This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 1

Affine Parallelization using Dependence and
Cache analysis in a Binary Rewriter

Aparna Kotha, Student Member, IEEE, Kapil Anand, Student Member, IEEE, Timothy Creech,
Khaled EIWazeer, Matthew Smithson, Greeshma Yellareddy, and Rajeev Barua, Member, IEEE,

Abstract—Today, nearly all general-purpose computers are parallel, but nearly all software running on them is serial. Bridging
this disconnect by manually rewriting source code in parallel is prohibitively expensive. Hence, automatic parallelization is an
attractive alternative.

We present a method to perform automatic parallelization in a binary rewriter. The input to the binary rewriter is the serial
binary executable program and the output is a parallel binary executable. The advantages of parallelization in a binary rewriter
versus a compiler include: (i) applicability to legacy binaries whose source is not available; (ii) applicability to library code that is
often distributed only as binary; (iii) usability by end-user of the software; and (iv) applicability to assembly-language programs.

Adapting existing parallelizing compiler methods that work on source code to binaries is a significant challenge. This is
primarily because symbolic and array index information used by existing parallelizing compilers to take parallelizing decisions is
not available from a binary. We show how to adapt existing parallelization methods to binaries without using symbolic and array

index information to achieve equivalent source parallelization from binaries.

Results using our x86 binary rewriter called SecondWrite are presented in detail for the dense-matrix and regular Polybench
benchmark suite. For these, the average speedup from our method for binaries is 27.95X vs 28.22X from source on 24 threads,
compared to the input serial binary. Super-linear speedups are possible due to cache optimizations.

In addition our results show that our method is robust and has correctly parallelized much larger binaries from the SPEC
2006 and OMP 2001 benchmark suites, totaling over 2 million source lines of code (SLOC). Good speedups result on the subset
of those benchmarks that have affine parallelism in them; this subset exceeds 100,000 SLOC. This robustness is unusual even
for the latest leading source parallelizers, many of which are famously fragile.

1 INTRODUCTION

Since 2004 semiconductor trends show that the as-
tonishing improvements in clock speeds have come
to an end. However, improvements in silicon area
per Moore’s law, are still being realized. As a natural
consequence, microprocessor vendors such as Intel
and AMD have turned to multi-core processors to
remain competitive. To fully utilize these multi-core
processors, we must run parallel software on them.
One way to obtain parallel software is to manually
rewrite serial code to parallel. This can be done either
by using parallel language directives such as OpenMP
to implicitly specify parallelism using comments in
high-level language programs. The other way to man-

o A. Kotha, K. Anand and K. ElWazeer have graduated with a PhD
from the Department of ECE, University of Maryland, College Park,
MD, 20742. Email:{akotha kapil khaled }@umd.edu

o T. Creech and M. Smithson are PhD students with the Department
of ECE, University of Maryland, College Park, MD, 20742.
Email:{tcreech,msmithso } @umd.edu

o G. Yellareddy has graduated with a masters from the Department of
ECE, University of Maryland, College Park, presently working with
Intel Corporation. Email:greeshma@intel.com

e R. Barua is an Associate Professor with the Department of
ECE, University of Maryland, College Park, MD, 20742. E-
mail:barua@umd.edu

ually obtain parallel software is to write programs in
an explicitly parallel manner. This is done using a set
of APIs, such as MPI, POSIX compliant pthreads or
Intel’'s TBB, to extend existing languages such as C,
C++ and Fortran. Although the use of such explicitly
parallel programming is increasing, the adoption of
manual parallel programming has been slowed by
the following factors: (i) huge amounts of serial code
represent most of the world’s programs; (ii) rewriting
code manually in parallel is time consuming and
expensive; and (iii) a dearth of engineers trained in
parallel programming and algorithms. For this reason,
except for the most performance-critical code, it is not
likely that most of the world’s existing serial code will
ever be rewritten in parallel.

The other way to obtain parallel software is to
automatically parallelize serial source in a paralleliz-
ing compiler. This overcomes the above-mentioned
drawbacks of manually rewriting parallel code. In-
deed, since the introduction of parallel machines in
the early 1970s, many strides have been made in
parallelizing compiler technology. Most efforts to date
have focused on parallelism in loops, primarily in
regular, dense-matrix codes. In particular, techniques
have been developed for parallelizing loops with ar-
ray accesses whose indices are affine (linear) functions
of enclosing loop induction variables [1]. This work is
particularly interesting since most scientific and multi-
media codes are affine and the maximum run time is

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 2

spent in these loops. Hence parallelizing these loops
can result in significant speedups.

In this paper we propose methods to implement
automatic parallelization inside a binary rewriter, in-
stead of a compiler. A binary rewriter is a software
tool that takes a binary executable program as input,
and generates a transformed executable as output. In
our case, the input code will be serial, and the output
will be parallel code.

Parallelization in a binary rewriter has several ad-
vantages over a compiler: (i) Applies to third-party
and legacy code for which no source is available,
either because the developer is out of business or the
code is lost; (ii) Works for binaries that contain hand-
coded assembly-language code; (iii) Works for library
code for which no source is available; and (iv) Can
be used by an end-user to tune a generic distributed
input binary to an output binary customized for the
particular platform he/she is executing it on. Platform
parameters that can be used include total cache size
and cache line size.

The above advantages argue that it is useful to have
automatic parallelization in a binary rewriter, despite
compiler implementation being possible.

Parallelization of affine loops is more effective when
cache effects are considered in parallelization deci-
sions along with memory and scalar dependencies.
Early work in automatic parallelization explored cal-
culating dependencies in affine loops in the form of
dependence or distance vectors [2] [3] [4] [5]. These
vectors were then used to decide the most profitable
loop nests to be parallelized. However, researchers
soon realized that studying dependencies alone was
not sufficient to obtain maximum performance from
affine loops. Applying loop transformations such as
loop interchange, loop fusion, loop fission, etc. in-
creased performance tremendously [6] [7] [1] [8]. This
increase in performance can be explained by noting
that interchanging loop dimensions (for example) in
a loop nest changes the access patterns of the arrays
— this can change both the granularity of parallelism
and the cache locality of the loop. Different inter-
changed orders of loop dimensions generally have
very different run-times and hence it is important to
choose the correct ordering of loops. Further, fusing
different loop nests may increase the reuse across
memory accesses and decrease the run-time of the
loop. Hence, it is important to study the cache behav-
ior in affine loops and take decisions about the loop
transformations that need to be applied to a particular
loop nest.

In our studies, we have found that applying loop
transformations on affine kernels can lead to a 3X
improvement in the serial run-time because of cache
optimizations alone. Benefits are even greater when
parallelization is done as well. This improvement in
serial and parallel run-time is because cache reuse
is maximized in the transformed loop. Hence, it is

important to study cache effects on affine loops in any
automatic parallelizer.

