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Abstract—The Explicit Multi-Threading (XMT) is a general-
purpose many-core computing platform, with the vision of a 1000-
core chip that is easy to program but does not compromise on
performance. This paper presents a publicly available toolchain
for XMT, complete with a highly configurable cycle-accurate
simulator and an optimizing compiler.

The XMT toolchain has matured and has been validated to
a point where its description merits publication. In particular,
research and experimentation enabled by the toolchain played
a central role in supporting the ease-of-programming and per-
formance aspects of the XMT architecture. The compiler and
the simulator are also important milestones for an efficient
programmer’s workflow from PRAM algorithms to programs
that run on the shared memory XMT hardware. This workflow
is a key component in accomplishing the dual goal of ease-of-
programming and performance.

The applicability of our toolchain extends beyond specific
XMT choices. It can be used to explore the much greater design
space of shared memory many-cores by system researchers or
by programmers. As the toolchain can practically run on any
computer, it provides a supportive environment for teaching
parallel algorithmic thinking with a programming component.
Unobstructed by techniques such as decomposition-first and
programming for locality, this environment may be useful in
deferring the teaching of these techniques, when desired, to more
advanced or platform-specific courses.

Index Terms—Architecture Simulation, Compiler, Cycle-Accu-
rate Simulator, Discrete-Event Simulator, Ease-of-Programming,
Explicit Multi-Threading (XMT), Extending Serial Compiler for
Parallelism, Fine-Grained Parallelism, Many-Core Architecture,
Memory Model, Parallel Algorithms, Parallel Computing Edu-
cation, Parallel Programming, PRAM, Toolchain, XMTC

I. INTRODUCTION

Building a high-productivity general-purpose parallel sys-

tem has been a grand challenge for parallel computing and

architecture design communities. Especially, the goal of ob-

taining high-productivity, which is the combination of ease-

of-programming and good performance, has been elusive.

This brings us to today’s landscape of general-purpose on-

chip parallel computing with the hard-to-scale multi-cores

consisting of up to a few tens of threads (e.g., Intel Core i7), vs.

highly parallel, scalable many-cores with hundreds of threads

(e.g., GPUs); though GPUs are difficult to program and can

be slower for code that exhibit a low amount of parallelism.

It is important to break out of the shells of patching prior

approaches and start from a clean slate for overcoming the pro-

ductivity problem, as argued by Snir [1]. The eXplicit Multi-

Threading (XMT) general-purpose parallel computer repre-

sents a promising attempt in this respect. XMT is a synergistic

approach, combining a simple abstraction [2], a PRAM-based

rich algorithmic theory that builds on that abstraction, a highly-

scalable efficient hardware design and an optimizing compiler.

The programmer’s workflow of XMT aims to preempt the

productivity “busters” of on-chip parallel programming, such

as decomposition-first programming, reasoning about complex

race conditions among threads, or requiring high amounts of

parallelism for improving performance over serial code.

In this paper, we present the publicly-available XMT

toolchain, consisting of a highly-configurable cycle-accurate

simulator, XMTSim, and an optimizing compiler [3]. XMT

envisions bringing efficient on-chip parallel programming to

the mainstream and the toolchain is instrumental in obtaining

results to validate these claims as well as making a simulated

XMT platform accessible from any personal computer. We

believe that the XMT toolchain and its documentation in

this paper are important to a range of communities such as

system architects, teachers and algorithm developers due to

the following four reasons.

1. Performance advantages of XMT and PRAM algo-

rithms. In Section II-B, we list publications that not only

establish the performance advantages of XMT compared to

exiting parallel architectures, but also document the interest of

the academic community in such results. The XMT compiler

was the essential component in all experiments while the sim-

ulator enabled the publications that investigate planned/future

configurations. Moreover, despite past doubts in the practical

relevance of PRAM algorithms, results facilitated by the

toolchain showed not only that theory-based algorithms can

provide good speedups in practice, but that sometimes they

are the only ones to do so.

2. Teaching and experimenting with on-chip parallel

programming. The toolchain enabled the experiments that

established the ease-of-programming of XMT. These experi-

ments were presented in publications [4]–[7] and conducted

in courses taught to graduate, undergraduate, high-school and

middle-school students including at Thomas Jefferson High

School, Alexandria, VA. In addition, the XMT toolchain

provides convenient means to teaching parallel algorithms and

programming, because students can install and use it on any

personal computer to work on their assignments.

3. Opportunity to evaluate alternative system compo-

nents. The simulator allows users to change the parameters of

the simulated architecture including the number of functional

units, and organization of the parallel cores. It is also easy
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Fig. 1. Overview of the XMT architecture.

to add new functionality to the simulator, making it the

ideal platform for evaluating both architectural extensions and

algorithmic improvements that depend on the availability of

hardware resources. For example, [8] searches for the optimal

size and replacement policy for prefetch buffers given limited

transistor resources. Furthermore, to our knowledge, XMTSim

is the only publicly available many-core simulator that allows

evaluation of mechanisms, such as dynamic power and thermal

management. Finally, the capabilities of our toolchain extend

beyond specific XMT choices: system architects can use it to

explore a much greater design-space of shared memory many-

cores.

4. Guiding researchers for developing similar tools. This

paper also documents our experiences on adapting an existing

serial compiler (GCC v4.0) to fit a fine-grained parallel

programming environment and constructing a simulator for

a highly-parallel architecture, which, we believe, will guide

other researchers who are in the process of developing similar

tools.

II. OVERVIEW OF THE XMT PLATFORM

The primary goal of the eXplicit Multi-Threading (XMT)

on-chip general-purpose computer architecture [9], [10] has

been improving single-task performance through parallelism.

XMT was designed from the ground up to capitalize on the

huge on-chip resources becoming available in order to support

the formidable body of knowledge, known as Parallel Random

Access Model (PRAM) algorithmics [11], [12], and the latent,

though not widespread, familiarity with it. A 64-core FPGA

prototype was reported and evaluated in [13], [14].

The XMT architecture, depicted in Fig. 1, includes a

multitude of lightweight cores, called Thread Control Units

(TCUs), and a serial core with its own cache (Master TCU).

