is able to replace

an existing NOP (and therefore does not increase the code size). In addition, since our new restrictions

may harm performance, we further consider lifting this restriction for the most-frequent traces.

Our within-trace phase also differs from existing run-time-oriented schedulers. Rather than modify

a current, greedy scheduler so that it optimizes for code size, we instead develop a new, back-tracking

scheduler that specifically optimizes for both code size and run-time. A back-tracking scheduler can

undo earlier scheduling decisions when these are later found to be sub-optimal. Our back-tracking

scheduler is based on an exhaustive search algorithm of exponential compile-time, but through aggres-

sive and novel branch-and-bound pruning techniques, coupled with some non-optimal heuristics, we

can bound the maximumcompile time to a user-controlled value (currently 6 times the compile time

using existing methods). The actual compile time is even smaller (currently within a factor of 2).

The intellectual novelty of our scheme is seen in the following three new contributions. First,

although the idea of using a back-tracking scheduler is not new, we are the first to develop a back-

2

tracking technique targeted for code size, and to develop a series of innovative pruning strategies unique

to a search for a minimum-code-size solution. Second, using across-block motion to reduce code

size is novel. Existing across-block approaches generally increase code size. Our method constrains

the within-trace scheduler to not move certain instructions across basic blocks if that move would

likely increase code size. This is unlike all existing schedulers which do not need to place additional

constraints on movement since the within-trace scheduler alone decides whether it is profitable to move

instructions, based solely on run-time. Third, our method is unique in targeting different objectives for

traces of different frequencies – code size only for infrequent traces; run-time for frequent traces; and

both code size and run-time for traces of intermediate frequency. Such customization to differing

objectives is not used in traditional schedulers because their objective is only to reduce run-time.

Compared to existing approaches, our scheduler reduces the code size by 15.8% with only a cost of

0.82% in run-time. This code size improvement can be divided among three sources. First, using only

our within-trace scheduler improves code size by 8.8%. Second, our migration restrictions improve the

code size by another 4.9%. Third, using a hybrid strategy that only targets code size for very infrequent

traces and that removes the migration restrictions for very frequenttraces improves code size by yet

another 2.1%. (8�8%�4�9%�2�1%� 15�8%).

An outline of the rest of the paper is as follows. Section 2 describes which VLIWs can benefit

from our method. Section 3 shows an example that demonstrates how minimum run-time solutions

do not necessarily have minimum code size. Section 4 describes related work. Section 5 describes

our backtracking scheduler as it applies to basic blocks, without considering special issues relating to

moving instructions across basic blocks. Section 6 describes how the backtracking scheduler can be

modified to run on an entire trace. Section 7 presents our hybrid strategy to do even better by changing

the optimization criteria at the extremes. Section 8 lists experimental results. Section 9 concludes.

2 Applicable VLIWs
The specific VLIW architecture impacts the achievable benefit of our method in two ways. First, since

we improve code size by reducing the number of NOPs in the code, architectures that tend to need

more NOPs will provide us with more opportunities for reducing them. Below, we also consider those

machines that provide an ISA mechanism to compress most of their NOPs. Second, since our within-

3

trace algorithm works by separating computation from stall cycles, the underlying hardware’s stall

mechanism affects the applicability of our within-trace approach. In particular, older VLIWs that use

long-words filled with NOPs to specify stalls cannot benefit from our within-trace methods. A fuller

description of hardware mechanisms for stalling and for NOP compression follows.

The only type of stall mechanism that does not benefit from our within-trace methods (but can still

use our across-block methods) is when long words full of NOPs are used to specify stalls. To understand

this mechanism further, consider that the simplest VLIW hardware does not provide any mechanism for

stalling. Therefore, the compiler must analyzing the data dependencies to identify where stall cycles

are needed and then insert long words filled with NOPs into the code at these points. In terms of code

size, these NOP-filled long words are an expensive way to achieve a stall. In such systems, there is

little the within-trace scheduler can do to reduce code size. For example, if a particular trace requires

X cycles to execute, it will necessarily have a code size of X long words and cannot be made smaller.

Because of its high code size cost, modern VLIWs rarely use this stalling method.

VLIWs employing any other mechanism for stalls will benefit (to varying degrees) from our within-

traces methods. To understand why, let us consider the other potential ways to accomplish a stall.

There are four stall mechanisms used in modern VLIWs: 1) hardware dependency checks, 2) stall bits,

3) multi-NOPs, and 4) using variable-width long words for stalls. First, in machines with hardware

dependency checks, the hardware detects when to stall by checking if any input operand in the long

word is not ready. An example is IA64 [28]. IA64 is not an embedded processor, but similar designs

have been proposed for embedded systems, such as TEPIC[19]. Second, in machines with stall bits, the

number of cycles to stall is encoded into special bits in every long word. Such a method is described

in [1, 13]. Third, in multi-NOP machines the NOP opcode contains an argument field that specifies

the number of cycles to stall after executing the current long word. Thus, by scheduling a single NOP

in the last cycle before the stall, empty long words are avoided in the code. An important example of

such a processor is the Texas Instruments TMS320C6x [31]; an older one is [26]. The TMS320C6200

and C6400 use NOPs not only to separate long words and perform stalls, but also to align packets.

Fourth, some VLIWs may use their variable-width feature to achieve stalls at a reduced code-size

cost. Although NOPs must be inserted into the code for every stall cycle, the variable width of long

4

words, means that only one NOP is needed per cycle, as compared to a simple VLIW that inserts a full

long-word of NOPs. We note that not all VLIWs with variable-width long words necessarily use this

mechanism to achieve stalls; multi-NOPs and EPICs are two examples of variable width-machines that

have already been mentioned as providing a more sophisticated stall mechanism. One example of a

machine that does use this feature for stalls is Infineon’s Carmel[35].

In all four above classes of VLIWs, long words filled with NOPs are not used to specify stalls,

but NOPs still occur for a variety of reasons. Some other sources of NOPs affecting one or more of

the above classes of machines are: alignment requirements (such as for the start of basic blocks or

for long words that cross cache-block boundaries), a lack of sufficient parallelism, instruction issue

restrictions, stalls that require single NOP slots, and multi-NOPs. Our method reduces all of these

sources of NOPs, in all four of these classes of VLIWs. Specific pruning strategies may need to be

modified to target the unique features of some of these architectures, however. For example, Carmel

contains additional NOPs when defining CLIWs, which are Custom-Long-Instruction-Words that are

dynamically declared and reside in a special on-chip table. Once defined, they can be executed with

special table-look-up operations. Using these CLIWs Carmel is able to reduce the code size and run-

time of frequent code. The proper scheduling of these CLIWs can reduce not only the code size of their

declarations, but also contention in the small hardware table that stores the CLIWs.

For other VLIWs, the impact our technology is less. In particular, some VLIWs compress the NOPs

in the long words by setting special bits within the instruction.[17]. Since the NOPs do not appear

directly in the binary, these machines have a variable-length-execution-set (VLES). To some extent,

the code-size benefit of avoiding NOPs is offset by the fixed code size cost of special encoding bits

in the ISA (and also by certain other costs such as an extra pipeline stage for unpacking long words).

Examples of VLES machines are the Philips Trimedia processor [32] and Tiger Sharc [33]. In such

architectures, non-encoded NOPs are generally only needed for alignment problems. As a result, since

these machines have so few non-encoded NOPs to begin with, reducing them further does not improved

the code size. Our methods can still have benefit for many of these machines, as the NOPs are often

inserted back into the long words when the instructions enter the I-cache, e.g., Phillips Trimedia. In

such a case, our approach reduces to a technique for shrinking the footprint of the code in the I-cache.

5

Inst 5 (Br)

Inst 4 (Mem)Inst 3 (Mem)

NOP

Inst 3 (Mem)

Inst 4 (Mem)

Inst 1 (FP)

Inst 5 (Br)

Inst 2 (ALU)

2

Inst 2 (ALU)

3

7

Inst 1 (FP)

(a) (c)

2

Inst 1 (FP)

Inst 3 (Mem)

Inst 4 (Mem) NOP

NOP

Inst 2 (ALU)

(b)

NOP Inst 5 (Br)

Figure 1: VLIW scheduling example. (a) DFG; (b) result of list scheduling, assuming that only one slot can
perform memory operations; (c) an optimal schedule.

3 Minimizing code size and run-time
Here we present an example of how a current-day scheduler can produce a schedule with minimum

run-time, but non-minimum code size. This example is important since it underscores the difference

between a method that successfully produces a minimum run-time solution and one that also yields the

smallest code size. Figure 1(a) presents the dataflow graph (DFG) for the dependencies of a sample

basic block. The nodes are instructions; the edges are dependencies between instructions; the numbers

attached to the edges are their latencies. Let us try to schedule this DFG on a simple 2-wide VLIW that

restricts memory instructions to only the first slot.