In this paper we propose a method to implement a
cache reuse model in a binary rewriter building on the
work to calculate dependence vectors to parallelize
affine loops from binaries [9]. We also present solu-
tions to many of the practical considerations that arise
in implementing parallelization and cache analysis in
a real binary rewriting framework.

Our approach to automatic parallelization and
cache optimizations of affine loops from binaries is
not to invent entirely new parallelization methods,
but to adapt ideas from existing compiler methods
to a binary rewriter. This adaption is not trivial, since
binary rewriters pose challenges not present in a com-
piler, including primarily, the lack of high-level in-
formation in binaries. Parallelizing compilers rely on
high-level information such as symbolic information,
for identifying arrays, affine function indices, and
induction variables; for renaming to eliminate anti
and output dependencies; and for pointer analysis to
prove that memory references cannot alias, allowing
their parallel execution. Binaries lack symbolic infor-
mation, making all these tasks more difficult. A central
contribution of this paper are parallelization methods in a
binary rewriter that can work effectively without using any
symbolic or array index information.

Of course, we recognize that parallelizing affine
programs is only one step towards the goal of paral-
lelizing all programs, albeit an important one. Many
programs have non-affine parallelism, and others
have little or no parallelism. This work should be seen
as what it is: a first successful attempt to parallelize
binaries using affine analysis, rather than the last
word. We hope to open up a new field of research
with this significant step.

2 RELATED WORK

This section lists related work in the following sub-
sections.

2.1 Static binary auto-parallelization

Kotha et.al [9] and Pradelle et.al [10] are the only
methods we are aware of that have done affine au-
tomatic parallelism from binaries. This journal paper
is an extended version of our work presented in Kotha
et.al. [9] that statically parallelizes binaries by using
dependence information determined from binaries. A
list of enhancements compared to [9] is submitted
separately along with this paper. (Note to reviewers:
We will replace this with a summary of differences in
the final version.)

[10] automatically parallelizes binaries by feeding
the binary intermediate form of loops only to the
polyhedral compiler. First, our work in [9] preceded it.
Further, our methodologies are better than [10] in the
following ways: (i) [10] does not raise the entire binary

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Barua
Sticky Note
Marked set by Barua

Barua
Sticky Note
Marked set by Barua

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 3

to an intermediate form like we do, greatly limiting
the scope of parallelized loops. Our experimentation
has showed that for recognizing induction variables
that have been spilled to memory, advanced value
set analysis like we have implemented in our binary
rewriter and described in [11] is essential. This anal-
ysis needs to be applied to the entire binary and not
just selective parts of it. Hence, though [10] works on
small kernels, its scope of scaling to larger programs
is limited; (ii) [10] relies on heuristics to be applied
to the intermediate form to make it acceptable to
the polyhedral compiler in terms of what it expects
affine code to look like, whereas our method is built
upon compiler theory. A heuristic based method that
looks for code patterns is not universal and could
be limited to one compiler or one optimization level.
They do not provide any proof that their methods
are universal. Our methods are based on compiler
theory; hence we can parallelize binaries from dif-
ferent compilers and optimization levels; (iii) [10]’s
results are limited to small kernels, whereas our re-
sults show that our methods scale well to benchmarks
from SPEC2006 and OMP2001 that are 2-3 orders of
magnitude larger; (iv) [10] generates parallel code that
contains breakpoints before and after parallel code in
order to redirect control flow to parallel code and back
via context switches that is very expensive. In our
binary rewriter no context switches are required; and
(v) [10] does not incorporate any methods to undo
compiler optimizations like we do (presented in the
supplementary material), without which the scope of
parallelization from any binary affine parallelizer is
limited.

2.2 Dynamic binary auto-parallelization

Dynamic automatic parallelization techniques present
in literature are Yardimci et.al [12], Wang et.al [13]
and Yang et.al [14]. All the three methods suffer huge
run-time overheads from dynamic analysis. Further,
they do not optimize affine loops whereas our method
does.

2.3 Affine based source auto-parallelizers

A large volume of research on automatic affine par-
allelization methods from source code exists; too
many to list in full. A small sampling of the devel-
oped compilers include Polaris [15], SUIF [8], [7], [6],
and pHPF [16], PROMIS [17], Parafrase-2 [18] and
PLUTO [19]. All these automatic parallelizing compil-
ers parallelize code from source, unlike our method.
Our method builds on these existing methods, but has
significant differences allowing it to work on binaries.

2.4 Distance and Direction Vector Calculation

Affine parallelism has required solving systems of
linear diophantine equations [3] to calculate distance

vectors. Various techniques have been proposed in
literature to solve these equations. These include the
Greatest Common Divisor (GCD) test [4], [2], Baner-
jee’s inequalities [2], Single Index and Multiple Index
Tests [3], [5], Multidimensional GCD [2], the delta
test [20] and the omega test [21]. We adopt these tests
proposed for source code to our binary automatic
parallelizer. We have presently implemented the GCD,
Single and Multiple Index tests to solve the linear
diophantine equations that we recover directly from
binaries.

2.5 Cache optimizations using binary rewriting

There has been some prior work in studying cache
behavior from binaries and applying optimizations
to decrease their runtime. Nethercote et.al [22] does
dynamic binary instrumentation and uses hardware
counters to measure the miss rate of caches. Using
this cache miss rate information, they insert memory
prefetch instructions into binaries to improve its cache
performance. Weidendorfer et.al [23] builds on [22]
and uses the dynamic cache profile information to
perform optimizations such as array padding and
blocking. Our method is different from these methods
in two ways: (i) our method uses affine analysis to
analyze and transform binaries whereas [22] [23] do
not; and (ii) the methods in [22] [23] are dynamic
and incur run-time overhead from instrumentation,
analysis and transformation, whereas our method,
which is static, has no such overheads.

2.6 Cache optimizations in auto-parallelizers

Many source parallelizers such as [24] [25] [26] use a
cache reuse metric to transform and parallelize affine
loops. Wolf et al [24] presents a method to do an
ad-hoc search of loop transformations and calculates
the cache reuse metric for each sequence of loop trans-
formations and selects the best transformation or-
der. McKinley’s algorithm [25] improves on [24] and
presents an algorithm to intelligently search for the
best loop transformation. We adapt [25] to binaries
since it uses the traditional model, that matches our
implementation; although our techniques can be used
with the polyhedral model as well. Bondhugula et
al [26] also uses the cache reuse metric in [25] within
the polyhedral model. Another reason we use [25] is
that it avoids an exhaustive search of transformations;
instead it presents a method to intelligently build
the most efficient loop structure using the results of
cache reuse metric calculation. We extend McKinley’s
algorithm to use strip-mining (well studied in affine
literature) to further improve the results.

3 DEPENDENCE ANALYSIS FROM BINARIES

The greatest challenge in parallelizing binaries is in
calculating dependence vectors. We first show how
this is done from source code, and then consider how
the same can be done from binary code.