TCUs are grouped into clusters, which are connected by a

high-throughput interconnection network, for example using a

mesh-of-trees topology [15], [16], to the first level of cache

i n t A[N] ,B[N] , base =0 ;
spawn ( 0 ,N−1) {

i n t i n c =1 ;
i f (A[ $ ] ! = 0 ) {

ps ( inc , base ) ;
B[ i n c ]=A[ $ ] ;

} }

spawn

join

spawn

join$

(a) (b)

Fig. 2. (a) XMTC program example: Array Compaction. The non-zero
elements of array A are copied into an array B. The order is not necessarily
preserved. $ refers to the unique thread identifier. After the execution of the
prefix-sum statement ps(inc,base), the base variable is increased by
inc and the inc variable gets the original value of base, as an atomic
operation. (b) Execution of a sequence of spawn blocks.

(L1). The L1 cache is shared and partitioned into mutually-

exclusive cache modules, sharing several off-chip DRAM

memory channels. The load-store (LS) unit applies hashing on

each memory address to avoid hotspots. Cache modules handle

concurrent requests, which are buffered and reordered to

achieve better DRAM bandwidth utilization. Within a cluster,

a read-only cache is used to store constant values across all

threads. TCUs include lightweight ALUs, shift (SFT) and

branch (BR) units, but the more expensive multiply/divide

(MDU) and floating point units (FPU) are shared among TCUs

in a cluster. TCUs also feature prefetch buffers which are

utilized via a compiler optimization to hide memory latencies.

XMT allows concurrent instantiation of as many threads

as the number of available processors. Tasks are efficiently

started and distributed thanks to the use of prefix-sum for

fast dynamic allocation of work and a dedicated instruction

and data broadcast bus. The high-bandwidth interconnection

network (ICN) and the low-overhead creation of many threads

facilitate effective support of both fine-grained and small-scale

parallelism.

A. From C to XMTC: Simple Extensions

Fig. 2a illustrates XMTC, the programming language of

XMT. It is a modest single-program multiple-data (SPMD)

parallel extension of C with serial and parallel execution

modes. The spawn statement introduces parallelism in XMTC.

It is a type of parallel “loop” whose “iterations” can be exe-

cuted in parallel. It takes two arguments low, and high, and

a block of code, the spawn block. The block is concurrently

executed on (high-low+1) virtual threads. The ID of each

virtual thread can be accessed using the dollar sign ($) and

takes integer values within the range low ≤ $ ≤ high.

Variables declared in the spawn block are private to each

virtual thread. All virtual threads must complete before execu-

tion resumes after the spawn block. In other words, a spawn

statement introduces an implicit synchronization point. The

number of virtual threads created by a spawn statement is

independent from the number of TCUs in the XMT system. An

algorithm designed following the XMT workflow [17] permits

each virtual thread to progress at its own speed, without ever

having to busy-wait for other virtual threads.

XMTC also provides access to the powerful hardware

prefix-sum (ps) primitive, similar in function to the NYU
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Ultracomputer atomic Fetch-and-Add [18]. It provides con-

stant, low overhead coordination between virtual threads, a

key requirement for implementing efficient fine-grained paral-

lelism. Although the ps operation is efficient, it can only be

performed over a limited number of global registers and only

with values 0 and 1. For that reason XMTC also provides a

prefix-sum to memory (psm) variant that doesn’t have these

limitations: the base can be any memory location and the value

of the amount can be any signed (32 bit) integer. The psm

operations are more expensive than ps as they require a round

trip to memory and multiple operations that arrive at the same

cache module will be queued.

More details on XMTC can be found in the XMT Toolchain

Manual [19].

B. Performance Advantages

A cycle-accurate 64-core FPGA hardware prototype [13],

[14] was shown to outperform an Intel Core 2 Duo processor

[20], despite the fact the Intel processor uses more silicon

resources. The XMT compiler was an essential component

in this experiment. The simulator allowed comparing a 1024-

core XMT chip to a silicon-area equivalent GPU, NVIDIA

GTX280. Simulations revealed that, while easier to program

than the GPU, XMT still has the potential of coming ahead

in performance [21], under similar thermal constraints [22].

Another comparison with GPUs can be found in [23], in which

the floating-point model of the simulator was what enabled the

publication. A comparison of FFT (the Fast Fourier Transform)

on XMT and on multi-cores showed that XMT can both

get better speedups and achieve them with less application

parallelism [24].

Many doubt the practical relevance of PRAM algorithms,

and past work provided very limited evidence to alleviate these

doubts; [25] reported speedups of up to 4x on biconnectivity

using a 12-processor Sun machine and [26] up to 2.5x on

maximum flow using a hybrid CPU-GPU implementation

when compared to best serial implementations. New results,

however, show that parallel graph algorithms derived from

PRAM theory can provide significantly stronger speedups than

alternative algorithms. These results include potential speedups

of 5.4x to 73x on breadth-first search (BFS) and 2.2x to 4x

on graph connectivity when compared with optimized GPU

implementations. Also, with respect to best serial implemen-

tations on modern CPU architectures, we observed potential

speedups of 9x to 33x on biconnectivity [27], and up to 108x

on maximum flow [28]. The toolchain allows calibrating the

number of XMT processors in order to match the silicon

areas of the same-generation platforms, which facilitated a fair

comparison.

C. Ease of Programming and Teaching

Ease-of-programing is one of the main objectives of XMT:

considerable amount of evidence was developed on ease of

teaching [4], [5] and improved development time with XMT

relative to alternative parallel approaches including MPI [6],

OpenMP [7] and CUDA (experiences in [21]). XMT provides

a programmer’s workflow for deriving efficient programs from

PRAM algorithms, and reasoning about their execution time

[17] and correctness.

In a joint teaching experiment between the University of

Illinois and the University of Maryland comparing OpenMP

and XMTC programming [7], none of the 42 students achieved

speedups using OpenMP programming on the simple irregular

problem of breadth-first search (BFS) using an 8-processor

SMP, but reached speedups of 8x to 25x on XMT. Moreover,

the PRAM/XMT part of the joint course was able to convey

algorithms for more advanced problems than the other parts.