Figure 1(b) shows the run-time schedule that results from list scheduling [23]. Although only four

long words are scheduled in 1(b), the run-time is eight cycles, which is, incidentally, optimal in this

case, since the critical path in the DFG is also eight cycles. (For simplicity of presentation, this example

assumes the presence of hardware stalls. Similar examples can be easily constructed for multi-NOP

systems.) While the schedule of 1(b) has achieved the optimal run-time, its code size is not minimum.

Figure 1(c) has the same run-time (eight cycles), but a smaller code size (three long words instead of

four). This example shows how current methods that optimize for run-time alone may not produce

minimum code size solutions. Fortunately, it also shows that minimizing code size need not sacrifice

run-time – our scheduler minimizes code size but retains the same run-time. In fact, there typically

exists an entire family of optimal-run-time schedules for a basic block, and these schedules may have

different code sizes. This example uses list scheduling because it is easy to understand. Better methods

than list scheduling may occasionally find a faster schedule, but they do no better in terms of code size

because all existing methods only consider run-time,so that Figures 1(b) and 1(c) appear equally good.

6

Delving deeper, this example illustrates a fundamental drawback of all greedy schedulers in use

today. In Figure 1(b), the greedy scheduler, choosing instructions based on the earliest deadline, places

instructions #1 and #2 in the first long word. This is optimal so far, but it does not consider the impact of

the current scheduling choice upon the remaining code. In a backtracking scheduler such as ours, this

mistake of not reducing contention for the memory slot can be undone, and other alternatives explored.

4 Related work

As we have seen, the first phase of instruction scheduling is across-block analysis. Current methods

include trace scheduling[11], superblocking[16], hyperblocking[22], and wavefront scheduling[5].

Hyperblocking and wavefront scheduling require special predication hardware, not present in some

embedded VLIWs. Superblocking uses a process called tail duplication to make multiple copies of

many basic blocks. Thus, in situations where code size is even moderately important, superblocking is

too costly. Trace scheduling, however, has a more reasonable code size overhead. In trace scheduling,

probable execution paths in the program are identified through profiling. Then those basic blocks

that are likely to follow one another are assigned to the same trace. The intention is to increase the

scheduling flexibility by increasing the shear number of instruction that the within-trace scheduler has

available to it. In this way, instructions may end up moving across block boundaries, a process we refer

to as migration. Yet, in certain cases (as described in Section 6), it may be illegal for an instruction to

migrate. Therefore, trace scheduling also provides a migration mechanism to allow only legal moves.

This mechanism involves inserting new dependency edges into the trace’s data flow graph (DFG), and

is transparent to the within-trace scheduler. In addition, once the within-trace scheduler has chosen a

schedule, the across-block methods examine the solution to identify which of the instructions, if any,

actually do migrate. For these instructions, compensation codeis inserted into the off-trace path (as

described in Section 6). Compensation code will increase code size.

Freudenberger et. al. [12] present an approach to reduce the compensation code created by trace

scheduling by avoiding multiple copies of the same compensation code. [12] is an improvement of

dominator-path scheduling[30]. In [12], specific cases of compensation code are examined, in order

to reduce their size. For instance, when an instruction is moved above a multiple-entry point, the

7

compensation blocks for all of the side entries can be merged into a single compensation block. As

another example, compensation copies are avoided along rejoin paths, whenever the copy can be shown

to be redundant; a rejoin path is any sequences of control edges where the first edge in the sequence is

a side exit from the current trace, and the final edge is side entry back into the trace. In addition to such

special-case optimizations, [12] also prevents moving instructions below splits. They note that, though

this reduces the available parallelism, it rarely affects performance. We find that, when considering

code size as well as run-time, however, this restriction will be too costly, so we do allow downward

motion, even in our comparison algorithm that is based on [12]. [12] cannot be compared in any

meaningful way to our algorithm for two reasons. First, we wish to not only avoidthe code size cost of

trace scheduling, but also to leverage trace scheduling to reducecode size, something that is impossible

without the within-trace scheduler that we are also proposing. Second, and most importantly, we are

not competing against [12]. We have implemented approaches similar to [12] into both our method

and our comparison algorithm, because [12] represents one of the best existing efforts at reducing the

code size increase of across-block instruction scheduling. Therefore, the across-block methods that we

propose are built on top of [12]. In this way, our results show the additional benefits of our method

beyond this prior work.

Concerning scheduling instructions within a trace, list scheduling, described in Section 3, has

proven sufficient for superscalars – they have a re-order buffer to correct bad schedules, and have

no constraints on instruction placement. The widespread use of VLIWs in embedded applications has

motivated more advanced techniques that consider the resource constraints of the system.

One such technique by Bala et. al. [3] schedules instructions based on finite state automata (FSA)

methods in a near-run-time-optimal way. In their method, the resource requirements of each instruction

are represented as a bit-vector. If the AND-ing of two bit vectors yields an empty vector, then the

two corresponding instructions do not share any resources, and may be scheduled together. Given

that a particular set of instructions has been scheduled in a certain cycle, the OR-ing of their bit vectors

represents the resources currently used. To construct the FSA, a bit vector of resources used by the set of

instructions in the current cycle represents a state, and choosing to schedule an additional instruction on

this cycle represents a transition to a new state. Therefore, legal instruction schedules can be identified

8

as the sentences in a language whose alphabet is given by the instruction set. This makes it easy to

ask questions about whether new instructions will fit with others in the same long word. We borrow

this approach for keeping track of whether an instruction can be scheduled in the current cycle. Their

method goes further in that the scheduling of instructions within a basic block is performed using

a straightforward greedy approach: instructions are placed on a cycle until it is filled, and then the

next cycle is scheduled. This approach also has application to scheduling across basic blocks, as it is

easy to identify whether an instruction can fit into an existing NOP slot. For reasons outlined in the

results section, this approach, augmented with the code size reducing techniques in [12], is used as our

comparison in evaluating the benefits of our method.

A number of optimal (for run-time) instruction schedulers have been proposed on a variety of sys-

tems using ILP formulations [7, 15, 18, 34], genetic algorithms [4], or other similar methods. ILP

formulations have the difficulty of not having a bounded compile time. The genetic algorithm of [4]

targets a different problem of making a compiler retargetable to different scalar architectures. But,

much more importantly, none of these proposed schedulers considers the problem we address: code

size. Since these approaches only target run-time, they perform similarly to [3] in regards to code size.

Our approach of scheduling by branch-and-bound, coupled with heuristics, is also not a new idea.

For example, [20] uses branch-and-bound instruction scheduling to reduce register spills in embedded

DSP microprocessors. (Our method occurs after register allocation and so is not concerned with spills.)

[21] also applies branch-and-bound techniques to instruction scheduling. Their target, however, is

to reduce run-time for a very unique VISC architecture. Ultimately, the novelty of our within-trace

scheduling technique is the application of branch-and-bound techniques to code size, coupled with

aggressive pruning strategies tailored to code size. This is not to say that the code size problem could

not be solved with an ILP formulation or a genetic algorithm; but it simply means that we have had

good success with a branch-and-bound approach for which optimizing heuristics are easier to derive.

There is also much work on reducing code size through many ways other than instruction schedul-

ing. One popular technique is to compress infrequent portions of code, and then to provide a special

software routine to uncompress these regions whenever they are needed, as in [8]. This method is

generally applicable to any architecture and yields around a 15% reduction on alpha binaries. In com-

9

parison, our technique is not limited to infrequent blocks, has little run-time overhead, and does not

have the difficulties of self-modifying code. More importantly, since [8] does not involve instruction

scheduling, there is no reason why both methods could not be used in conjunction for a cumulative

code-size improvement, since our optimized code can be compressed as easily as other code.

In [1], code size is reduced for custom embedded processors by choosing customized templates so

as to minimize the NOPs for a given set of applications. This work solves a very different problem of

design space exploration for customizing hardware. Our approach could be implemented into part of

their system, however, since they use multi-NOPs.

In [6], code size is studied for embedded systems that are programmed by block diagram languages.

These languages are based on a model of computation with strong formal properties [9]. This method

does not apply to common languages such as C. Our method is performed just prior to code generation,

so it is not dependent on the front-end language. (Although our current implementation is for C).

5 Within-trace scheduling
This section presents our within-trace instruction scheduler. Its core is a sophisticated, backtracking

instruction scheduler which takes the following approach. It begins with a scheduling algorithm that

is provably optimal in that it will find a solution with minimum code size among those with minimum

run-time – Section 5.1 details the optimal base algorithm. This algorithm is not feasible, however, since

it results in an exponential compile time. Two classes of methods are therefore used to greatly speed

up the algorithm. First, Section 5.2 describes aggressive, novel, branch-and-bound techniques that are

used to prune portions of the search space while retaining the optimality guarantee. Second, Section 5.3

describes non-optimal heuristics that are used to guide the search towards more promising solutions

quickly. Although our backtracker increases the compile-time, this is acceptable since (i) compile-time

is less important in embedded systems than in desktops, and (ii) our compile-time overhead is modest.