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 4

3.1

To parallelize affine loops (source-code loops con-
taining array accesses whose indices are affine (lin-
ear) functions of enclosing loop induction variables)
from source, distance vectors are calculated using the
symbolic and array information and they represent
the dependencies present in the loop. These are then
used to determine the loop nest levels best suited
for profitable parallelization. The methods used to
calculate distance vectors are well documented in
affine literature and are described in detail in the
supplementary section [1] [2] [3] [4] [5].

From Source

3.2 From Binary

It is important to observe that all the source code
methods for calculating dependence rely on source
code features; in particular, array declarations (includ-
ing number of array dimensions and size of each), as
well as index expressions of array accesses (such as
i+2and 2j — 3 in A[i +2][2j — 3].) Unfortunately binary
code lacks this information. In production-level stripped
binaries, no symbol tables are present, making it hard
to know how many arrays there are, or their locations,
dimension count and sizes. Nor is it apparent from
looking at machine instructions containing registers
and memory locations what the array index expres-
sions are. Lacking this information, source code methods
cannot be applied to binary code.

This section presents our method of doing depen-
dence analysis from low-level code obtained from
binary. The analysis does not need array declarations
or index expressions, and works for production-level
stripped binaries. The basic approach of our method is
not to try to recreate such information (which is hard,
and in some cases undecidable). Rather our approach
sidesteps the need for array declarations and index
expressions by using a method tailored to low-level
code like that in binary code.

To illustrate the method, a source-code fragment
and one of its possible binary code is shown in
figure 1. The binary is shown in pseudo-code for com-
prehensibility, but actually represents machine code.
Other binaries are also possible, but we will be able
to illustrate the general principles of our method with
this example. The binary code assumes that the array
is laid out in row-major form, with the address of
Alij] being computed as:

&A[i, j] = Base + i *size_j + j x elem_size (1)

where elem_size is the size of an individual array
element, and size_j is the size of the second array
dimension, both in bytes. We present equations in
row-major format to understand our techniques, but
in no way are these techniques affected if the code
is arranged in a column-major format. Further, the
binary parallelizer does not need to know if the

compiler generated code in row-major or column-
major format. It only looks at the memory accesses
from binary code and takes parallelizing decisions.

To derive equations directly from a binary, the
following intuition is helpful: it is a simple proof to
show that for any affine array access, its address variable is
provably always an induction variable in its immediately
enclosing loop. Of course, it is usually a derived induc-
tion variable [27], derived from the basic induction
variables like i and j in the source!.

We know that the address of every affine access in
source is a derived induction variable. In the binary
code in figure 1, addr_reg is the address register,
which is an induction variable since it came from an
affine access in source.

For each induction variable addr_reg that is used
as an address for a memory reference in the binary,
the theory in [9] shows that addr_reg is always ex-
pressible as:

addr_reg = Basegyter + num_i * step; + num_j * step;

()

Generalizing this to an n-dimensional loop yields:

addr_reg = Baseqyter + Z num_k * step, 3)
k=1

where num_k is the current number of iterations of
the k™ loop dimension, and Baseqyer and stepy are
constants recoverable from the binary using the the-
ory presented in the supplementary material as well.
In particular stepy represents the constant that multi-
plies the induction variable of loop k when the affine
address is linearized; further Baseoyter represents the
constant base address from which all addresses of this
array are calculated.

We must first check that all memory accesses in the
loop are induction variables, for this loop to have been
an affine loop in source. We only work on those loops
and recover the linearized address expressions for
every memory access. These equations are important
since they will help us derive the cache reuse metric.
Array Memory Dependence Analysis from binary
Although binaries lack array declarations, the method
in [9] (also presented in the supplementary material)
shows how dependence analysis can be done for
memory references that came from source arrays in
a manner that is nearly as powerful as source. The
method shows that after discovering equations 3 for
every memory references in a loop, they are consid-
ered in pairs; then using linear algebraic methods such
as GCD, Delta and Omega tests dependence informa-
tion between all the memory references is obtained.
The dependence information is in the form of distance
or direction vectors; these can be analyzed to take

1. A variable is a basic induction variable if its only update in
the loop is a constant increment (called its step) in every iteration.
A derived induction variable d is of the form d = ¢; %%+ co, where
i is a basic or derived induction variable with step s; hence d too
is an induction variable with step c1 * s.

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 5

Source Code
for i from 1lb; to ubj
for j from 1lbj to ubj

Ali,J] = A[i, 3] + 1
end for
end for
Binary Code
T reg 1b; < 1by

reg ub; < ubj

i’ < 1b; * size_j

reg_ub) < ub; * size_j
loopi:reg 1bj < lbj

reg_ubj <— lbj

-—(E)

oY U W N

7 j’ < 1bj * elem_size

8 addr_reg < Base + 1’ + j’ -—(B)
9 reg ub_addr < Base + i’ + ubj * elem_size

10 loopj:load reg < [addr_reg]

11 reg < reg+1

12 store [addr_reg] <4 reg

13 addr_reg < addr_reg + elem_size —=(A)
14 CMP addr_reg < reg ub_addr —-—(C)
15 Branch if true to loopj

16 i’ + i/ + size_j --(D)
17 CMP i’ < reg_ub} ——(F)
18 Branch if true to loopi

Fig. 1: Example showing source code and it’s binary code. The marked statements are related to induction variables and

used by the theory in [9] to discover affine accesses.

decisions about loop parallelization. The method does
not recreate arrays or their index expressions from
binaries. Rather it uses a mathematical formulation on
induction variables that are used to reference memory
to show when the same or different references across
loop iterations may alias to the same memory location,
leading to a loop-carried dependence.

Once loop parallelization decisions are taken, our
binary rewriter modifies the input binary to produce a
multi-threaded output binary with loop iterations as-
signed among ‘n’ threads. It tries to load balance and
execute approximately the same number of iterations
on each thread. If the number of iterations are not an
exact multiple of the threads, then a few threads will
have one more iteration than the others.

4 CHARACTERIZING CACHE REUSE

In this section we describe the calculation of the cache
reuse metric first from source and then present our
technology to adapt it to binaries. The cache reuse
metric from source code is calculated using the index
expressions available in source whereas from binary
it is calculated using the linearized multi-dimensional
equations recovered for every access from binary.

4.1

This section overviews the strategy used to calculate
LoopCost(l) (or LC(1)), which is defined by McKin-
ley [25] as the total number of cache lines that will be
accessed by the affine accesses in the entire loop nest
when the dimension 1 is interchanged to the inner-
most position. It is worth noting that LC(1) does not
measure the reuse directly. Instead reuse = Number
of cache lines accessed assuming all misses -
LC(1). The goal is that the final loop ordering should
maximize reuse, which is the same as minimizing
LC(1).

LC(1) is widely used in all types of affine analysis
such as in traditional affine literature [24] and in the
polyhedral framework [26]. Once this model is avail-
able, any candidate transformation’s footprint can be
calculated. For brevity, we overview the method here;
details are in [25].