III. THE XMT SIMULATOR – XMTSim

XMTSim is the cycle-accurate simulator of the XMT archi-

tecture. It accurately models the interactions between the high

level micro-architectural components of XMT shown in Fig. 1,

i.e., the TCUs, functional units, caches, interconnection net-

work, etc. Currently, only on-chip components are simulated,

and DRAM is modeled as simple latency. XMTSim is highly

configurable and provides control over many parameters in-

cluding number of TCUs, the cache size, DRAM bandwidth

and relative clock frequencies of components. XMTSim is

verified against the 64-TCU FPGA prototype of the XMT

architecture. The results of the verification, as well as details

about XMTSim further than presented in this paper can be

found in [29].

While simulators of serial and multi-core computer archi-

tectures are common in the research community (for example,

SimpleScalar [30], Simics [31] and their derivatives), simu-

lation of many-cores (i.e., hundreds or more) is a relatively

new and growing area. Some examples of these simulators are

GPGPUSim [32] and TPTS [33]. XMTSim is complementary

to the existing many-core simulators, as it fulfills the need for

an easy-to-program shared-memory platform.

A. Overview

The software structure of XMTSim is geared towards

providing a suitable environment for easily evaluating addi-

tions and alternative designs. XMTSim is written in the Java

programming language and the object-oriented coding style

isolates the code of major components in individual units (Java

classes). Consequently, system architects can override the

model of a particular component, such as the interconnection

network or the shared caches, by only focusing on the relevant

parts of simulator. Similarly, a new assembly instruction can

be added via a two step process: (a) modify the assembly

language definition file of the front-end, and (b) create a

new Java class for the added instruction. The new class

should extend Instruction, one of the core Java classes of the

simulator, and follow its application programming interface

(API) in defining its functionality and type (ALU, memory,

etc.).

Each solid box in Fig. 1 corresponds to a Java object

in XMTSim. Simulated assembly instruction instances are
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wrapped in objects of type Package1. An instruction package

originates at a TCU, travels through a specific set of cycle-

accurate components according to its type (e.g., memory,

ALU) and expires upon returning to the commit stage of the

originating TCU. A cycle-accurate component imposes a delay

on packages that travel through it. In most cases, the specific

amount of the delay depends on the previous packages that

entered the component. In other words, these components are

state machines, where the state input is the instruction/data

packages and the output is the delay amount. The inputs and

the states are processed at transaction-level rather than bit-level

accuracy, a standard practice which significantly improves the

simulation speed in high-level architecture simulators. The rest

of the boxes in Fig. 1 denote either the auxiliary classes that

help store the state or the classes that enclose collections of

other classes.

Fig. 3 is the conceptual overview of the simulator architec-

ture. The inputs and outputs are outlined with dashed lines.

A simulated program consists of assembly and memory map

files that are typically provided from the XMTC compiler.

A memory map file contains the initial values of global

variables. The current version of the XMT toolchain does

not include an operating system, therefore global variables

are the only way to provide input to XMTC programs, since

OS dependent features such as file I/O are not yet supported.

The front-end that reads the assembly file and instantiates the

instruction objects is developed with SableCC, a Java-based

parser-generator [34]. The simulated XMT configuration is

determined by the user typically via configuration files and/or

command line arguments. The built-in configurations include

models of the 64-TCU FPGA prototype (also used in the

verification of the simulator) and an envisioned 1024-TCU

XMT chip.

XMTSim is execution-driven (versus trace-driven). This

means that instruction traces are not known ahead of time

but instructions are generated and executed by a functional

model during simulation. The functional model contains the

operational definition of the instructions, as well as the state

of the registers and the memory. The core of the simulator is

the cycle-accurate model, which consists of the cycle-accurate

components and an event scheduler engine that controls the

flow of simulation. The cycle-accurate model fetches the

instructions from the functional model and returns the expired

instructions to the functional model for execution, which is

illustrated in Fig. 3.

The simulator can be set to run in a fast functional mode,

in which the cycle-accurate model is replaced by a simpli-

fied mechanism that serializes the parallel sections of code.

The functional simulation mode does not provide any cycle-

accurate information hence it is orders of magnitude faster

than the cycle-accurate mode and can be used as a fast, limited

debugging tool for XMTC programs. However, the functional

mode cannot reveal any concurrency bugs that might exist in a

1Package in this context is one of the core classes of the simulator. It should
not be confused with the concept of Java packages.

XMTSim Functional
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Fig. 3. Overview of the simulation mechanism, inputs and outputs.

parallel program since it serializes the execution of the spawn

blocks. Another potential use for the functional simulation

mode is fast-forwarding through time consuming steps (e.g.,

OS boot, when made available in future releases) which would

not be possible in the cycle-accurate mode due to simulation

speed constraints.

B. Simulation Statistics and Runtime Control

As shown in Fig. 3, XMTSim features built-in counters

that keep record of the executed instructions and the activity

of the cycle-accurate components. Users can customize the

instruction statistics reported at the end of the simulation via

external filter plug-ins. For example, one of the default plug-

ins in XMTSim creates a list of most frequently accessed

locations in the XMT shared memory space. This plug-in can

help a programmer find lines of assembly code in an input

file that cause memory bottlenecks, which in turn can be

referred back to the corresponding XMTC lines of code by

the compiler. Furthermore, instruction and activity counters

can be read at regular intervals during the simulation time via

the activity plug-in interface. Activity counters monitor many

state variables. Some examples are the number of instructions

executed in functional units and the amount of time that TCUs

wait for memory operations.

A feature unique to XMTSim is the capability to evaluate

runtime systems for dynamic power and thermal management.

The activity plug-in interface is a powerful mechanism that

renders this feature possible. An activity plug-in can generate

execution profiles of XMTC programs over simulated time,

showing memory and computation intensive phases, power,

etc. Moreover, it can change the frequencies of the clock

domains assigned to clusters, interconnection network, shared

caches and DRAM controllers or even enable and disable

them. The simulator provides an API for modifying the

operation of the cycle-accurate components during runtime in

such a way.

C. Discrete-Event Simulation

Discrete-event (DE) simulation is a technique that is often

used for understanding the behavior of complex systems [35].