5.1 Optimal base algorithm

The base algorithm, shown in Figure 2, performs an exhaustive search that returns a provably optimal

schedule for each trace. An exhaustive search is impractical, but serves as a good basis for an algorithm

that can be modified to be feasible. The search is recursive; at each recursive step, the for loop examines

10

SCHEDULE RECURSIVE(U, PreviousIG, PreviousR) // Inputs: the set of not-yet-scheduled instructions, the instructions
// scheduled on the last cycle, the instructions ready on the last cycle

ADVANCE CLOCK(Clk) // Advance the clock
define Best= MAXINT // Initially, no best solution
if (U � /0) // See if finished

return 0
define R = READY(U) // The set of ready-to-schedule instructions
define NC = NOT YET CRITICAL(R,Clk) // All R which could be delayed
define C�R�NC // All R which must be scheduled this cycle
for each NCsubsetcombination of elements of NC

IG �C�NCsubset // this instruction group: all critical + some non-critical
(Ccost) = FITS IN 1 LONG WORD(IG) // Finds cost of current selection
if (not PRUNE(Ccost,U,R-IG,IG,PreviousIG,PreviousR)) // Only explore reasonable choices

Rcost= SCHEDULE RECURSIVE(U-IG,IG,R) // Cost of rest (U-IG)
cost�Ccost�Rcost
if (Best� cost) // Is this solution the best so far?

Best� cost
if (Best�Ucost) // Is this a minimum-cost solution?

return Best
end if

end for
return Best // All possibiltities have been explored

end

Figure 2: Optimal base algorithm for instruction scheduling.

all possible instruction groups, IG, from among the set of ready-to-schedule instructions, R. An instruc-

tion group is any set of instructions that can execute in parallel. IG is often an unordered set, but some

VLIWs allow ordering restrictions within a group, for example to support memory disambiguation.

In Figure 2, every IG must contain all critical instructions1, C, as well some subset, NCsubset, of

the non-critical-but-ready instructions. For each chosen IG that can schedule within one long word, a

recursive call finds the best schedule of the remaining code, and the scheduling clock advances. If an

IG contains fewer instructions than the width of the VLIW machine, the remaining slots are padded

with NOPs. In its present formulation, Figure 2 is for fixed width VLIWs, but the modifications are

slight to accommodate systems with variable-length long words, such as multi-NOP or EPIC machines.

To identify the critical instructions, however, we must first know how many cycles are needed to

schedule the entire trace. Although this number cannot be easily calculated [4], we may estimate it

as the maximum of two lower bounds. One lower bound is the trace’s DFG height. Another is found

from resource usage. Thereafter the algorithm in Figure 2 uses this estimate. If it then finishes without

finding a solution, all instruction deadlines are increased by 1, and the algorithm is rerun. For most

traces, the original estimate is correct. In this way, only schedules of minimum run-time are considered.
1An unscheduled instruction is said to be critical (or to have met its deadline) if, intuitively, delaying it further will mean

that a minimum latency solution cannot be obtained on this path. The minimum latency is the latency of the longest latency
path in the dataflow graph. Mathematically, the condition for an instruction to be critical is when current schedule cycle +
longest path latency from this instruction to the bottom of the DFG = minimum # cycles required to schedule the trace.

11

Cost metric The goal of our search technique is to find the schedule with the smallest code size

from among those having the minimum run-time. Thus the first constraint for scheduling is run-time.

Because instructions must schedule by their deadlines, Figure 2 always finds a minimum run-time

solution. In this figure, the code size cost is measured in NOPs, because, with the number of useful

instructions being fixed, the number of NOPs relates directly to the code size.

Impact of register allocation Instruction scheduling and register allocation are interdependent. The

register allocator maps variables onto machine registers. Since a function may contain more variables

than there are physical registers, the allocator must reuse registers. To reduce the cost of register spills,

the allocator attempts to assign variables in such a way as to minimize the number of registers used by

a procedure. If instruction scheduling is performed prior to register allocation, then the live ranges of

all variables become fixed, and the allocator will not be able to reduce the number of registers as much

as it otherwise could. On the other hand, if register allocation is performed first, then different variables

will be mapped to the same physical register, thereby introducing anti and outputdependencies into the

DFG. And adding edges into the DFG will restrict the instruction scheduler, worsening its result.

We have chosen to implement our scheduler afterregister allocation. This avoids four problems that

arise when scheduling before allocation. First, our algorithm would need a new heuristic for reducing

register pressure in the schedule. Second, our schedule could cause new register spills. Third, such

register spills generally require the allocator to insert new “spill” instructions that might not fit into the

existing schedule. Fourth, the implementation would be harder, requiring modifications to the register

allocator. But scheduling instructions on the final pass avoids all these problems, and allows us to

ignore register allocation, by treating anti and output dependencies just like true dependencies. We do

note, however, that by moving our pass prior to register allocation, we could remove edges from the

DFG, thereby improving the scheduling flexibility, which is likely to further improvethe results.

5.2 Optimal pruning

Since the run-time of our exhaustive search is infeasible, we use branch-and-bound techniques. Branch-

and-bound techniques can drastically reduce the execution time while retaining the optimality guaran-

tee, by pruning (i.e., skipping) parts of the search space that are known to not contain an optimal

12

PRUNE(Ccost,U, L, IG, PreviousIG, NewR) // Inputs: current cost, the set of unscheduled instructions, the set of ready-but-not-chosen
// instructions, the chosen instructions, the instructions chosen on previous cycle, and the set of instructions that just became ready this cycle

// COST PRUNING: rejects solutions which are more expensive than the current best
if (PartialCostOfAlreadyScheduled + Ccost + LOW BOUND(U)

�
BestCompleteSolutionSoFar)

return 1

// NOT FILLED: looks for an unscheduled-but-ready instruction that can schedule with IG
if (� an instruction, i � L, such that SCHEDULABLE(IG � i))

return 1

// NOT NEW: looks for cases where the last cycle was empty, and none of the scheduled instructions are new
if ((PreviousIG� /0) and (IG �� /0) and (�� an instruction, i � IG such that i � NewR))

return 1

// SAME ECLASS: checks whether the scheduled instructions of IG belong the same e-classes as a previously tried case
if (� an e-class, E � ECLASSES USED(IG), such that E’s first unscheduled instruction �� IG)

return 1

// STRICTER ECLASSES WORKED: checks whether the instructions of IG match to stricter e-classes in a previous schedule
if (� previous schedule, PS, such that, for � E � ECLASSES USED(IG) , E maps to a stricter or same e-class in ECLASSES USED(PS))

return 1

return 0
end

Figure 3: Pruning techniques that run in linear time

solution, or if the remaining search space is guaranteed to have an optimal solution. Figure 2 contains

a call to the PRUNE()procedure. If PRUNE()returns TRUE then the current path is abandoned by

skipping to the next iteration of the for loop; otherwise it is explored further by making a recursive call.

Figure 3 shows our five pruning strategies. These are general techniques, applicable to any of the

VLIWs that our approach targets; other machine-specific pruning strategies can also be imagined.

This paragraph describes the first test from Figure 3, COSTPRUNING. COST PRUNING is ap-

plied to both the run-time cost and the code-size cost. In either case, if the lowest possible cost of

the current schedule is greater than or equal to the best solution found so far, then this path is pruned.

The lowest possible cost for the current schedule is computed as the sum of the cost of scheduling

up to the current point plus a lower bound on the cost of scheduling the remaining instructions. For

run-time, this lower bound is derived from the DFG height of the not-yet-scheduled instructions, and

from these remaining instruction’s resource requirements. For code size, the lower bound for the re-

maining cost is computed as the largest of three separate lower bounds. The first is based on resources:

if a certain machine allows two floating point instructions per cycle, and if 7 floating point instructions

remain to be scheduled, then at least 4 long words are needed. The second bound is based on the issue

width: in a 6-wide VLIW, scheduling 13 instructions requires at least 3 long words. The third is based

on those instruction that lie on any longest path in the remaining DFG. These instructions are called

FIXED CYCLE instructions, because, in a schedule of minimum run-time, the cycle on which they

13

become ready is also their deadline. The number of such cycles is the third lower bound on the code

size. We refer to the largest of these three lower bounds as #LongWordsLB. It follows that a lower

bound on the NOP cost is: NOP LB = (VLIW width * #LongWordsLB) - #UnscheduledInstructions.

The second method of Figure 3 is NOT FILLED pruning. To see its motivation, consider a yet-to-

be-scheduled instruction, A, that is not in the currently-chosen-to-be-scheduled set of instructions, IG

(i.e., A� R� A �� IG). If scheduling IG leaves unfilled slots (NOPs in its long word), then it never

sacrifices optimality to schedule A in one of those slots instead of leaving it empty. Thus the schedule

without A can be pruned. A similar argument can be constructed for multi-NOP or EPIC architectures.