From source

for i from Ilb; to ub;
for j from lb; to ub;
X[i]+ = B8 x A[j, 1] x Y[j]

for j from lb; to ub;
for i from Ib; to ub;
X[i]+ =B x A[j, 1] x Y]

end for end for
end for end for
(@) Original loop in (b) Loop to maximize
gemver reuse

Fig. 2: Loop to illustrate Cache Reuse Algorithm

An example helps motivate how loop interchange
can help performance by using LC(1). Figure 2(a)
shows an example code in C; figure 2(b) shows the
same code with the loops interchanged. Without loss
of generality, assuming that C has row-major storage,
the interchanged loop has better cache performance
than the original. To see why, consider that the orig-
inal code accesses different cache lines of array A in
successive iterations of the inner loop, leading to no
spatial reuse for array A. In contrast, the rewritten
loop reuses the same cache line of A in successive
iterations of the inner loop, leading to a smaller cache
footprint and better run-time. Here, from the defini-
tion of LoopCost, LC(i) < LC(j); hence suggesting that
there is maximum reuse when loop i is innermost.

4.1.1 Construction of Reference Groups

To calculate LC(1) it is not correct to simply add the
number of cache lines accessed by each reference;
sharing between affine references must be accounted
for. For example, A[i] and A[i + 1] have nearly iden-
tical footprints; we should count the cache lines of
only one of them. McKinley’s method thus defines the
concept of reference groups of affine memory refer-
ences — intuitively, references are in the same reference
group if they are “nearby” in the memory layout.
It thereafter uses any one member’s cache lines to
represent the entire group. More formally, references
Ref; and Ref, are said to belong to the same reference
group with respect to a loop nesting level if there
is either temporal or spatial reuse between them,
detected as follows:

o There is temporal reuse between Ref; and Ref,,
if (a) they have a non-loop-carried dependence (i.e.
, a dependence within the same loop iteration); or
(b) they have a loop-carried dependence which at
this nesting depth has a small constant d as distance

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 6

vector component ([25] has found d < 10 to work
well), and all other entries in it are zero.

o There is spatial reuse between Ref; and Ref, if
they refer to the same array and differ by at most
a constant d0 in the last subscript dimension of the
array indices, where d0 is less than or equal to the
cache line size in terms of array elements. All other
subscripts must be identical.

4.1.2 Calculating LC(1) in terms of cache lines

Here we describe how LC(1,Refy) is calculated for
each reference group Refy at each nesting level
1. We take one data reference from each refer-
ence group — we have already described that any
reference in the reference group is representative
of its cache behavior — and calculate the contri-
bution towards LC(1). Assume that we are work-
ing with a loop nest of the form L= {1i,...,1,},
and R = {Refy, ...,Ref,} contains representatives from
each of the reference groups. Each Refy has array
indices of the {fy;(i1,..,1in), -, fxn(i1, .., in)} form and
its contribution to LC(1) is decided based on the
category it belongs to. The three categories Refy can
belong to in loop dimension 1 are:

o Loop invariant - if the subscripts of the reference
do not vary with this loop nesting level 1, then it
requires only one cache line for all iterations of this
loop dimension i.e. if none of the fy values vary with
i;, where i, is the induction variable associated with
loop dimension 1, then LC(1,Refy) = 1. These refer-
ences are loop invariant and have temporal locality.
o Consecutive - if only the last subscript dimension
(the column) varies with this loop nest and the
coefficient multiplying this induction variable
is consty, then it requires a new cache line

every (coggctsz;?il:E;§Izlfem) iterations. If we call
this ITERS_IN CACHE LINE, then a total of

trip; . .
TTERS TN CACHE_LTNE cache lines will be accessed for

this loop nest (where trip, is the trip count of this
loop dimension 1). These references are consecutive
and have have spatial locality. In other words,
LC(1,Refy) = trms tromer=—rrs, if fxn varies with i
and no other fy varies in i;.

o No Reuse - if the subscripts vary in any other man-
ner, then the array reference is assumed to require a
different cache line every iteration, yielding a total of
trip; number of cache lines i.e. LC(1,Refy) = trip;,
otherwise.

Next LC(1) is calculated as follows; and thereafter can
be used in a variety of cache optimizations:

Lo(1) = (éch(l,Refk))hgltriph Y(1et:n) @)

Adding up the LC(1,Refy) for all reference groups
gives the total number of cache lines that are required
when this loop is executed once in the innermost
position of the loop nest. The total numbers of cache
lines accessed when this loop is the innermost loop is

obtained by multiplying the sum by the trip counts of
all other loops in the nest other than this one. This is
representative of the total cache lines accessed by this
loop when it is the inner most loop in this loop nest. If
trip counts are not recoverable from the binary, we just
use 10 (a constant) to represent it in the formula. This
is a standard technique in compilers and performs
well.

4.2 From binary

Both the steps in the cache reuse estimator above —
deriving reference groups and calculating their foot-
print — rely on array index expressions denoted above
as fy. Since these expressions are not available in a binary,
the source-code reuse model above cannot be directly used
on a binary. Using theory in section 3, our binary
rewriting framework recovers eq.(3) for every affine
access present in a loop directly from a binary and
these equations are analyzed to calculate the cache
reuse metric.

Next, we show how the source code method can
be applied without using the array index expressions
only relying on the induction variables that are recov-
ered from the binary.

4.2.1 Generation of reference groups

Assume that there are two references Ref; and Ref,
in a loop of nesting depth n in a binary. Then we
can express their addresses using eq.(3) as shown in
section 3 as follows:

n
addr_reg; = Basegyters + »_ num_k *step,, (5)
k=1

n
addr_reg, = Baseoutera + 9 DUM_K * Stepy, (6)
k=1

Recall that the base and step values are constants.
We can now replace the earlier source-level method
for calculating reference groups with a binary-level
formula. As earlier, two references Ref; and Ref,
belong to the same reference group if there is either
temporal or spatial reuse between them.

From a binary, the above two references Ref; and
Ref, have temporal reuse between them (and there-
fore are in the same reference group) if they access
the same memory location after d iterations of loop
nest k. We can check this condition by checking if
all the stepls are equal to the corresponding step2s
and the difference of Baseguter1 and Basegyters 1S @
multiple of stepy and the quotient is d. There might
be other more complex cases when after d iterations
the two references access the same memory; however
we found that using the above check covers most of
the common cases and our benchmarks perform well.