In DE simulation, a system is represented as a collection of
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blocks that communicate and change their states via asyn-

chronous events. XMTSim was designed as a DE simulator

for two main reasons. First is its suitability for large object

oriented designs. A DE simulator does not require the global

picture of the system and the programming of the components

can be handled independently. This is a desirable strategy for

XMTSim as explained earlier. Second, DE simulation allows

modeling not only synchronous (clocked) components but

also asynchronous components that require a continuous time

concept as opposed to discretized time steps. This property en-

abled the ongoing asynchronous interconnect modeling work

mentioned in Section III-F.
The building blocks of the DE simulation implementation

in XMTSim are actors, which are objects that can schedule

events. An actor is notified via a callback function when the

time of an event it previously scheduled comes. A cycle-

accurate component in XMTSim might extend the actor type,

contain one or more actor objects or exist as a part of an actor,

which is a decision that depends on factors such as simulation

speed, code clarity and maintainability.
Any activity during simulation takes place due to one of

the two reasons: (a) An actor is notified by the DE scheduler.

The action code of the actor determines what it should do

next. (b) An instruction or data package is passed from one

cycle-accurate component to another, which implements the

Inputable interface of the simulator. Inputable components are

required to define the action that should be performed upon

receiving an input package. In both cases some of the typical

actions are to schedule another event, trigger a state change

or move data between the cycle-accurate components.

DE Scheduler
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Fig. 4. The overview of DE scheduling architecture of the simulator.

Fig. 4 is an example of how actors schedule events and

are notified. DE scheduler is the manager of the simulation

that keeps the events in a list-like data structure, the event list,

ordered according to their schedule times and priorities. In this

example, Actor 1 models a single cycle-accurate component

whereas Actor 2 is a macro-actor, which schedules events and

contains the action code for multiple components.
Communication between components requires a mechanism

that splits each clock cycle into two phases. In the first phase

components negotiate the transfer of packages and in the

second phase packages are passed between components. To

support this mechanism, XMTSim introduces the concepts of

i n t t ime = 0 ;
whi le ( t rue ) {

. . .
i f ( . . . ) break ;
t ime ++;

}

i n t t ime ;
whi le ( t rue ) {

Event e = e v e n t L i s t . n ex t ( ) ;
t ime = e . t ime ( ) ;
e . a c t o r ( ) . n o t i f y ( ) ;
i f ( . . . ) break ;

}

(a) (b)

Fig. 5. Main loop of execution for (a) Discrete-time simulation, (b) Discrete-
event simulation.

ports and event priorities. The event priority scheme ensures

that the order of the phases is consistent among different clock

cycles. Ports are used as points of transfer for packages.

It should be noted that XMTSim diverges from architecture

simulators such as SimpleScalar [30] as it does not work

in discrete-time (DT). The difference is illustrated in Fig. 5.

The DT simulation runs in a loop that polls through all the

modeled components and increments the simulated time at the

end of each iteration. Simulation ends when a certain criteria

is satisfied, for example when a halt assembly instruction

is encountered. On the other hand, the main loop of the

DE simulator handles one actor per iteration by calling its

notify method. Unlike DT simulation, simulated time does

not necessarily progresses at even intervals. Simulation is

terminated when a specific type of event, namely the stop

event is reached. The advantages of the DE simulation were

mentioned at the beginning of this section. However, DT

simulation may still be desirable in some cases due to its

speed advantages and simplicity for simulated structures that

are easier to handle. Only the former is a concern in our case

and we elaborate further on simulation speed issues in the next

section.

D. Simulation Speed

Simulation speed can be the bounding factor especially

in evaluation of power and thermal control mechanisms, as

these experiments usually require simulation of relatively

large benchmarks. We evaluated the speed of simulation in

throughput of simulated instructions and in clock cycles per

second on an Intel Xeon 5160 Quad-Core Server clocked at

3GHz. The simulated configuration was a 1024-TCU XMT

and for measuring the speed, we simulated various hand-

written microbenchmarks. Each benchmark is serial or par-

allel, and computation or memory intensive. The results are

averaged over similar types and given in Table I. It is observed

that average instruction throughput of computation intensive

benchmarks is much higher than that of memory intensive

benchmarks. This is because the cost of simulating a memory

instruction involves the expensive interconnection network

model. Execution profiling of XMTSim reveals that for real-

life XMTC programs, up to 60% of the time can be spent

in simulating the interconnection network. When it comes to

the simulated clock cycle throughput, the difference between

the memory and computation intensive benchmarks is not as

significant, since memory instructions incur significantly more
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Benchmark Group Instruction/sec Cycle/sec

Parallel, memory intensive 98K 5.5K
Parallel, computation intensive 2.23M 10K
Serial, memory intensive 76K 519K
Serial, computation intensive 1.7M 4.2M

TABLE I
SIMULATED THROUGHPUTS OF XMTSIM.

clock cycles than computation instructions, boosting the cycle

throughput.

As mentioned earlier, DT simulation may be considerably

faster than DE simulation, most notably when a lot of actions

fall in the same exact moment in simulated time. A DT

simulator polls through all the actions in one sweep, whereas

XMTSim would have to schedule and return a separate event

for each one (see Fig. 5), which is a costly operation. A way

around this problem is grouping closely related components

in one large actor and letting the actor handle and combine

events from these components. An example is the macro-

actor in Fig. 4 (and the implementation of the interconnection

network in XMTSim). A macro-actor contains the code for

many components and iterates through them at every simulated

clock cycle. The action code of the macro-actor resembles

the DT simulation code in Fig. 5a except the while loop is

replaced by a notify function called by the scheduler. This style

is advantageous when the average number of events that would

be scheduled per cycle without grouping the components (i.e.,

each component is an actor) passes a threshold. For a simple

experiment conducted with components that contain no action

code this threshold was 800 events per cycle. In more realistic

cases, the threshold would also depend on the amount of action

code.

E. Other Features

In this section we will summarize some of the additional

features of XMTSim.

Execution traces. XMTSim generates execution traces

at various detail levels. At the functional level, only the

results of executed assembly instructions are displayed. The

more detailed cycle-accurate level reports the cycle-accurate

components through which the instruction and data packages

travel. Traces can be limited to specific instructions in the

assembly input and/or to specific TCUs.

Floorplan visualization. The amount of simulation output

can be overwhelming, especially for a configuration that

contains many TCUs. In order to alleviate the complexity of

interpreting data, XMTSim can be paired with the floorplan

visualization package that is a part of the XMT software

release. The visualization package allows displaying data for

each cluster or cache module on an XMT floorplan, in colors

or text. It can be used as a part of an activity plug-in to animate

statistics obtained during a simulation run.