The third pruning method is NOT NEW. Its intuition is that the SCHEDULE RECURSIVE()

procedure of Figure 2 is called every cycle, and different cycle-by-cycle search sequences in the algo-

rithm can correspond to the same final code. Figure 4 shows an example of how this can happen in a

2-wide VLIW. For the DFG shown in Figure 4(a), Instruction #2 may schedule on any cycle between 2

and 10. The resulting code is the same, however, and is shown in Figure 4(b). To avoid this redundancy,

we place a restriction on the current instruction group, IGcur, based on the choice of instruction group

on the previous cycle, IGprev. The restriction is that if IGprev is empty (i.e., a stall cycle), then IGcur

must either be empty or contain at least one instruction that was not available on the previous cycle.

The reason for this is that, if all of the instructions in IGcur had been available on the last cycle, then

swapping IGcur and IGprev would also be a legal schedule. Preventing such swappable situations solves

the problem of Figure 4, while maintaining optimality. (For understanding Figure 4, we remind the

reader that an instruction may have two different outgoing latencies due to an anti-dependence.)

The fourth pruning method is SAME ECLASS. It targets instructions that are equivalent from the

scheduler’s viewpoint. Such instructions must use exactly the same resources, and contain exactly the

same outgoing DFG edges, with the same weights. Thus if one of these instructions was already tried

1

1
Instruction #1

Instruction #2

Instruction #3

10

Instruction#2

NOP

NOP

NOP

(b)(a)

Instruction#3

Instruction#1

Figure 4: Example of how scheduling an instruc-
tion on different cycles yields the same final code.

as a member of IG then there is no need to try the

other separately. For our test machine, we measured

an average of 1.3 instructions per e-class. While not

a large number, the exponential nature of the search

space makes this optimization worthwhile.

14

The fifth pruning method is STRICTER ECLASSES WORKED. We define an equivalence class,

E1, to be stricter than another, E2, under two conditions. First, instructions from E2 must use no

resources that are not used by E1. This happens when E1 and E2 are the same type, or when E1 is a

subtype2 of E2. Second, the instructions of E2 must have no out-going dependency edges that are not

also in E1, and none of the outgoing edge latencies of E2 may be larger than the corresponding latencies

of E1. Under these conditions, E1 is strictly harder to schedule than E2. Therefore if E1 succeeds in

scheduling then E2 is not attempted. In our benchmarks, each e-class tends to have one weaker e-class.

Where as the five methods in Figure 3 identify bad choices to skip, it is also possible to identify

goodsolutions and quit early (without considering the remaining combinations of C). If a given solution

is provably optimal (i.e., its cost equals the lower bound) then there is no need to search for a better

solution. This optimization is indicated in Figure 2 by means of the early return from inside the loop.

5.3 Non-optimal heuristics

Although branch-and-bound greatly reduces the search space, the compile time of some large, complex

traces is still unmanageable. In such cases, non-optimal heuristics are needed. Heuristics reduce the

compile time by searching only a portion of the solution space, without guaranteeing optimality. We

use such heuristics only for larger traces that have already taken a long time to compile. A desirable

consequence is that smaller traces, and larger ones that finish quickly, will be scheduled optimally.

We investigated many heuristics, and identified three that are effective. First, traces longer than

an experimentally determined size (currently 35 instructions) are split into trace chunksof that size.

Smaller traces will have a single trace chunk. Second, extra edges are added between FIXED CYCLE

instructions if they exceed the resource constraints. Recall that a FIXED CYCLE instruction can only

become ready on the same cycle as its deadline; so, the exact clock when it will schedule is known

in advance. Therefore, if several instructions share the same FIXED CYCLE, we may detect in ad-

vance if they can all fit into one long word. If not, one might simply increment all deadlines before

scheduling, by the same reasoning used in Section 5.1. Such an approach, however, was found to waste

time considering many unwise choices. By instead placing an edge of latency 1 between conflicting

FIXED CYCLE instructions, the scheduling bottleneck is directly tackled, while still often finding an
2Some VLIWs define subtypes, which are instructions with additional restrictions beyond those of their parent type. For

instance an integer subtype might only be allowed to schedule to the first IALU

15

optimal solution. Third, whenever the scheduler runs too long, it will time out, taking the best solution

found so far. The time-out value for a given chunk is based on its complexity, using an empirically-

determined function described in the results. For now, it is enough to know that simple traces are

guaranteedto finish within 5 ms, and that, regardless of complexity, every trace chunk is guaranteed to

finish within 1000 ms. This provides worst-case-compile-time guarantees for a given program. For our

benchmarks, this worst-case bound is, on average, a factor of 6 of the original compile time.

6 Across-block scheduling
In both our algorithm and the comparison algorithm, we employ trace scheduling [11] with the code size

improvements of [12]. The new feature of our across-block analysis is how we constrain the movement

of instructions between basic blocks, called migration. We propose preventing migration when it is

likely to increase code size. In this way, we avoid the code-size costs of trace scheduling while at the

same time enjoying the code-size benefits that it offers. As with other across-block schedulers, once a

trace has been constrained, it is sent to the within-trace algorithm for scheduling. The rest of this section

describes compensation code and then describes a compile-time analysis to detect if compensation will

increase code size. In fact, allowing compensation code can sometimes reducecode size.

Examples of compensation code Compensation code [11] refers to the duplication of an instruction

when it migrates to a new block. Figure 5(a) illustrates the use of compensation. In this figure, BB #1

and #2 are part of the same trace. The scheduler has decided to migrate Instruction Afrom BB #1 into

BB #2. While the execution of BB #1 will probably be followed by BB #2 (i.e., they are in the same

trace), it is also possible that the side exit to BB #4 will be taken. Then, unless a copy of Instruction A

is placed along this path, the program behavior will be incorrect. Nor can Instruction Asimply go into

BB #4. In that case, the execution path from BB #3 to BB #4 would be incorrect. Figure 5(b) illustrates

the solution of traditional trace scheduling, which duplicates instruction A to a new basic block, BB #5.

Similarly, Figure 5(d) describes the situation of an instruction moving up above a side entry. In-

struction Acannot be copied into BB #3, because BB #3 may proceed to BB #4. The solution is to

again create a new basic block for the compensation code, as shown in Figure 5(e). Figures 5(b) and (e)

show only two of the four possible cases. However, existing across-block schedulers do not attempt to

migrate instructions above a side exit or below a side entry, because it would make the program unsafe.

16

BB #3

BB #1 BB #3

BB #2 BB #4

BB #1 BB #3

BB #2 BB #4

BB #1 BB #3

BB #2 BB #4

BB #5

Traditional trace scheduling
creates compensation BB #5

Traditional trace scheduling
creates compensation BB #5

BB #1 BB #3

BB #2 BB #4

BB #1

BB #2 BB #4

BB #1

BB #2 BB #4

BB #5

BB #3

originally in BB #2

originally in BB #1

is dead on entry to BB#4

ible unless there is no BB #3
Insertion into BB #4 imposs−

Only legal if result of Inst A

(b) (c)(a)

(d) (e) (f)

Instruction A was

Instruction A was

Inst A

Inst A Inst AInst A

Inst A

Inst A

Inst A

Inst A Inst A Inst A

Figure 5: Scenarios for inserting compensation code. BB #1 and BB
#2 are part of the trace. BB #3 and BB#4 are outside of the trace. In
(a)-(c), Instruction Awas originally in BB #1, but has been scheduled
into BB #2. Compensation code is needed for the side exit to BB #4. In
(d)-(f), Instruction Awas originally in BB #2, but has been scheduled
into BB #1. Compensation code is needed for the side entry from BB
#3. (b) and (e) illustrate the solution of traditional trace scheduling. (c)
and (f) illustrate our solution, which is not always feasible.

 Inst Inst Inst Inst Inst Inst
 NOP Inst Inst Inst Inst NOP

 Inst Inst
 NOP NOP

Basic Block #2 Basic Block #3

Basic Block #1

Inst A
Branch

Figure 6: An example of how code
size can be reduced even though
an instruction is duplicated. Basic
Blocks #1 and #2 are part of one
trace, and Basic Block #3 is a side
exit. If Instruction A is moved into
Basic Block #2, it will fit into a NOP
slot. The compensation copy placed
into Basic Block #3 also fills a NOP
slot. By moving Instruction Aout of
Basic Block #1, one of its long words
becomes empty and can be removed.

Potential increase in code size The creation of new basic blocks for compensation code (BB #5 in

Figures 5(b) and 5(e)) increases code size. This increase is particularly costly since only one instruction

might migrate, as in BB #5, yet an entire VLIW long word would still be needed on some architectures.

How code size increase can be avoided Our method is to detect, through compiler analysis, those

instances of code motion that do not increase code size, and to disallow all other instances of code

motion. The rest of this section discusses how to detect when code size will increase.