Another condition by which two references Ref;
and Ref, have a temporal reuse between them is if
there is a non-loop carried dependence between them,
i.e. the references access the same memory location in
every iteration. This is detected from a binary if all the
steps and Baseqyer are equal to the corresponding

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 7

ones in the other reference. However, this check is the
subset of the previous check and hence checking only
the previous case will serve both purposes. Hence,
there is temporal reuse between two accesses Ref;
and Ref, in a binary if:

o (a) the coefficients multiplying all the induction
variables in eq 5 and eq 6 are the same for both the
accesses; i.e. V1 € [1: n] step,; = step,; }

o (b) the bases of both the accesses differ by a small
multiple of the coefficient of the loop nesting level
we are considering. i.e. , if we are considering loop
nest k: (i) (Baseouter1 — Baseoutera) ostepsx = 0; and
(it) (Baseouters —Baseauterz) < g where d is a small number

step

(heuristicallynéet at less than ten).}

Recall that there is spatial reuse between Ref; and
Ref, and thus they belong to the same reference group
from source iff the last subscripts differ by at most a
constant d0 (a constant that places both the references
on the same cache line) and all other subscripts are
identical. Recall that the constant always rolls into the
Baseoyter in the expression of the references from a
binary and the coefficients multiplying the induction
variables are rolled into the steps. Hence, we need
to check that the Baseoyter1 and Basegutero differ by
less than the CACHE_LINE_SIZE. Further, we require all
other subscripts to be identical in source and the last
one to differ only by a constant, hence the coefficients
multiplying induction variables are all equal. We can
check this condition from a binary by ensuring that
all the stepis are equal to the corresponding step2s.
Hence, there is spatial reuse between two accesses
Ref; and Ref, in a binary iff:

o (a) the coefficients multiplying all the induction
variables are the same for both the accesses; i.c.
V1 € [1:n] step,; = step,, } and

e (b) the Dbases differ by less than
the cache line size in bytes. ie.
(Baseouters — Baseoutera) < CACHE_LINE_SIZE}

4.2.2 Calculating LC(1) in terms of cache lines

Here we describe how LC(1,Refy) is calculated for
each reference group at each nesting level directly
from a binary; and then LC(1) is calculated from it.
Just like from source, we take one data reference as a
representation of each reference group and calculate
its contribution towards LC(1). To do so, like from
source, the following three categories are defined for
reference groups, but the mathematical formulation is
different. For example, if we consider loop nest k, an
access is:

o Loop invariant - if the address expression from the
binary does not contain a term for this loop nest, then
it requires only one cache line for all iterations of
this loop dimension. This condition corresponds to
none of the fy values varying with i, from source
since we know that the coefficients roll into the
steps in a binary. In other words, if stepx; = 0, then

LC(1,Refy) = 1. These references are loop invariant
references and have temporal locality.

o Consecutive - if the address expression obtained
from a binary has a multiplicative factor stepi
associated with this loop nest level and stepy
is less than the cache line size, then a new
cache line is required every SHEELIESEE itera-
tions. If we call this ITERS_IN_CACHE LINE, then
a total of FEsrosmTms Number of cache lines
will be accessed by this loop nest. This check
is equivalent to our consecutive check in source,
where we check that only the last subscript varies
with this loop nest. In other words, LC(1,Refy) =
m, if step,, < CACHE_LINE_SIZE and
ITERS_IN_CACHE_LINE = GACHE-LINESIZE

stepy

e No Reuse - if the affine expression is of any
other form, then the array reference is assumed to
require a different cache line every iteration, yielding
a total of trip; number of cache lines accessed i.e.
LC(1,Refy) = trip;, otherwise.

Next similar, to the source formulation LC(1) is calcu-
lated as follows, completing our binary method:

m

LC(1) = (> LC(1,Refy))] tripn V(1 €[1:n])
k=1 h#1

This would be representative of the total cache lines
accessed by this loop when it is the inner most loop
in this loop nest.

The intuitions for the above equations in section
4.2 may seem familiar to readers, and indeed they
are similar to those from source code. However, the
equations are novel, since in previous work the corre-
sponding equations are expressed in terms of source
artifacts like original loop induction variables and
arrays, neither of which are available in binaries. It
is not difficult, but certainly not obvious to reformulate
them in terms of binary artifacts such as address
induction variables only, without using arrays. That
is the primary contribution of section 4.2.

5 FORMING AN OPTIMIZATION STRATEGY

In this section we describe how LC(1) calculated in
section 4 from source or binary is used in McKinley’s
search strategy from [25] to take complex transforma-
tion decisions. We choose this search strategy (from
traditional affine literature) to present proof of concept
of how transformation orders can be decided in a
binary. The same cache model can be used in a
Polyhedral model for binaries as well.

McKinley’s algorithm uses LC(1) to determine the
ideal loop order for the different loops present in
a particular loop nest. It then uses the dependence
information to obtain the legal loop ordering (called
Optimal order) closest to the ideal order. We then per-
form multi-level blocking of the loop nest to further
increase reuse. These are further described below.
Determining the Ideal Loop Order Even though
LC(1) does not directly measure reuse across outer

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 8

loops, it can be used to determine the loop permu-
tation for the entire nest which accesses the fewest
cache lines by relying on the observation “If loop i
promotes more reuse than loop j when both are considered
for the innermost loop, i will promote more reuse than j
at any outer loop position.” [25]. McKinley’s algorithm
thereafter orders the loops from outermost to inner-
most by decreasing values of their LC(I). This order is
the best theoretical order for this loop nesting which
we call the ideal order.

Determining the Optimal Loop Order The optimal
order of the loops is calculated using the the ideal or-
der and loop dependencies by the following method.
Start from the loop that is outer-most in the ideal
order and check if it is legal to place it at the outer
most position. If yes, place it and examine the next
loop in the ideal order. If not examine the next outer-
most loop and check if it can be placed in the outer-
most position. Repeat until all loops have been placed.

Using the dependence information calculated from
binaries as shown in section 3 and the cache reuse
metric defined in section 4 for binaries, we can thus
take complex loop transformation decisions on binary
code.

Please note that we have used the above search
strategy only as an implementation proof in our soft-
ware; however, any search strategy used in source
code can be used. More details of our implementation
are presented in the supplementary section. We imple-
ment our affine binary automatic parallelizer within
the SecondWrite binary rewriter [28] [11] [29].

We describe our strategies specific to binaries and
algorithm used to parallelize loops with run-time
dependent bounds in the supplementary section.

6 RESULTS

We use ”-O3” optimized binaries from GCC as in-
put to SecondWrite, which includes our dependence
analysis and cache reuse model. The source automatic
parallelizer includes the exact same optimizations as
SecondWrite and works on LLVM IR. Hence, we use
LLVM IR from “llvm-gec” or “clang” as the input to
our source parallelizer, which we use for comparison
with our binary parallelizer.

In this section we present results of our binary
parallelizer for the benchmarks from polybench bench-
mark suite on the 24 core Xeon E7450 machine. We
also have detailed results on the 8 core Xeon E5530
machine in the supplementary section. Further, re-
sults on the affine benchmarks from the SPEC2006
and OMP2001 benchmark suites are presented in the
supplementary section.

Detailed results on the polybench benchmark suite
are presented in figure 3. For each benchmark we
present the speedup (with respect to 1 thread from
source) in columns representing 1, 2, 4, 8, 16 and 24

threads. The rows represent the different configura-
tions used to obtain the speedup. The five bench-
marks, 2mm, 3mm, gemver, gemm and doitgen that
benefit from cache analysis are presented on the left
side. The remaining benchmarks are presented on the
right side and the average is presented at the bottom
right corner.