Checkpoints. XMTSim supports simulation checkpoints,

i.e., the state of the simulation can be saved at a point that is

given by the user ahead of time or determined by a command

line interrupt during execution. Simulation can be resumed

at a later time. This is a feature which, among other practical

uses, can facilitate dynamically load balancing a batch of long

simulations running on multiple computers.

F. Features under Development

XMTSim is under active development and following is a

list of features that are either currently being tested or are a

part of our future road map.

Improved power/temperature estimation and manage-
ment. The temperature estimation feature of XMTSim made

possible a recently submitted companion publication that fo-

cuses on establishing the thermal feasibility of a 1024-TCU

XMT chip [22]. The power output is computed as a function

of the activity counters and passed on to HotSpot [36], an

accurate and fast thermal model, for temperature estimation.

HotSpot is written in C programming language and incor-

porated to the simulation flow via the Java Native Interface

(JNI) [37]. The future work on this track includes refining the

power model of the simulator as well as incorporating efficient

thermal and power management algorithms.

Phase sampling. Programs with very long execution times

usually consist of multiple phases where each phase is a set of

intervals that have similar behavior [38]. An extension to the

XMT system can be tested by running the cycle-accurate sim-

ulation for a few intervals on each phase and fast-forwarding

in-between. Fast-forwarding can be done by switching to a

fast mode that will estimate the state of the simulator if it

were run in the cycle-accurate mode. Incorporating features

that will enable phase sampling will allow simulation of large

programs and improve the capabilities of the simulator as a

design space exploration tool.

Asynchronous interconnect. Use of asynchronous logic in

the interconnection network design might be preferable for its

advantages in power consumption. Following up on [39], work

in progress with our Columbia University partner compares

the synchronous versus asynchronous implementations of the

interconnection network modeled in XMTSim.

Increasing simulation speed via parallelism. The simula-

tion speed of XMTSim can be improved by parallelizing the

scheduling and processing of discrete-events [40]. It would

also be intriguing to run XMTSim as well as the computation

hungry simulation of the interconnection network component

on XMT itself. We are exploring both.

IV. THE XMTC COMPILER.

Our compiler translates XMTC code to an optimized XMT

executable. The compiler consists of three consecutive passes:

the pre-pass performs source-to-source (XMTC-to-XMTC)

transformations and is based on CIL [41], the core-pass

performs the bulk of the compilation and is based on GCC

v4.0, and the post-pass, built using SableCC [34] takes the

assembly produced by the core-pass, verifies that it complies

with XMT semantics and links it with external data inputs.

More details than presented hereafter can be found in [42].
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A. The XMTC Memory Model

The memory consistency model for a parallel computing

environment is a contract between the programmer and the

platform, specifying how memory actions (reads and writes)

in a program appear to execute to the programmer, and

specifically which value each a read of a memory location

may return [43].

Consider the example in Fig. 6. If memory store operations

are non-blocking, meaning they do not wait for a confirmation

that the operation completed, it is possible for Thread B

to read {x=0 and y=1}. At first this relaxed consistency is

counterintuitive. However, because it allows for much better

performance, in this example by allowing multiple pending

write operations, it is usually favored over more intuitive but

also more restrictive models [43], [44].

Initially: x=0, y=0

Thread A:

x := 1

y := 1

Thread B:

Read y

Read x

Possible results read by Thread B: (x, y) ∈ {(0, 0), (1, 0), (1, 1), (1, 0)}

Fig. 6. Two threads with no order-enforcing operations or guarantees.

The XMT memory model is a relaxed model that allows

the same results for Thread B as in the previous example. It

relaxes the order of memory operations and only preserves

relative ordering with respect to prefix-sum operations (ps

and psm), and to the beginning and end of spawn statements.

This makes prefix-sum operations important for synchronizing

between virtual threads, as will be shown in Fig.7. The XMT

memory model gives the programmer two rules about the

ordering of (read and write) memory operations.

First, within one virtual thread it guarantees serial execution,

which means that a read to a location will return the last

value written to that location by the current virtual thread,

provided it was not overwritten by a different virtual thread.

Intuitively, read or write operations from the same source

(TCU) to the same destination (memory address) cannot be

reordered, neither by the hardware, nor by the compiler.

Second, for each pair of virtual threads, it guarantees a

partial ordering of memory operations relative to prefix-sum

operations over the same base. This rule is a bit more involved

so we explain it through the example in Fig. 7. This example

shows how to code the example of Fig. 6 if we want the

invariant if y=1 then x=1 to hold at the end of Thread B (i.e.,

disallow (x, y) = (0, 1)). Both threads synchronize (in a loose

sense) over variable y using a psm operation; thread A writes

(increments) y, while Thread B reads it. At run-time one of

the two threads executes its psm instruction first; the second

rule of the XMT memory model guarantees that all memory

operations issued before the psm of the thread to execute its

psm first will complete before any memory operation after the

psm of the second thread is issued. In our example, assume

that Thread A completes it’s prefix-sum first. That means that

the operation x=1 completed before Thread B reads X, which

enforces the desired invariant if y=1 then x=1 for Thread B.

Initially: x=0, y=0

Thread A:

x = 1 ;
tmpA = 1 ;
psm ( tmpA , y ) ; / / y++

Thread B:

tmpB = 0 ;
psm ( tmpB , y ) ; / / Read y

. . = x / / Read x

Possible results read by Thread B: (x, y) ∈ {(0, 0), (1, 0), (1, 1)}

Fig. 7. Enforcing partial order in the XMT memory model.

The implementation of these two rules by the hardware and

compiler is straightforward. For the first rule, the static hard-

ware routing of messages from TCUs to memory guarantees

that the order of operations issued from the same source to the

same destination will be preserved. The compiler enforces the

second rule by (a) issuing a memory fence operation before

each prefix-sum operation to wait until all pending writes

complete, and by (b) not moving memory operations across

prefix-sum instructions. The current implementation does not

take into account the base of prefix-sum operations and may

be overly conservative in some cases. Using static analysis to

reduce the number of memory fences and to selectively allow

motion of memory operations across prefix-sums is the subject

of future research.