We avoid the code size increase of compensation in the following two cases. First, a duplicate

instruction is not needed in the off-trace path if its destination register is dead along that path. For

example, in Figure 5(b), Instruction Acan indeed be copied into both BB #2 and BB #4, if the des-

tination register of Instruction Ais dead upon entry into BB #4. Second, we can avoid creating extra

long words for compensation if two conditions hold. (i) If the off-trace duplicate instruction can move

17

into an existing basic block, rather than creating a new block. For example, in Figure 5(b) instead of

creating the new basic block BB #5, the duplicate copy of Instruction Acan go directly into BB #4 i f

there is no BB #3 (BB #4 has only one parent). (ii) If, in addition, the off-trace duplicate replaces an

existing NOP in the side block. For example, Instruction Ain BB #4 does not increase code size if it

fits into an existing NOP position within BB #4.

Paradoxically, increasing the number of instructions, through compensation code, can have the

effect of reducingthe code size. Figure 6 describes this situation. Instruction Ais moved from block

#1 to blocks #2 and #3, fits in existing NOPs in both those blocks, and the entire long-word in block

#1 is eliminated, reducing the net code size by one long word. Our algorithm needs no special case

for handling such scenarios. The benefit is naturally obtained as a sub-case of the second case above,

where our scheduler allows the instruction to migrate since it does not increase code size. The fact that

the code size is reduced is a bonus that is only later discovered by the within-trace scheduler.

Our approach would perform even better if predication [24] were present, because the legality

restrictions described in 5(c) and 5(f) could be removed. Predication is becoming more common in

embedded VLIWs [29, 31], however it is not universal. Our results are measured without predication,

but would only improve if it were present.

Implementation Here we specify how the compiler discovers the two cases, listed above, of when

code motion does not increase code size. The first case is when a duplicated instruction is not needed in

the off-trace path because its destination register is dead along that path. This case is easily discovered

by the compiler through liveness analysis, which is a widely used form of dataflow analysis. The

second case is when a duplicated off-trace instruction (i) can be placed into an existing basic block and

(ii) in addition, replaces an existing NOP in that block. Detecting condition (i) only requires the control

flow graph. However, detecting when (ii) is possible is hard since, to know whether an instruction can

replace an existing NOP, we need to have already finished scheduling the side block!

This problem of identifying when compensation instructions fit in NOPs is solved by preliminarily

scheduling each basic block separately. This schedule provides an initial estimate to the across-block

analyzer that must identify when compensation code fits into existing NOPs. After our across-block

analysis is performed, within-trace scheduling begins. One complication at this point is that multiple

18

compensation instructions may contend for a small

number of NOP slots in the side block. Therefore,

the scheduler must ensure that there are enough NOP

slots for all instructions that it chooses to migrate.

Finally, the preliminary schedules are discarded.

7 Considering extremes

Up until now, our approach has attempted to mini-

mize both run-time and code size. In Section 5, we

find the smallest schedule among those with mini-

mum run-time. In Section 6, we use compensation

Trace Frequency

Threshold_Code_Size Threshold_Run_Time

Optimize for
Code Size
Only

Optimize for
Run Time
Only

Common Common
MoreLess

Trade off
Code Size
& Run Time

Figure 7: Scheduling strategies along the
trace frequency spectrum. Traces are sorted
by frequency. Those whose frequency is be-
low an experimentally determined threshold,
ThresholdCodeSize, are scheduled for code
size only, and for those whose frequency exceeds
ThresholdRun Timeonly run-time is targeted.

code to reduce the run-time, but only when it does not increase code size. But in this section we observe

that we may sometimes do better by removing one of these constraints, either on code size or run-time.

For the most frequent traces, it is reasonable to optimize for run-time only, even at the cost of code

size. In a complementary way, the most infrequent traces should be optimized for code size only, even

at the cost of run-time. Figure 7 pictorially depicts these observations. Such a tradeoff between two

objectives is new since it is not needed for existing methods that only optimize for run-time in all cases.

Frequent traces For the most frequent traces, run-time becomes more important than code size. To

adapt our methods for a goal of run-time only, the within-trace methods of Sections 5 require no modifi-

cation, as they already search for a minimum run-time solution. The across-block analysis of Section 6

could negatively affect the run-time, however, because it restricts code motion. Therefore, for frequent

traces, we do not constrain migration with the methods of Section 6. The frequent traces are defined as

the set of the most frequent traces in the program whose combined run-time is a threshold percentage of

the program’s total run-time. This threshold is called ThresholdRunTimeand is determined one-time

in the results section by repeating our method with different thresholds and choosing the best.

Infrequent traces For the least frequent traces, code size is the over-riding concern. This requires

a modification to the within-trace methods of Sections 5, but not to the across-block restrictions in

Section 6. Our within-trace methods are modified to optimize for code size alone by simply setting all

19

data dependence latencies to a value of 1. This is because, when the dependence latencies are all 1,

the minimum run-time solution is the sameas the minimum code size solution, since both are directly

proportional to the number of long words. The resulting solution is still correct for the original latencies

by inserting stalls where appropriate, and the code size is optimal since the minimum code size solution

does not depend on the instruction latencies. The least frequent traces are defined as the set of the most

least frequent traces in the program whose combined run-time is a threshold percentage of the total

run-time of the program. This threshold is called ThresholdCodeSizeand is determined one-time in

the results section by repeating our method with different thresholds and choosing the best.

8 Results
Evaluation environment and benchmarks Because of compiler source code availability and access

to a physical processor, we chose our evaluation platform to be a hypothetical 6-wide embedded VLIW

whose instruction set is identical to the Itanium [2, 28], an Intel desktop VLIW. A 3-wide VLIW is also

evaluated. The variable-width long words feature of the Itanium is not allowed, however, so as to rep-

resent a more typical VLIW processor for embedded systems. The speculative load and hyperblocking

features are also not permitted, on similar grounds. A 6-wide VLIW is not excessive for embedded

systems; for example, the TI C6000 series uses a width of 8. Although we model a fixed-width VLIW,

the compiled code is still compatible with the IA-64 ISA, and so it is evaluated on a real Itanium.

An IA-64 instruction set was chosen since the most sophisticated open-source VLIW compiler we

could find was for the Itanium instruction set. Using a sophisticated VLIW compiler has two advan-

tages: first, it reduces the implementation effort since much functionality already exists, and second, by

using a mature VLIW compiler, we can have confidence that our scheme improves performance versus

the best available schemes. Our algorithm is implemented by modifying the PRO64 (v 0.11) research

compiler for Itanium [27], run with full optimization.

Some of the important parameters of our test machine are as follows. It has two memory units, two

integer units, two floating point units, and three branch units. Each of these unit types is asymmetric.

For instance, some M-type instructions are only executable on one of the memory units, while others

are executable on both. There is also a supertype instruction class, A, that can execute on either an

I or M unit, but which has different latencies depending on the unit that it executes on. It also may

20

lines # Basic # Useful

Name Description Type of code Blocks* Operations*

adpcm Converts 16 bit PCM and 4bit ADPCM telecom 943 74 467
fft Discrete Fast Fourier Transforms telecom 331 123 750
basicmath math functions, like sqrt and sine automobl 315 117 1038
bitcount counts the number of bits in data automobl 644 87 660
dijkstra Dijkstra’s algorithm for shortest paths network 177 66 411
jpeg Compress and decompress jpeg images consumer 51025 11767 94979
blowfish The encryption algorithm security 3136 131 1992
rjindael The AES encryption algorithm security 1138 187 3913
sha The Secure Hash Algorithm security 242 82 901
stringsrch. Searches for strings in text office 3037 187 1448
* found by examining the output ofPRO64

Table 1: Benchmarks. All are in C and from the MiBench suite.

place ordering restrictions upon the instructions that are run in parallel. All of these features increase

the difficulty of the compiler’s task, and thus challenge our method more. Our approach is equally

applicable to less constrained systems. Experiments are run on ten benchmarks from the MiBench

suite of embedded applications [14]. All are written in C. The benchmarks are described in Table 1.

Comparison algorithm Our algorithm is compared to an implementation of the FSA-based near-

run-time-optimal across-block scheduler in [3] by Bala et. al., which is augmented by the techniques

in [12] by Freudenberger et. al. so as to reduce the size of compensation code. This choice allows

us to compare against one of the best across-block schedulers that aims for run-time reduction ([3]),

combined with one of the only techniques for reducing code size in such an approach([12]). There

are better-for-run-time schedulers than [3], but most of them, such as superblocking [16], increase

code size dramatically more than [3], and so a comparison against them would make our code size

reduction look unrealistically good. Further we will show later, in Figure 8, that when applied to

single basic blocks, [3] yields nearly the same run-time as our provably-optimal-in-run-time within-

trace scheduler, providing strong verification that [3] is a near-optimal-in-run-time scheduler. The

best compiler technique for explicitly reducing code size that we are aware of for our targeted subset

of VLIWs is [12], and so we compare against an implementation of [3] augmented with [12]. See

Section 4 for a fuller discussion of the related work. In the rest of this section, ‘Bala’ is shorthand for

our comparison algorithm of Bala et. al. [3] augmented with Freudenberger et. al. [12].