We first present the general trends in our results,
followed by some salient results.

First, we observe that the basic parallelizer from bi-
nary using dependence analysis is as powerful as the
source parallelizer using dependence analysis only.
Actually, in most cases the speedup from binaries is
slightly higher than the source parallelizer. The first
two rows of the results for each benchmark in figure 3
show this result. The reason for this is that the binary
parallelizer works on gcc ”-O3” optimized binaries,
raises them to LLVM intermediate form and then
generates an output binary by applying all of LLVM’s
code optimizations. In effect, code optimizations from
two compilers are applied to our binaries perform-
ing slightly better than the source parallelizer that
includes code optimizations only from LLVM. For e.g.,
we carefully analyzed gessumv which has the highest
speedup from binary and observed that there was one
less memory spill in the most time-intensive loop in
the binary version resulting in 30% speedup. Further,
we observe that correlation does not get parallelized
from binary code. The reason is that correlation has two
array accesses that each access the lower triangular
and upper triangular elements of an array; however
from binary code we conservatively assume that these
two accesses could alias with each other since the loop
bounds are coupled and the present linear algebraic
methods implemented in our system are conservative
in this case.

Second, we observe that our binary cache reuse
methods significantly improve performance com-
pared to a basic binary parallelizer. Looking at the
binary results (shaded in light gray) of benchmarks
that benefit from cache analysis in figure 3, we observe
that: (i) the geomean speedup without cache analysis
was 14.66X for 24 threads on BUZZ whereas it was
36.87X (2.5X better) with cache analysis. Super-linear
speedups are possible with cache optimizations. We
also observe that our binary methods can perform as
well as source-level cache-reuse methods. Some of the
speedups are higher than source with cache optimiza-
tions since they benefit from code optimizations from
two compilers.

Third, we compare the results of our parallelizing
compiler with PLUTO, a parallelizing compiler from
source code based on the polyhedral method [19]. The
geomean speedup of our benchmarks with PLUTO
is 3.95X on BUZZ whereas the speedup from our
automatic parallelizer with cache analysis is 8.31X on
BUZZ. In affine literature many decision algorithms
have been suggested each suited for some bench-

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 9
BENCHMARKS THAT BENEFIT FROM CACHE ANALYSIS BENCHMARKS THAT DO NOT NEED CACHE ANALYSIS

Benchmark 1 2 4 8 16 24|Benchmark 1 2 4 8 16 24
Source w/o cache opt| 1.00[2.09| 3.94| 7.95| 14.34| 22.98 Source 1.00] 2.20| 4.36] 4.21] 4.01[3.36
Binary w/o cache opt | 1.21]| 2.42| 4.64| 9.13]| 17.63| 26.01 atax Binary 0.97| 1.95[3.92| 3.52| 4.20| 3.87
2mm |Source with cache opt| 4.86| 9.83| 19.14| 37.53| 73.08[103 Source with PLUTO 1.37| 2.51| 4.31] 4.21] 3.98 3.99
Binary with cache opt | 4.92| 9.73| 18.42| 37.37| 73.38| 104.2 Source 1.00| 2.31| 4.36] 7.14|10.97 9.28
Source with PLUTO | 3.06] 6.24 12.37] 21.56] 41.85[59.37] jacobi [Binary 1.07] 2.42] 4.85] 7.68] 8.62] 6.98
Source w/o cache opt| 1.00| 1.92| 3.81| 7.20] 14.05| 20.82 Source with PLUTO 0.35] 0.35[0.35| 0.35] 0.35] 0.35
Binary w/o cache opt | 0.68| 1.35| 2.71| 5.36| 10.59| 14.98 Source 1.00| 2.29| 4.44| 5.06| 8.08 7.16
3mm [Source with cache opt| 3.99| 7.62| 15.84| 30.88] 60.03| 85.09 bicg Binary 0.94| 1.96(3.60] 4.61| 4.67| 6.45
Binary with cache opt | 3.99| 7.97| 15.50{ 31.16| 59.84| 85.34 Source with PLUTO 1.01] 1.70| 2.82| 2.47| 2.42[2.37
Source with PLUTO 0.66] 0.85| 0.86] 0.85| 0.84 0.84 Source 1.00] 1.67| 2.61| 3.44| 1.82] 1.71
Source w/o cache opt| 1.00| 1.95| 3.55| 3.88| 4.85 5.75| gesummy |Binary 1.30(1.93| 2.64| 3.28| 2.01 1.63
Binary w/o cache opt [0.97]| 1.76[2.81| 3.68| 3.90| 4.64 Source with PLUTO 1.92) 4.90| 8.09] 9.84| 7.76| 4.63
[gemvelsource with cache opt| 1.90(4.09| 6.71| 8.15| 7.13| 3.99 Source 1.00| 1.15| 1.87| 2.85| 2.54 1.85
Binary with cache opt | 2.12| 3.37| 5.46(6.30/ 5.00| 3.58| correlation Binary 1.08[1.04 1] 1.04] 0.97| 0.9
Source with PLUTO 2.20] 3.48[587 8.86] 9.01] 8.34] Source with PLUTO 1.27] 1.25| 1.91] 2.49| 2.31[1.76
Source w/o cache opt| 1.00| 1.98| 3.82 6.99| 13.40| 19.7| Source 1.00] 1.06] 1.53| 2.37| 2.20] 1.64
Binary w/o cache opt | 1.08[2.16] 3.92| 7.45| 14.27| 20.74|covariance|Binary 0.99] 0.89 0.88] 0.9] 0.83| 0.75
gemm |Source with cache opt| 2.61]| 5.21| 10.37| 20.23| 38.49| 54.32 Source with PLUTO 1.33] 1.04| 1.33] 1.62| 1.25[0.93
Binary with cache opt [2.61| 5.22| 9.97| 20.29| 38.49| 54.42 Source 1.65| 3.03] 5.49| 8.33/10.31| 9.86
Source with PLUTO | 1.32] 2.32] 4.31] 8.24] 15.60] 22.12 gﬁgxﬁf‘k’s‘) Binary 1.72| 2.88] 4.69] 6.60] 7.94] 8.31
Source w/o cache opt| 1.00| 1.98| 3.86[7.28|13.35| 17.13 Source with PLUTO 1.25| 1.87| 2.89] 3.64| 4.06[3.95
. Binary w/o cache opt | 1.12] 2.22| 4.21| 7.55| 14.33] 18.05| Geo Mean |Source w/o cache opt| 1.00[1.98] 3.80] 6.47| 11.18]15.62
oitgen{Source with cache opt| 2.62[5.19] 10.18] 19.78] 32.22| 39.01 (benchmarks that|BiNary w/o cache opt | 0.99| 1.94] 3.57| 6.32]10.83| 14.66
Binary with cache opt | 2.55| 5.07| 9.83| 18.32 34.04| 39.31| benefitfrom |Source with cache opt] 3.02| 6.08| 11.65| 20.68 32.94| 37.49
Source with PLUTO 1.21| 2.44| 5.03| 7.78] 13.28] 16.01] cache analysis) |Binary with cache opt| 3.08| 5.86| 10.88| 19.37| 31.03) 36.87

Fig. 3: Speedup on x86 E7450 with 24 threads (BUZZ) with respect to 1 thread from source

marks, however none of them perform well on all the
benchmarks. We observe a similar effect here when
we compare our decision algorithm to that present in
PLUTO. PLUTO performs better than our algorithm
on a few benchmarks and scales better on BUZZ
for some benchmarks than our decision algorithm.
However, on average our decision algorithm is better
than PLUTO’s on the benchmarks from Polybench. We
do not suggest that PLUTO or the polyhedral model
is less powerful; we merely wish to present results
from PLUTO to show that our speedups are good
compared to the best publicly available academic
polyhedral compiler from source code.