Note that in Fig. 7 both psm operations are needed. If, for

example, Thread B used a simple read operation for y instead

of a prefix-sum, prefetching could cause variable x to be read

before y and the invariant if y=1 then x=1 would not hold.

An implication of the XMT memory model is that register

allocation for parallel code is performed as if the code were se-

rial. The programmer, however, must still declare the variables

that may be modified by other virtual threads as volatile.

These variables will not be register allocated, as in the case

of with multi-threaded C code. This is rarely needed in user

code, but it is useful in library and system code.

B. Compiling Explicitly Parallel Code with a Serial Compiler

Although we have extended the core-pass (GCC) to parse

the additional XMTC parallel constructs, it inherently remains

a serial C compiler. Changing the internal GCC data structures

to express parallelism would have required great effort and

all the optimization passes would have had to be updated to

account for these new constructs. Such a task was beyond our

limited resources and is unnecessary. Instead, a spawn state-

ment is parsed as if there was a spawn assembly instruction at

the beginning of the code block of the statement (spawn-block)

and a join at the end of it, as seen in Fig. 8b. Therefore,

to GCC, a spawn statement appears as a sequential block of

code. This opens the door for illegal dataflow because (a) it

hides the fact that the spawn block might be executed multiple

times, (b) it hides the concurrency of these multiple executions,

and (c) it hides the transfer of control from the Master TCU

to the parallel TCUs where the spawn-block is executed.

A case of an invalid code transformation caused by illegal

dataflow is code-motion across spawn-block boundaries. For

example, in Fig. 8a, the compiler might move the conditional
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increment statement if(found) counter+=1 inside the

spawn-block. The counter could then be incremented multiple

times instead of only once, which is illegal.

To prevent illegal dataflow, we implemented outlining (also

known as method extraction) in the CIL pre-pass, an operation

akin to the reverse of function inlining. Fig. 8c shows the

outlined version of the code in Fig. 8a. Outlining places each

spawn statement in a new function and replaces it by a call to

this new function. According to XMTC semantics, the spawn

statement should have access to the variables in the scope of

the enclosing serial section. We detect which of these variables

are accessed in the parallel code and whether they might be

written to. Then, we pass them as arguments to the outlined

function by value or by reference. In Fig. 8c, because the

variable found is updated in the spawn block, it is passed by

reference to the outlined function.

Outlining prevents illegal dataflow without requiring all

optimizations to be turned off. This solution works since

GCC, like many compilers, does not perform inter-procedural

optimizations. Compilers that perform inter-procedural opti-

mizations often provide a no-inline flag that has the same effect

of preventing inter-procedural code motion.

(a) Original Code (c) After Outlining

i n t A[N] ;
bool found = f a l s e ;
spawn ( 0 ,N−1) {

i f (A[ $ ] ! = 0 )
found = t rue ;

}
i f ( found ) c o u n t e r +=1;

(b) What the compiler sees

i n t A[N] ;
bool found = f a l s e ;
asm ( spawn 0 , N−1);
i f (A[ $ ] ! = 0 )

found = t rue ;
asm ( j o i n ) ;
i f ( found ) c o u n t e r +=1;

i n t A[N] ;
bool found = f a l s e ;
o u t l s p 1 (A, &found ) ;
i f ( found ) c o u n t e r +=1;
. . . . . . . . . . . . . . . . . . . .

vo id
ou t l s p 1 ( i n t (∗A) ,

bool ∗ found ) {
spawn ( 0 ,N−1) {

i f (A[ $ ] ! = 0 )
(∗ found ) = t rue ;

}
}

Fig. 8. Simple example of outlining. All the elements of array A are read
in parallel and if an element is non-zero found is set to true. After the
parallel section, counter is incremented if a non-zero element was found.

We now present an other example of illegal dataflow, but

this time without code motion. It happens because GCC is

unaware of the transfer of control from the serial processor

(Master TCU) to the parallel TCUs that a spawn statement

entails. GCC optimizations incorrectly assume that a value

can be loaded to a register before the spawn statement (within

the outlined function) and accessed within the spawn-block.

This is false because the value is loaded to a register of the

Master TCU but the spawn-block code can only access the

TCU registers. There are two ways to fix this problem: (a)

move the load instruction back into the spawn-block, but load

the value for each virtual thread, or (b) broadcast (an XMT

specific operation) all live Master TCU registers to the parallel

TCUs at the onset of a virtual thread. We chose the second

approach because it conserves memory bandwidth.

(a) Wrong layout by GCC (b) Corrected layout

ou t l i n ed spawn 1 :
spawn

BB1 :
. . .
bneq $r , $0 , BB2
j o i n
j r $31 # return

BB2 :
. . .
j BB1

ou t l i n ed spawn 1 :
spawn

BB1 :
. . .
bneq $r , $0 , BB2
j BBjoin

BB2 :
. . .
j BB1

BBjoin :
j o i n
j r $31 # return

Fig. 9. Example of assembly basic-block layout issue. (a) Basic Block
BB2 belongs logically to the spawn-join section but is placed after the return
instruction (jr $31). (b) BB2 is pulled back into the spawn-join by inserting
it before the join instruction and adding a jump to the join at the end of
the preceding basic block.

Finally, XMT places a restriction on the layout of the

assembly code of spawn blocks, because it needs to broadcast

it to the TCUs: all spawn-block code must be placed between

the spawn and join assembly instructions. Interestingly, in

its effort to optimize the assembly, GCC might decide to place

a basic-block (a short sequence of assembly instructions) that

logically belongs to a spawn-block, after it. In the example in

Fig. 9 basic-block 2 (BB2) is placed after the return statement

of the outlined spawn function to save one jump instruction

(Fig. 9a). The code is semantically correct but it will lead

to incorrect execution because BB2 will not be broadcast by

the XMT hardware and TCUs currently don’t have access

to instructions that were not broadcast. We wrote a pass in

SableCC to check for this situation and fix it by relocating

such misplaced basic-blocks between the spawn and join

instructions, as shown in Fig. 9b. Note that the inclusion of

instruction caches at the cluster or TCU level that would future

versions of XMT will allow TCUs to fetch instructions that

are not in their instruction buffer by implementing instruction

caches at the cluster or TCU level.