21

Experiments Figure 8 shows the code size, run-time, and compile time for five methods: (i) Bala

applied within basic blocks, (ii) Bala with traces (normalized to 1.0), (iii) our within-trace scheduler

applied separately to individual basic blocks, (iv) our within-trace scheduler with across-block analysis,

and finally (v) our complete scheduler including the changed optimization criteria at the extremes.

Thus, the second bar represents current methods, and the fifth bar represents our method. By comparing

the two, we see that our method reduces the code size by 15.8% compared to the best previous method,

while staying within 0.82% of its run-time. In each figure, the average is shown as the right-most

set of bars for convenience. In Figure 8 (c), we see the compile time for each benchmark, graphed

against the theoretical worst-case compile time. The worst case compile-time is found by assuming

that the branch-and-bound scheduler never finishes before its timeout value. The derivation of the

timeout value will be described in Figure 10. In reality, the timeout is rarely used; but this upper-bound

value provides compile-time guarantees, ensuring that our methods never require exponential run-time.

From Figure 8 (c), we find that most programs are guaranteedto finish within a factor of 6 times their

original compile time, but in reality finish with just a factor of 2 increase. Such a compile-time increase

is generally acceptable in embedded systems, because compilation occurs in the factory.

Figure 8 also reveals the incremental contributions of our different technologies to the total code-

size improvement. First, by comparing the first bar versus the third one, we see that our within-trace

technologies improve code size by 6.4% while maintaining the run-time of current within-trace sched-

ulers. In fact the run-time is slightly faster, because the Bala algorithm is greedy. But the closeness

of the run-times is strong evidence that the Bala algorithm is doing a good job of finding a minimum

run-time solution (albeit with a worse code size). Second, by comparing the third bar versus the fourth,

we see that our across-block technologies contribute an extra 5.3% code-size improvement versus our

within-trace methods. Third, by comparing the fourth bar versus the fifth, we see that changing the

optimization criteria at the extremes improves code size by a further 2.4%.

Figure 9 breaks down the contributions of our various pruning strategies to code size, run-time, and

compile time. In Figure 9(a), (b) and (c) the right-most bar for each benchmark represents our final

algorithm. Figure 9(a) indicates a 15.8% savings in code-size, in agreement with the rightmost bar of

Figure 8. Figure 9(b) reveals that the pruning techniques have little effect on run-time. This is because

22

� � �

� � �

�

� � �

� � �

�
 �
 � � � �
� � � �
 � � � �

� � �
 � � � �

 � � � � � � �

� � � �
� ! � " � � � �

� � � �
 � � ! � � �

� � � � � � � � � �
 �
$ % & # (%) *

+,
-./ 0
12

3 *
2 1

4 / 0
1 5 7 9 75 7 9 7 ; = ? 7 A C5 7 D C 9 E F C H I E K L E F 5 5 N P C A S T5 7 D C 9 E F C ; V A ? Y D D H P C A [T5 7 D C 9 E F C ; V A ? Y D D ;] ^ K ? C _ C D H P C A a T

c e f g
h

h e c i
h e c j
h e c k
h e c g

h e h
h e h i

l m n o
p q q r

s l t u o
p l r v

s u r o
w x y

r
m u z { t r | l

z n }
~

s � w � q u t v
| u z y m l }

� t v l

t r | u y
~ t }

l | o
v

� � �
� � � �

� �
��
��� �
��

� �
�

�� �
� � � � �� � � � � � � � � �� � � � � � � � ¡ � ¢ £ � � � � ¥ ¦ � � § ¨� � � � � � � � � © � � ª � � ¦ � � « ¨� � � � � � � � � © � � ª � � � ­ ® ¢ � � ¯ � � ¦ � � ° ¨

(a) (b)

0

2

4

6

8

10

12

14

16

ad
pc

m fft

ba
si
cm

at
h

bi
tc
ou

nt

di
jk
st
ra

jp
eg

bl
ow

fis
h

rij
nd

ae
l

sh
a

st
rin

g
se

ar
ch

A
V
E
R
A
G
E

Complete Method
(Baseline + Across + Extremes)

Theoretical Upper Bound

(c)

Figure 8: (a) Improvement in code size, (b) run-time achieved, and (c) compile-time costs for the methods of
Sections 5, 6 and 7, normalized to Bala with traces = 1.0.

minimum-run-time solutions are easier to find than solutions with both minimum run-time and code

size. In fact, before performing branch-and-bound, an initial bound for the best-schedule-found-so-

far is obtained through a greedy search similar to Bala, and Figure 8(b) has already shown that Bala

produces a comparable run-time to our approach. Therefore there is little chance for improvement in

run-time. Instead, the effect of pruning strategies is to reduce the compile time, and as a consequence,

to allow a larger portion of the design space to be searched before timing out – perhaps leading to the

discovery of a more-compact schedule. Finally, Figure 9(c) reveals that the compile-time overhead of

our algorithm is a factor of 2.2, with no case being worse than a factor of 4. This overhead is quite

reasonable for embedded systems, where code is often compiled only in the factory.

Let us now consider the effect of the pruning strategies in Figure 9. The first bar represents our

algorithm without any pruning, except for a timeout. The impact of the timeout heuristic cannot be

23

measured, since without it a few large traces did not finish even in days, although most traces finished

within the timeout. Only a small number of traces timed out after 1 second, and increasing the time-

out did not significantly reduce the number of timeouts or improve the code size. This base approach

demonstrates a 15.3 % code-size improvement and a factor of 8.6 increase in compile time versus the

compiler without our techniques. The second bar represents the addition of lower bound pruning to the

base algorithm. Where as the first bar does not consider the cost of the as-yet-unscheduled instructions,

the algorithm of the second bar considers lower bounds on the remaining cost, thus providing a tighter

bound for pruning. This pruning technique demonstrates a further 2.6% decrease in code size, and

30.6% reduction in compile time. The third bar indicates the pruning technique whereby certain redun-

dant or provably inferior schedules are skipped. This reduces the code size by a further 0.19% and the

compile time by 24.4 %. The fourth bar reveals that splitting large traces into more manageable trace

chunks(of 35 instructions each) increasesthe code size by 0.46% over the third bar, but reduces the

compile time by 45.8%. Splitting large traces is a non-optimal heuristic, so it is possible to increase the

code size. Yet, since this heuristic has such a positive effect on compile time, a designer may choose to

compile with this flag, as we have. Next, the fifth bar considers the effect of adding equivalence class

analysis to remove redundancies among possible instruction groups. This technique had no measured

effect on code size, but decreased compile time by 3.6%. Lastly, the sixth bar represents our final algo-

rithm, which uses all of the pruning techniques. This final bar shows the effect of congestion control,

where edges are inserted between constrained, FIXED CYCLE instructions. This pruning technique

reduces code size by only 0.02%, but reduces the compile time by an additional 9.18%.

Figure 10(a) displays the actual compile time of every trace chunk from every benchmark. Each of

the 8,390 data points represents one trace chunk: the y-value being the chunk’s measured compile time

and the x-value being computed as a simple function of the chunk’s properties. We have developed this

function so as to estimate a chunk’s compile time before scheduling it. This function is the product of

two terms. The first term is the number of instructions, Ninstructions, plus the number of instructions not

on a fixed cycle, Nf lexible. The intuition here is that instructions with scheduling flexibility will increase

the search space, and so they affect the compile time more than fixed instructions. The second term

also attempts to measure the size of the search space: it is the natural log of the product of all slacks

24

� � � �
� � �

� � � �
� � �

� � � �
	

 �
 � � � � �
�
 � � � �
 � �

� � � � � � � �
� � � � � � �

�
 � �
� � ! � � � �

� � � � �
 � � �

� � � � � � � �
 � � �
$ % ' #) %* +

,
-.

/0 1
23

4 +
3 2
5 0 1

2 6 7 8 9 ; 6 > 6 A B C E F G B H B I A L H N O N H P 9 C G NR 6 C G B S H B I U 8 N H P 7 N 9 8R W C N X H Y Y 9 S R W C N W 9 LR [E Y H N \ 7 F I 9] F 7 ^ 9 8R [7 P 9 U ^ Y 7 8 8 R [N F H ^ N 9 F U ^ Y 7 8 8R _ C B ` 9 8 N H C B _ C B N F C Y

a b c d

e

e b a f

e b a g

h i j k
l m m n

o h p q k
l h n r

o q n k
s t u

n
i q v w p n x h

v j y
z

o { s |
m q p r

x v q u i h y
{ p r h

p n x q u
z p y

h x k
r

} ~ �
� } � �

� �
��
��� �
��

� �
�

�� �
� � � � � � � � � � � � � � � � � � � ¡ � ¢ £ ¢ � ¤ � � � ¢¥ � � � � ¦ � � § � ¢ � ¤ � ¢ � �¥ ¨ � ¢ © � ª ª � ¦ ¥ ¨ � ¢ ¨ � ¡¥ « � ª � ¢ ¬ � � � ­ � � ® � �¥ « � ¤ � § ® ª � � � ¥ « ¢ � � ® ¢ � � § ® ª � � �¥ ¯ � � ° � � ¢ � � � ¯ � � ¢ � � ª

(a) (b)

0

4

8

12

16

20

ad
pc

m fft

ba
si
cm

at
h

bi
tc
ou

nt

di
jk
st
ra

jp
eg

bl
ow

fis
h

rji
nd

ae
l

sh
a

st
rin

gs
ea

rc
h

A
V
E
R
A
G
E

N
o

rm
a
li
z
e
d

 C
o

m
p

il
e
 T

im
e Base: B & B, no pruning, with timeout

+ Bounding Estimates
+ Not Filled + Not New
+ Split Large Traces
+ Same Eclass + Stricter Eclass
+ Conjestion Control

(c)

Figure 9: The effect of our pruning strategies upon (a) code size, (b) run-time, and (c) compile time, normalized
to Bala with traces (Bala does not use pruning). Our proposed algorithm is represented by the left-most bar.