Fourth, we present a study of the improvement in
L1 cache miss rates with our cache optimizations in
table 1 for the benchmarks that benefited from cache
reuse analysis. The baseline source is generated using
the LLVM based parallelizer on source code whereas
baseline binary is generated by using the SecondWrite
infrastructure on gcc ”-O3” optimized binaries. We
observe that the L1 cache misses are significantly
reduced after cache optimizations are applied to can-
didate loops.

Benchmark | Baseline + cache Baseline + cache
Source opt Binary opt
2mm 28.6% 3.2% 33.3% 2.1%
3mm 33.3% 3.2% 33.3% 2.1%
gemver 9.9% 2.2% 10.8% 2.7%
gemm 33.2% 4.6% 24.9% 3%
doitgen 33.2% 3% 24.9% 2%

Average | 27.64% | 3.24% | 2544% | 2.38% |

TABLE 1: L1 cache miss rate with optimizations
Next, we discuss the trends we observe for some

individual benchmarks from figure 3: (i) For the 2mm
benchmark, we observe that the speedup scales well
with number of threads on BUZZ. The speedup from

PLUTO is consistently lower than our decision algo-
rithm with cache optimizations and higher than the
speedup from our base parallelizer; however, it also
scales very well with increasing number of threads;
(ii) For the gemver benchmark, we observe that the
speedups scales well till 8 threads and beyond that
the speedups either stabilize or decrease. This can be
be attributed to the fact that gemver works on single-
dimensional arrays (hence, is not as time intensive
as other benchmarks) which when divided among
more than 8 threads is hurt by the synchronization
overhead; (iii) For the doitgen benchmark, we observe
that there is good scaling in speedup till 16 threads,
beyond which the speedup does not scale well. Fur-
ther, we observe that the parallelization achieved by
PLUTO is close to our base parallelizer and our cache
optimizations improve over these speedups.

7 CONCLUSIONS AND FUTURE WORK

In this work we presented techniques to parallelize
binary code especially focusing on affine loops. Our
techniques are able to parallelize affine loops, trans-
form loop nests to maximize cache reuse and also
handle loops whose bounds are only known at run-
time. We have presented techniques that show how
source code parallelization techniques can be adapted
to binary code when symbolic and array information
is not available. Our results show that affine rich
programs from the Polybench, SPEC 2006 and OMP
2001 benchmark suites have speedups from binary
code are similar to those from source.

In future, this work must be explored in at least
the following directions: (i) integrate the affine par-
allelizer with non-affine parallelization techniques to
increase the scope of benchmarks parallelized; (ii)

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 10

integrate a more sophisticated decision algorithm to
combine many more loop transformations. Many such
algorithms have been presented in the source litera-
ture and can be adapted to binaries using some of
the ideas that we have presented; (iii) A polyhedral
compiler called Polly is under development within the
LLVM infrastructure. Since our infrastructure builds
over LLVM, in future we can use our techniques
to feed Polly directly from binary code and present
results; and (iv) understand how the cache optimiza-
tion techniques presented can be applied to already
parallel code coming from OpenMP/TBB/Cilk etc.

REFERENCES

(1]

(2]
(3]

(4]

(5]
6]

(71

(8]

(%]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

K. Kennedy and J. R. Allen, Optimizing compilers for modern
architectures: a dependence-based approach. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2002.

U. Banerjee, Dependence Analysis for Supercomputing. Boston:
Kluwer Academic Publishers, 1988.

U. Banerjee and U. of Illinois at Urbana-Champaign.
Dept. of Computer Science, Speedup of Ordinary Programs, ser.
UIUCDCS-R. Department of Computer Science, University
of Illinois at Urbana-Champaign, 1979.

R. A. Towle, “Control and data dependence for program
transformations.” Ph.D. dissertation, Champaign, IL, USA,
1976.

M. J. Wolfe, “Optimizing supercompilers for supercomputers,”
Ph.D. dissertation, Champaign, IL, USA, 1982.

M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
and M. S. Lam, “Detecting coarse-grain parallelism using an
interprocedural parallelizing compiler,” in Supercomputing '95:
Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM). ACM Press, 1995.

M. W. Hall, J]. M. Anderson, S. P. Amarasinghe, B. R. Murphy,
S.-W. Liao, E. Bugnion, and M. S. Lam, “Maximizing multipro-
cessor performance with the suif compiler,” Computer, vol. 29,
no. 12, pp. 84-89, 1996.

R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W.
Hall, M. S. Lam, and J. L. Hennessy, “Suif: an infrastructure for
research on parallelizing and optimizing compilers,” SIGPLAN
Not., vol. 29, no. 12, pp. 31-37, 1994.

A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua,
“Automatic parallelization in a binary rewriter,” in Proceedings
of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, 2010.

B. Pradelle, A. Ketterlin, and P. Clauss, “Polyhedral paral-
lelization of binary code,” ACM Trans. Archit. Code Optim., Jan.
2012.

K. Anand, M. Smithson, K. ElWazeer, A. Kotha, J. Gruen,
N. Giles, and R. Barua, “A compiler level intermediate rep-
resentation based binary analysis and rewriting system,” in
European Conference on Computer Systems, 2013.

E. Yardimci and M. Franz, “Dynamic parallelization and map-
ping of binary executables on hierarchical platforms,” in CF
"06: Proceedings of the 3rd conference on Computing frontiers.
New York, NY, USA: ACM, 2006, pp. 127-138.

C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T.-f.
Ngai, and J. Fang, “Dynamic parallelization of single-threaded
binary programs using speculative slicing,” in Proceedings of
the 23rd international conference on SC, ser. ICS "09.

M. L. S.]. Yang, K. Skadron and K. Whitehouse, “Feasibility
of dynamic binary parallelization,” 2011.

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauch-
werger, and P. Tu, “Parallel programming with polaris,” Com-
puter, vol. 29, no. 12, pp. 78-82, 1996.

M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields,
K.-Y. Wang, W.-M. Ching, and T. Ngo, “An hpf compiler for
the ibm sp2,” in Proceedings of the 1995 ACM/IEEE conference
on Supercomputing.