Why illegal dataflow is not an issue for thread libraries.
There are several libraries that are used to introduce paral-

lelism to serial languages (e.g., Pthreads). Code written using

such library calls are compiled using a serial compiler so one

might wonder why illegal dataflow is not an issue in that

scenario. In Pthreads the programmer creates an additional

thread using the pthread create call which takes a function to

execute in the new thread as an argument. In other words, the

programmer is forced to do the outlining manually. Moreover,

thread libraries do not introduce new control structures in

the base language (such as XMTC’s spawn statement), so

the compiler does not need to be updated. That said, serial

compilers can still perform illegal optimizations on Pthreads

code [45], but this is rare enough that Pthreads can still be used

in practice. However, the main disadvantage to using a thread

library is the added complexity for the programmer: creating

parallelism through a library API is arguably harder and less

intuitive than directly creating it through parallel constructs

incorporated in the programming language.
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C. XMT Specific Optimizations

Some of the design decisions of XMT create new oppor-

tunities for compiler optimizations that were not possible or

not needed for other architectures. Novel parallel architectures

may adopt similar designs, making these optimizations rele-

vant to them. This section presents some of them.

Latency tolerating mechanisms. The XMT memory hier-

archy is designed to allow for scalability and performance. To

avoid costly cache coherence mechanisms (in terms of chip

resources as well as performance overheads), the first level of

cache is shared by all the TCUs, with an access latency in the

order of 30 clock cycles for a 1024 TCU XMT configuration.

Several mechanisms are included in the XMT architecture to

overlap shared memory requests with computation or avoid

them: non-blocking stores, TCU-level prefetch buffers and

cluster-level read-only caches.

Currently the XMT compiler includes support for automati-

cally replacing eligible writes with non-blocking stores and

inserting prefetching instructions to fetch data in the TCU

prefetch buffers. Support for automatically taking advantage

of the read-only caches is planned for future revisions of the

compiler. In the meantime, programmers can explicitly load

data into the read-only caches if needed.

The XMT compiler prefetching mechanism was designed

to match the characteristics of a lightweight, highly parallel

many-core architecture. It has been shown to out-perform

state-of-the-art prefetching algorithms such as the one included

in the GCC compiler suite, as well as hardware prefetching

schemes [8]. The prefetching algorithm is potentially applica-

ble to other many-core platforms.

Virtual Thread clustering. The XMT programming meth-

odology encourages the programmer to express any paral-

lelism, regardless of how fine-grained it may be. The low

overheads involved in scheduling virtual threads to cores

allow this fine-grained parallelism to be competitive. However,

despite the efficient implementation, extremely fine-grained

programs can benefit from coarsening (i.e., grouping virtual

threads into longer virtual threads), consequently reducing the

overall scheduling overhead. Furthermore, thread coarsening

may allow to exploit spatial locality through prefetching

and reduce duplicate work: combining multiple short virtual

threads in a loop usually enables the application of loop

prefetching as well as the re-use of computed values between

iterations of the loop. The clustering mechanism is described

and evaluated in [10] and is currently implemented as an

optional optimization pass in the XMT compiler.

D. The XMTC Runtime

In the current release of the XMT toolchain, the XMTC

runtime (allocation of work and stack to TCUs and dynamic

memory allocation) relies mainly on hardware support. In

future versions (see next section), the compiler will play the

central role in the runtime due to the planned inclusion of

parallel stack allocation and support for scheduling of nested

spawn statements.

Because parallel stack allocation is not yet publicly sup-

ported, virtual threads can only use registers or global memory

for intermediate results. For that reason, the compiler checks

if the available registers suffice and produces a register spill

error otherwise.

The other responsibility of the compiler is to insert code

to orchestrate the execution of virtual threads. It inserts a

ps instruction to allow TCUs to concurrently get the ID of

the next available virtual thread and a chkid instruction to

validate it. If the ID is valid (∈ [low, high]), the TCU starts

executing the virtual thread, but if not, the chkid blocks the

TCU. If all TCUs are blocked at a chkid, then all virtual

threads have completed and the hardware returns control to

the Master TCU which resumes the serial execution. The

combination of code broadcasting, virtual thread allocation

with ps operations and the barrier-like function of chkid

allow fine-grained load-balancing and lightweight initialization

and termination of parallel sections. These enable XMT to

benefit from very small amounts of parallelism [24], while

allowing easy programming.

Dynamic memory allocation is currently supported only in

serial code as a library call, but the allocated memory can

be accessed and modified in parallel code as well. Parallel

dynamic memory allocation is an interesting research topic

which will be the focus of future work.

E. Features under Development

Some advanced features such as support for a parallel

cactus-stack, which allows function calls in parallel code, and

support for nested spawn statements (other than serializing

inner spawns), are still being debugged and will be included

in a future release, but they have already been used in [27],

[28]. Implementing support for these features culminated in

a scheduling algorithm, Lazy Binary Splitting (LBS) [46],

that improves on existing work-stealing load-balancing tech-

niques. LBS helps improve the ease-of-programming because

it greatly reduces the need to manually coarsen parallelism by

adapting parallelism granularity automatically at runtime. At

the same time LBS outperforms existing approaches thanks to

its runtime adaptability.

V. CONCLUSION

In this paper, we outlined the concept and the design of the

current optimizing compiler and the cycle-accurate simulator

of the XMT general-purpose many-core computing platform.

These publicly available tools have been vital in exploring

the design space for the XMT computer architecture, as

well as establishing the ease-of-programming and competitive

performance claims of the XMT project. This presentation is

timely as the stability and usability of the tools have been

adequately demonstrated numerous times via publications and

teaching. Furthermore, the capabilities of our toolchain extend

beyond the scope of the XMT vision. It can be used to explore

a much greater design space of shared memory many-cores by

a range of researchers such as algorithm developers and system

architects.
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[11] J. JáJá, An introduction to parallel algorithms. Redwood City, CA,

USA: Addison Wesley Longman Publishing Co., Inc., 1992.
[12] J. Keller, C. Kessler, and J. L. Traeff, Practical PRAM Programming.