Compile Time Per Trace Chunk

1

10

100

1000

10000

1 10 100 1000 10000

Heuristical Compile Time Estimator
(Ninstructions + Nflexible) * (ln(Slack_Product) + 1)

C
o

m
p

il
e
 T

im
e
 (

m
s
)

 0.00125 x + 1.66 x + 5 (x < 541)

 1000 (x > 541)

2

f(x) = {

Time To Find Solution Per Trace Chunk

1

10

100

1000

10000

1 10 100 1000 10000

Heuristical Compile Time Estimator
(Ninstructions + Nflexible) * (ln(Slack_Product) + 1)

T
im

e
 t

o
 S

o
lu

ti
o

n
 (

m
s
) 0.00125 x + 1.66 x + 5 (x < 541)

 1000 (x > 541)

2

f(x) = {

(a) (b)
Figure 10: Determining the proper time-out function. In (a), the actual measured compile time for each trace
chunk is plotted versus a simple heuristic estimator of compile time. In (b) the time when the final solution was
reached is given. In both figures, our proposed function is also plotted, chosen by fitting a parabola two the upper
2% of data points, while requiring the parabola’s y-intercept to be 5 ms.

25

in the DFG, plus one. In Figure 10(b), this same estimator function is used for the x-value of the data

points, but the y-value is the time at which the final solution was found. Therefore, the data points in

Figure 10(b) are lower than in (a), because a branch-and-bound algorithm maysearch for a long time

without finding a better solution than one visited early in the search.

Figure 10 also illustrates our timeout function. By fitting a parabola through the top 2% of data

points in Figure 10(a), while requiring the y-intercept to be 5 ms, we arrive at the timeout function,

f(x), plotted in Figure 10. The y-intercept restriction is needed so as to ensure that the smallest chunks

are given sufficient time to compile, which turns out to be 5 ms. In this figure, we also see that the

timeout function is clipped at 1000 ms. Examining Figure 10(a), we notice that almost all trace chunks

finish compilation without timing out (95%). In Figure 10(b), we further observe that an even larger

number of chunks will have found their final solution before timing out. As a result, the time-out

function has a marginal impact on the quality of our results, but a major impact on the quality of our

compile-time guarantees.

Figures 11 and Figure 12 illustrate how the thresholds of Section 7 are chosen. Some explanation

of the meaning of these thresholds is warranted. If Threshold Code Size = X this indicates that only

code size matters for the set of least frequent traces whose combined execution time is X% of the total

execution time of the program. Similarly, if Threshold Run Time = Y this indicates that only run-time

matters for the set of most frequent traces whose combined execution time is (100 - Y)% of the total

execution time of the program. The sense of this definition is reversed so that the two thresholds can

be understood together, with common units, as in Figure 7. Thus for both thresholds, a higher value

corresponds to a higher preference of code size versus run-time. When no thresholds are used (as in

Section 6, and corresponding to the fourth bar of Figure 8), the effective values of these thresholds

could be considered to be: Threshold Code Size = 0% and Threshold Run Time = 100%.

Figure 11 illustrates our method for determining the optimal value for the Threshold Code Size

parameter. In this figure, the other parameter – Threshold Run Time – is set to its optimal value (15%).

The experiments in Figures 11 and Figure 12 both require the solution to the optimal threshold in the

other figure. To solve this ‘chicken and egg’ problem, we iteratively repeated the experiment in each fig-

ure until both thresholds converged. We see from Figure 11 that choosing 3% for Threshold Code Size

26

achieves most of the code-size improvement of limiting compensation code, while at the same time

achieving most of the run-time benefit of trace scheduling. This is because most of the execution time

is spent in a small number of traces.

Similarly, Figure 12 depicts the effect of the Threshold Run Time parameter, with Thresh-

old Code Size set to its optimal value (3%). This figure shows that choosing a value of 15% for

Threshold Run Time maintains most of the code size improvement of the code-size-only schedule,

without a serious impact on run-time.

It is interesting to see how VLIW width affects our results. Since IA-64 packs 3 instructions into

each bundle, our implementation can be modified to compile for a 3-wide VLIW, instead of a 6-wide.

� � � �
� � �

� � � �
� � �

� � � �
	

 � �
� � � � �

�
 � � � �
 � �
� � � � � �

� �
� � � � � � �

� �
 "

� # � $ � � � �
� � � � �
 # � �

� � � � � " �
 � � �
% & ') % *

'
+ ,

-.
/01 2
34

5 ,
4 3
6 1 2

3 7 9 : 9 < 9 = 9 : 7 7 9

@ A B D
E

E A @ D
E A E

E A E D
E A G

H I K L
M N N O

P H Q R L
M H O S

P R O L
T U V

O
I R W X Q O Y H

W K Z
[

P \ T] N R Q S
Y W R V I H Z

\ Q S H

Q O Y R V
[Q Z

H Y L
S

^ _ a
b ^ c a

d e
fg
hij k
lm

n o
p

qj g
l r s t s v s w s t r r s

(a) (b)

Figure 11: The results of varying the Threshold Code Size parameter, upon (a) code size and (b) run-time,
normalized to Bala with traces. (Threshold Run Time is held constant).

� � � �
� � �

� � � �
� � �

� � � �
	

 � � � � � � �
�
 � � � �
 � �

� � � � � � � �
� � � � � � �

� � � !
� # � $ � � � �

� � � � �
 � # � �

� � � � � ! � �
 � � �
% & ' (% * '

+ ,
-./

01 2
34

5 ,
4 3
6 1 2

3 7 9 : 7 9 : < 9 > 7 9 : 7 7 9

A B C D

E

E B A F

E B A H

E B A I

J L N O
P Q Q R

S J T U O
P J R V

S U R O
W X Y

R
L U Z [T R \ J

Z N]
^

S _ W ` Q U T V
\ Z U Y L J]

_ T V J

T R \ U Y
^ T]

J \ O
V

a b d
e a f d

g h
ij
klm n
op

q r
s

tm j
o u v w u v w x v y u v w u u v

(a) (b)

Figure 12: The results of varying the Threshold Run Time parameter, upon (a) code size and (b) run-time,
normalized to Bala with traces. (Threshold Code Size is held constant).

27

Figure 13 describes our 3-wide results. Comparing Figures 13 and 8, we make two observations. First,

the average code size reduction for a 3-wide VLIW is 13.6%, which is 86% of the improvement found

in the 6-wide VLIW. Hence, the code-size improvement of our method scales downwards reasonably

well. This information also suggests that our technique may have a somewhat larger effect on even

wider VLIWs. Second, the basic trends in the figures for the two widths are similar.

It is also interesting to see the relative proportion of trace lengths in our benchmarks. Figure 14

divides the traces according to their number of useful instructions, and gives the percentage of traces

in each range. We see that 69% of traces are less than 21 instructions long. These traces are likely to

schedule quickly without the need of non-optimal heuristics.

� � �

� � �

�

� � �

� � �

�
 �

 � � � �

� � � �
 � � � �
� � �
 � �

� �

 � �

� � � � �
� �

� �
� ! � " � � � �

� � � �
 � � ! � �
�

� � � � � � � � � �
 �
$ % ' #)

%* +
,-
./0 1
23

4 +
3 2

5 0 1
2 6 8 9 86 8 9 8 ; = ? 8 @ A6 8 C A 9 E F A H I E K L E F 6 6 N P A @ R T6 8 C A 9 E F A ; U @ ? W C C H P A @ Y T6 8 C A 9 E F A ; U @ ? W C C ; [\ K ? A] A C H P A @ _ T

` b c d
e

e b ` f
e b ` g
e b ` h
e b ` d

e b e
e b e f

j k l
m n o o p

q j r s m n j p t
q s p m u w

x p
k s y z r p { j

y l
| }

q ~ u � o s r t
{ s y

x k j | ~ r t
j

r p { s x } r | j { m t
� � �

� � � �
� �

��
��� �
��

� �
�

�� �
� � � � �� � � � � � � � � �� � � � � � � � ¡ � £ ¤ � � � � ¦ § � � ¨ ©� � � � � � � � � ª � � « � � § � � ¬ ©� � � � � � � � � ª � � « � � � ­ ® £ � � ¯ � � § � � ° ©

(a) (b)

Figure 13: The results for our complete technique on a 3-wide VLIW for (a) code size and (b) run-time, nor-
malized to Bala for a 3-wide VLIW with traces.