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

H. Saito, N. Stavrakos, S. Carroll, C. D. Polychronopoulos,
and A. Nicolau, “The design of the promis compiler,” in CC
'99: Proceedings of the 8th International Conference on Compiler
Construction.

C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L.
Lee, B. Leung, and D. Schouten, “Parafrase-2: an environment
for parallelizing, partitioning, synchronizing, and scheduling
programs on multiprocessors,” Int.]. High Speed Comput.,
vol. 1, no. 1, pp. 45-72, 1989.

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan, “A practical automatic polyhedral program optimization
system,” in ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), Jun. 2008.

G. Goff, K. Kennedy, and C.-W. Tseng, “Practical dependence
testing,” in Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation. New York,
NY, USA: ACM Press, 1991, pp. 15-29.

W. Pugh, “The omega test: a fast and practical integer pro-
gramming algorithm for dependence analysis,” in Supercom-
puting '91: Proceedings of the 1991 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM, 1991, pp. 4-13.
N. Nethercote and A. Mycroft, “The cache behaviour of large
lazy functional programs on stock hardware,” in Proceedings
of the 2002 workshop on Memory system performance, 2002.

J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A tool suite
for simulation based analysis of memory access behavior,”
in In Proceedings of International Conference on Computational
Science, 2004.

M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop
transformations considering caches and scheduling,” in Pro-
ceedings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, ser. MICRO 29, 1996.

K. S. McKinley, “A compiler optimization algorithm for
shared-memory multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., Aug. 1998.

U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan, “A practical automatic polyhedral parallelizer
and locality optimizer,” in Proceedings of the 2008
ACM SIGPLAN conference on Programming language design
and implementation, ser. PLDI ‘08. New York, NY,
USA: ACM, 2008, pp. 101-113. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375595

A. W. Appel and M. Ginsburg, Modern Compiler Implementation
in C. Cambridge University Press, January 1998.

P. O. Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua,
and A. Keromytis, “Retrofitting security in cots software with
binary rewriting,” in Proceedings of the 26th International Infor-
mation Security Conference, 2011.

M. Smithson, K. Elwazeer, K. Anand, A. Kotha, and R. Barua,
“Static binary rewriting without supplemental information:
Overcoming the tradeoff between coverage and correctness.”
in WCRE. IEEE, 2013, pp. 52-61.

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 11

Aparna Kotha Aparna is presently the Chief
of Product Development at SecondWrite
LLC, a startup aimed at commercializing bi-
nary rewriting technologies in the application
performance monitoring and cyber-security
space. Prior to joining SecondWrite, she re-
ceived her doctorate in Computer Engineer-
ing from University of Maryland, College Park
in Spring 2013 and bachelors in Electrical
Engineering from Indian Institute of Tech-
nology, Madras in Spring 2006. Her field of
interest is Computer Architecture and High Performance Computing.
Her doctorate thesis was automatic parallelization of binaries and
cache analysis of binaries.

Kapil Anand Kapil is currently a Co-founder
and Chief Technology Officer at SecondWrite
LLC. He earned a Bachelor of Technology
degree in Electrical Engineering from the In-
dian Institute of Technology, Delhi in Spring,
2007 and a PhD in Electrical and Computer
Engineering from University of Maryland,
College Park in Summer, 2013. His research
interests include binary rewriting, static pro-
gram analysis and information-flow security.
He received the Distinguished Dissertation

Award from the Department of Electrical and Computer Engineering
at University of Maryland, College Park for his research on binary
rewriting techniques.

Timothy Creech Timothy Creech is currently
a PhD student in the Department of Electrical
and Computer Engineering at the Univer-
sity of Maryland, College Park. He obtained
a B.S. in Computer Engineering from the
University of Maryland in 2005. His current
research interests are in runtime systems,
tools, and operating systems for parallel ma-
chines. Tim’s work is funded by a NASA Of-
fice of the Chief Technologist’s Space Tech-
nology Research Fellowship.

Khaled Elwazeer Khaled ElIWazeer is
presently the Chief Architect at SecondWrite
LLC. He received his PhD in Electrical and
Computer Engineering at the University of
Maryland College Park. Previous to his PhD,
he got his bachelors and masters degrees
from Cairo University in 2006 and 2009. His
research interests include program analysis,
programming languages, static analysis and
reverse engineering.

&

Matthew Smithson Mr. Smithson attended Georgia Tech where he
received his Bachelors degree in Computer Engineering.

He went on to work in the defense industry as an embedded
systems software developer, later transitioning to malware research
and reverse engineering. During this time, Mr. Smithson also com-
pleted the Masters Degree program in Computer Science from Johns
Hopkins University.

Mr. Smithson currently serves as Mitsubishi Electric’s Software
Development Architect, where he designs software solutions for em-
bedded, desktop, and web applications. In addition , he is currently
pursuing a PhD in Computer Engineering from the University of
Maryland, where he researches new static binary rewriting tech-
niques.

Greeshma Yellareddy Greeshma is cur-
rently working at Intel Corporation as Tech-
nical Consulting Engineer. She received her
MS degree in Electrical and Electronics Engi-
neering from University of Maryland, College
Park in 2013. Her research interests include
parallelization, high performance computing,
mobile and web technologies

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2349501, | EEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 20ZZ 12

Rajeev Barua Dr. Rajeev Barua is an Asso-
ciate Professor of Electrical and Computer
Engineering at the University of Maryland.
He is also the Founder of CEO of Sec-
ondWrite LLC, which commercializes binary
rewriting technology his research group de-
veloped at the university. He received his
Ph.D. in Computer Science and Electrical
Engineering from the Massachusetts Insti-
tute of Technology in 2000.

Dr. Barua is a recipient of the NSF CA-
REER award in 2002, and of the UMD George Corcoran Award for
teaching excellence in 2003. He was a finalist for the Inventor of the
Year Award in 2005 given by the Office of Technology Commercial-
ization at the University of Maryland. Dr. Baruas work on the Raw
Architecture at MIT ultimately led to a chip fabricated by IBM Corpo-
ration. His work on the Raw compiler has been incorporated by Tilera
Corporation. Earlier, he received the President of India Gold Medal
for graduating from the Indian Institute of Technology in 1992 with the
highest GPA in the university that year. In 2013, his 1999 paper on
"Parallelizing Applications into Silicon” was selected among the most
significant 25 papers in the first 20 years of the International IEEE
Symposium on Field-Programmable Custom Computing Machines.

Dr. Barua’s research interests are in the areas of compilers,
binary rewriters, embedded systems, and computer architecture.
Recent work has tackled the problems of binary rewriting for security
enhancement, real-time improvement, and lowering energy use.
Earlier work has targeted compiler approaches to reliable software
in embedded systems, memory allocation for embedded systems,
compiling to VLIW processors, and compiling for multiprocessor and
tiled architectures.

EpNEER
il

1045-9219 (c) 2013 IEEE. Personal useis permitted, but republication/redistribution requires | EEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