New York, NY, USA: John Wiley & Sons, Inc., 2000.
[13] X. Wen and U. Vishkin, “PRAM-on-chip: first commitment to silicon,”

in Proc. ACM Symposium on Parallelism in Algorithms and Architec-

tures, 2007.
[14] X. Wen and U. Vishkin, “FPGA-based prototype of a PRAM on-chip

processor,” in Proc. ACM Computing Frontiers, 2008.
[15] A. O. Balkan, G. Qu, and U. Vishkin, “A mesh-of-trees interconnection

network for single-chip parallel processing,” in Proc. IEEE Intl. Conf.

on Application-specific Systems, Architectures and Processors, 2006.
[16] A. O. Balkan, M. N. Horak, G. Qu, and U. Vishkin, “Layout-accurate

design and implementation of a high-throughput interconnection network
for single-chip parallel processing,” in Proc. of Hot Interconnects, 2007.

[17] U. Vishkin, G. C. Caragea, and B. C. Lee, Handbook of Parallel

Computing: Models, Algorithms and Applications. CRC Press, 2007,
ch. Models for Advancing PRAM and Other Algorithms into Parallel
Programs for a PRAM-On-Chip Platform.

[18] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU ultracomputer: designing a MIMD, shared-
memory parallel machine (extended abstract),” in Proc. Intl. Symposium

on Computer Architecture, 1982.
[19] G. C. Caragea, A. Tzannes, A. O. Balkan, and U. Vishkin, “XMT

Toolchain Manual for XMTC Language, XMTC Compiler, XMT Sim-
ulator and Paraleap XMT FPGA Computer,” 2010. [Online]. Available:
http://sourceforge.net/projects/xmtc/files/xmtc-documentation/

[20] G. C. Caragea, B. Saybasili, X. Wen, and U. Vishkin, “Performance
potential of an easy-to-program pram-on-chip prototype versus state-
of-the-art processor,” in Proc. ACM Symposium on Parallelism in

Algorithms and Architectures, 2009.

[21] G. Caragea, F. Keceli, A. Tzannes, and U. Vishkin, “General-purpose
vs. GPU: Comparison of many-cores on irregular workloads,” in Proc.

USENIX Workshop on Hot Topics in Parallelsim, 2010.
[22] F. Keceli, T. Moreshet, and U. Vishkin, “Power-performance comparison

of single-task driven many-cores,” submitted for publication.
[23] T. M. DuBois, B. Lee, Y. Wang, M. Olano, and U. Vishkin, “XMT-GPU:

A PRAM architecture for graphics computation,” in Proc. Intl. Conf. on

Parallel Processing, 2008.
[24] A. B. Saybasili, A. Tzannes, B. R. Brooks, and U. Vishkin, “Highly

parallel multi-dimentional fast fourier transform on fine- and coarse-
grained many-core approaches,” in Proc. IASTED Intl. Conf. on Parallel

and Distributed Computing and Systems, 2009.
[25] G. Cong and D. Bader, “An Experimental Study of Parallel Biconnected

Components Algorithms on Symmetric Multiprocessors (SMPs),” in
Proc. IEEE Intl. Parallel and Distr. Processing Symposium, 2005.

[26] Z. He and B. Hong, “Dynamically Tuned Push-Relabel Algorithm for
the Maximum Flow Problem on CPU-GPU-Hybrid Platforms,” in Proc.

IEEE Intl. Parallel and Distr. Processing Symposium, 2010.
[27] J. Edwards and U. Vishkin, “An Evaluation of Biconnectivity Algorithms

on Many-Core Processors,” 2011, submitted for publication.
[28] G. C. Caragea and U. Vishkin, “Better Speedups for Parallel Max-Flow,”

2011, submitted for publication.
[29] F. Keceli and U. Vishkin, “XMTSim: Cycle-accurate Simulator of the

XMT Many-Core Architecture,” University of Maryland Institute for
Advanced Computer Studies, Tech. Rep. UMIACS-TR-2011-02, 2011.

[30] T. Austin, E. Larson, and D. Erns, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[31] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, pp. 50–58, 2002.

[32] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator.” in Proc.

IEEE Intl. Symposium on Performance Analysis of Systems and Software,
2009.

[33] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Moeng,
“TPTS: A novel framework for very fast manycore processor architec-
ture simulation,” in Proc. Intl. Conf. on Parallel Processing, 2008.

[34] E. M. Gagnon and L. J. Hendren, “Sablecc, an object-oriented compiler
framework,” in Proc. Technology of Object-Oriented Languages, 1998.

[35] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event
System Simulation, 4th ed. Upper Saddle River, NJ, USA: Prentice
Hall, 2004.

[36] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. Intl.

Symposium on Computer Architecture, 2003.
[37] S. Liang, Java Native Interface: Programmer’s Guide and Reference.

Addison-Wesley Longman Publishing, 1999.
[38] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0:

Faster and more flexible program analysis,” Journal of Instruction Level

Parallelism, 2005.
[39] M. N. Horak, S. M. Nowick, M. Carlberg, and U. Vishkin, “A low-

overhead asynchronous interconnection network for GALS chip multi-
processors,” in Proc. ACM/IEEE Intl. Symposium on Networks-on-Chip,
2010.

[40] R. M. Fujimoto, “Parallel discrete event simulation,” Communications

of the ACM, vol. 33, pp. 30–53, 1990.
[41] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Inter-

mediate Language and Tools for Analysis and Transformation of C
Programs,” in Proc. Intl. Conf. on Compiler Construction, 2002.

[42] A. Tzannes, G. C. Caragea, U. Vishkin, and R. Barua, “The compiler
for the XMTC parallel language: Lessons for compiler developers and
in-depth description,” University of Maryland Institute for Advanced
Computer Studies, Tech. Rep. UMIACS-TR-2011-01, 2011.

[43] J. Manson, W. Pugh, and S. V. Adve, “The Java memory model,” in Proc.
ACM Symposium on Principles of Programming Languages, 2005.

[44] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[45] H.-J. Boehm, “Threads cannot be implemented as a library,” in Proc.

Conf. on Programming Language Design and Implementation, 2005.
[46] A. Tzannes, G. C. Caragea, R. Barua, and U. Vishkin, “Lazy binary-

splitting: a run-time adaptive work-stealing scheduler,” in Proc. Sympo-

sium on Principles and Practice of Parallel Programming, 2010.

10