9 Conclusions
Code size is an important concern in embed-

ded systems. A method is described for in-

struction scheduling to reduce code size for a

particular subset of VLIWs, without sacrificing

run-time. The within-trace scheduler relies on

optimal, branch-and-bound methods, as well as

heuristics to reduce the compile- time of more-

complex traces. Further, we present an across-

0

10

20

30

40

50

60

70

80

ad
pc

m fft

ba
si
cm

at
h

bi
tc
ou

nt

di
jk
st
ra

jp
eg

bl
ow

fis
h

rij
nd

ae
l

sh
a

st
rin

gs
ea

rc
h

A
V
E
R
A
G
E

P

e
rc

e
n

ta
g

e
 o

f
A

ll
 T

ra
c

e
s 1-10 11-20 21-30 31-40 41+

Figure 14: The distribution of trace lengths (not count-
ing NOPS) for each benchmark.

28

block analyzer that runs before within-trace scheduling; it prevents any instruction from migrating to

a different basic block if that move is likely to increase code size. Finally our method is configurable

to target either only code size or only run-time, rather than both; this is useful in the least-frequent and

most-frequent traces, respectively.

The intellectual novelty of our scheme is seen in the following four contributions. First, we are

the first to develop an instruction scheduler that uses back-tracking techniques to minimize code size,

and to develop a series of innovative pruning techniques unique to such a search. Second, unlike

existing schedulers, our method places constraints on the migration of instructions between blocks –

prior to scheduling the trace – whenever this migration is likely to increase code size. Third, in order

to approximately identify these code-size-increasing migrations, our method completes a preliminary

schedule of basic blocks. Fourth, our method is unique in targeting different objectives for traces of

different frequencies – code size only for infrequent traces; run-time only for frequent traces; and both

code size and run-time for traces of intermediate frequency.

Our approach improves code size by an average of 16% for a 6-wide and 14% for a 3-wide VLIW,

compared to existing trace-scheduling methods, yet retains most of the speedup of trace scheduling.

References
[1] S. Aditya, S. Mahlke, and B. R. Rau. Code Size Minimization and Retargetable Assembly for Custom EPIC and VLIW Instruction

Formats. ACM Trans. on Design Automation of Electronic Systems, 5(4):752–773, Oct 2000.

[2] D. August, D. Connors, S. Mahlke, J. Sias, K. Crozier, B. Cheng, P. Eaton, Q. Olaniran, and W. Hwu. Integrated Predicated and
Speculative Execution in the IMPACT EPIC Architecture. In Proc. of 25th Int’l Symp on Comp Architecture, July 1998.

[3] V. Bala and N. Rubin. Efficient Instruction Scheduling Using Finite State Automata. In Proc. of the 28th Annual Int’l
Symposium on Microarchitecture (MICRO-28), Ann Arbor, Michigan, USA, Nov. 1995. IEEE Computer Society.

[4] S. J. Beaty. Genetic Algorithms and Instruction Scheduling. In Proc. of the 24th Annual Int’l Symposium on Mi-
croarchitecture (MICRO-24), pages 206–211, Albuquerque, New Mexico, USA, Nov. 1991. IEEE Computer Society.

[5] J. Bharadwaj, K. Menezes, and C. McKinsey. Wavefront Scheduling: Path Based Data Representation and Scheduling of Subgraphs.
In Proc. of the 32nd Annual ACM/IEEE Int’l Symposium on Microarchitecture, pages 262–271, Nov 1999.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software from synchronous dataflow specifications. Journal
of VLSI Signal Processing, 21(2):151–166, June 1999.

[7] H. C. Chou and C. P. Chung. An Optimal Instruction Scheduler for Superscalar Processors. IEEE Transactions on Parallel
and Distributed Systems, pages 303–313, Mar. 1995.

[8] S. Debray and W. Evans. Profile guided code compression. In PLDI ’02, June 2002.

[9] E.A.Lee and D. Messerschmitt. Synchronous dataflow. Proc. of the IEEE, Sept. 1987.

[10] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood. Lx: A Technology Platform for Customizable VLIW Embedded
Processing. In Proc. of the 27th Int’l Symp. on Computer Architecture (ISCA), Vancouver, Canada, June 2000.

29

[11] J. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE Trans. Comput., C-30(7):478–490, July 1981.

[12] S. Freudenberger, T. Gross, and P. Lowney. Avoidance and Suppression of Compensation Code in a Trace Scheduling Compile. ACM
Transactions on Programming Languages and Systems, 16(4):1156–1214, July 1994.

[13] G. R. Beck and D. W. Yen and T. L. Anderson. The cydra 5 mini-supercomputer:architecture and implementation. The Journal of
Supercomputing, 7(1):143–180, 1993.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. Mibench: A free, commercially representative
embedded benchmark suite. In Proc. of IEEE 4th Annual Workshop on Workload Characterization, Dec. 2001.

[15] S. Hanono and S. Devadas. Instruction selection, resource allocation and scheduling in the AVIV retargeting code generator. In
Design Automation Conference, June 1998.

[16] W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R. Bringmann, R. Ouellette, R. Hank, T. Kiyohara, G. Haab, J. Holm, and
D. Lavery. The Superblock: An Effective Technique for VLIW and Superscalar Compilation. The Journal of Supercomputing,
7(1):229–248, Jan 1993.

[17] S. Jee and K. Palaniappan. Performance Evaluation for a Compressed-VLIW Processor. In SAC 02, Madrid, 2002.

[18] D. Kastner and S. Winkel. ILP-based Instruction Scheduling for IA-64. In Proc. of the ACM SIGPLAN Workshop on
Languages, Snowbird, Utah, USA, June 2001.

[19] S. Y. Larin and T. M. Conte. Compiler-driven cached code compression schemes for embedded ILP processors. In Proc. of the
32nd Annual ACM/IEEE Int’l Symposium on Microarchitecture on MICRO-32, Haifa, Israel, Nov. 1999.

[20] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Code Optimization Techniques for Embedded DSP Microprocessors. In
32nd Design Automation Conference. ACM/IEEE, 1995.

[21] J. Liu and F. Chow. A Near-Optimal Instruction Scheduler for A Tightly Constrained, Variable Instruction Set Embedded Processor. In
Proc. of the ACM 3rd Int’l Conference on Compilers, Architectures, and Synthesis for Embedded
Systems (CASES), Oct. 2002.

[22] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. Effective Compiler Support for Predicated Execution Using the Hyperblock.
In Proc. of the 25th Int’l Symposium on Microarchitecture(MICRO-25), 1992.

[23] S. S. Muchnick. Advanced Compiler Design and Implementation. M. Kaufmann, San Francisco, CA, 1997.

[24] J. Park and M. Schlansker. On Predicated Execution. Tech. Rep. HPL-91-58, Hewlett Packard Laboratories, Palo Alto, CA, May 1991.

[25] P. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens. Embedded Software in Real-Time Signal Processing Systems: Application
and Architecture Trends. Invited paper, Proc. of the IEEE, 85(3), Mar. 1997.

[26] B. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 departmental supercomputer. IEEE Computer, 22(1):12–35, Jan. 1989.

[27] The SGI Pro64(TM) compiler suite. SGI Corporation, March 2000. http://oss.sgi.com/projects/Pro64/.

[28] P. Song. Demystifying EPIC and IA-64. Microprocessor Report, 12(1):21, January 26 1998.

[29] A. Suga and K. Matsunami. Introducing the FR500 Embedded Microprocessor. IEEE Micro, pages 21–27, Jul 2000.

[30] P. H. Sweany and S. J. Beaty. Dominator-path scheduling: a global scheduling method. In Proc. of the 25th Int’l Symposium
on Microarchitecture, 1992.

[31] TMS320C6000 Programmer’s Guide. Texas Instruments, 2003. Also available at www.ti.com.

[32] Philips Trimedia Processor Home Page. Philips Corporation, 2002. www.semiconductors.philips.com/trimedia/.

[33] The TigerSHARC Processor Family. http://www.analog.com/processors/processors/tigersharc/.

[34] K. Wilken, J. Liu, and M. Heffernan. Optimal Instruction Scheduling Using Integer Programing. In Programing Language
Design and Implementation, pages 121–133. ACM SIGPLAN, 2000.

[35] T. Zeitlhofer and B. Wess. Code Optimization for the Carmel DSP-CORE. In Proc. of the Int’l Conference on Signal
Processing Applications and Technology (ICSPAT 99), Orlando, FL, November 1999.

30

