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ABSTRACT
Out-of-memory errors are a serious source of unreliability
in most embedded systems [22]. Applications run out of
main memory because of the frequent difficulty of estimat-
ing the memory requirement before deployment, either be-
cause it depends on input data, or because certain language
features prevent estimation. The typical lack of disks and
virtual memory in embedded systems has a serious conse-
quence when an out-of-memory error occurs. Since there is
no swap space for the application to grow into, the system
crashes if its memory footprint is exceeded by even one byte.

This work improves system reliability for multi-tasking
embedded systems by proposing MTSS, a multi-task stack
sharing technique, that grows the stack of a particular task
into other tasks in the system after it has overflown its
bounds. This technique can avoid the out-of-memory error
if the extra space recovered is enough to complete execution.
Experiments show that MTSS, on an average, is able to re-
cover 47% of the stack space allocated to the overflowing
task in the free space of other tasks. Therefore, even if we
underestimate the stack size of a particular task by 47% on
an average, it will still run to completion by reusing stack
in other task’s stack.

Alternatively, MTSS can also be used for decreasing the
physical memory for an embedded system by reducing the
initial memory allocated to each of the tasks and recovering
the deficit by sharing stack with other tasks. Results show
that MTSS used in this way can be used to reduce the mem-
ory required in multi-tasking embedded systems by 18% on
an average, thus reducing the memory cost of the system.
MTSS also offers good real time guarantees, since it uses
a paging system that never incurs an episodic increase in
run-time.

The overheads of MTSS are extremely low: the run-time
and code size overheads are 1.8% and 2.6% on an average,
making it a feasible method for increasing system reliability
and reducing the memory footprint of embedded systems.
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1. INTRODUCTION
Memory overflow can be a serious problem in computing,

but to different extents in desktop and embedded systems.
In desktop systems, virtual memory reduces the effect of
memory overflow. This is because hardware-assisted virtual
memory [15] detects physical memory overflow and provides
swap space on disk upon overflow.

Unfortunately a great majority of embedded chips (we es-
timate over 95%) have no virtual memory [19]. Examples
of such processor families that lack virtual memory sup-
port include Motorola’s M68K series, Intel’s i960, ARM’s
ARM7TDMI, ARM7TDMI-S and ARM966e-s, TI’s MSP430,
Atmel’s 8051, Analog Devices’ Blackfin, Xilinx’s Microblaze,
Renesas’ M32R, and NEC’s nec750; there are many more. It
is easy to see why: virtual memory hardware exacts a signifi-
cant penalty in energy usage, area cost, and design complex-
ity. Typically it checks that the address of every memory
access is within segment bounds and it may also translate
the address using a TLB. The energy cost of these frequent
tasks can be prohibitive [23]. Even a simpler virtual memory
proposed by a few systems, which provides segment bound
checking but not swap space, is not widely used because of
its energy cost. Furthermore, the trend of MMU-less embed-
ded processors will not diminish with time [9] since not only
virtual memory hardware accounts for a significant portion
of a system’s total energy consumption but the possibility
of Translation Lookaside Buffer (TLB) misses is detrimental
to real time guarantees as well.

Lacking virtual memory, any embedded system will en-
counter a fatal error if its memory footprint exceeds the
physical memory by even one byte. Therefore, for correct
execution, the designer must ensure that the total memory
footprint of all the applications running concurrently (i.e.



running or pre-empted before completion) fits in the avail-
able physical memory at all times.

Unfortunately, accurately estimating the maximum mem-
ory requirement of an application at compile time is difficult,
increasing the chances of memory overflow. To see why, con-
sider that the application data is typically divided into three
segments: global, stack and heap. The size of the global seg-
ment is fixed at compile time. The stack and heap grow at
run time. Let us consider stack memory first. The max-
imum memory requirement of the stack can be accurately
estimated by the compiler as the longest path in the call
graph of the program from main() to any leaf procedure.
However, stack size estimation from the call-graph fails for
at least the following six cases: (i) recursive functions, which
cause the longest call-graph path to be of unbounded length;
(ii) virtual functions in object-oriented languages, which re-
sult in a partially unknown call-graph; (iii) functions called
through pointers, which also result in a partially unknown
call-graph; (iv) languages, such as GNU C and C++, that al-
low stack arrays to be of run-time-dependent size; (v) calls
to the alloca() function, present in some dialects of C, which
allows a run-time-dependent size block to be allocated on the
stack; and (vi) interrupts, since their handlers allocate stack
space that may be difficult to estimate. In all these cases, es-
timating the stack size at compile-time is difficult. Indeed in
cases (i), (iv) and (v) the maximum stack size is dependent
on the input data and is unknowable at compile-time. As
an example, a recursive function invoked with a command
line argument leads to an unbounded stack at compile time.

Estimating the heap size at compile time is difficult be-
cause heap is typically used for dynamic data structures
such as linked lists, trees and graphs. The size of these data
structures are highly input dependent and thus unknowable
at compile time.

Lacking an effective way to estimate the size of the stack
and heap at compile time, the usual industrial approach is
to run the application on different data sets and observe
the maximum sizes of stack and heap [7]. Unfortunately,
this approach of choosing the size of physical memory never
guarantees an upper bound on memory usage for all data
sets, thus memory overflow is still possible. Sometimes, the
memory requirement is multiplied by a safety factor, how-
ever; the factor is often limited for cost reasons and it still
does not give any guarantees to prevent overflow.

The problem of out-of-memory faults and memory over-
flow has serious consequences on the reliability of embedded
systems. Lacking virtual memory support, memory overflow
in an embedded system can lead to loss of functionality of a
controlled system, loss of revenue, and industrial accidents.
In our past work [3], we have looked at the problem of over-
flow detection and reuse of memory within a task in order
for the application to continue execution. This work builds
upon the past work to reuse stack memory available across
different tasks in the embedded system in order to further
improve system reliability. This work is important in the
light of the fact that the use of multi-tasking is dramati-
cally rising in embedded software development [20, 21] and
there is a large amount of memory available for reuse across
different tasks in the system.

Our scheme is based on the observation that the most
commonly used stack layout for multi-tasking systems, called
a cactus stack [21, 24, 26], wastes a significant amount of
memory. In such a scheme, the stack grows from the initial

parent stack and bifurcates into multiple different branches,
which vary depending upon the control flow of parallel tasks.
All the parallel tasks share the initial common stack but
have their own, branched stack after the beginning of the
parallel region. The size of each branched stack is equal to
the maximum observed stack size that is observed during
testing across all input sets.

The stacks for all tasks that can be simultaneously ac-
tive (running or pre-empted) are non-overlapping in mem-
ory. The heap is allocated from a free list shared across
tasks. The inefficiency of this organization, in that it can
waste space is apparent from the observation that all the
tasks are unlikely to need their maximum stack space at
the same instant of time. Thus when one task overflows, it
is quite likely that the stacks of other tasks have substan-
tial free space in them. Normally this space cannot be used
for the overflowing stack since it is not contiguous with it.
Our scheme aims to use this free space by growing the over-
flowing stack discontiguously in that space. If successful,
the overflow will be postponed and hopefully avoided, thus
increasing system reliability.

This paper proposes MTSS, a multi-task stack sharing
scheme that is built on top of a cactus-stack layout. It aims
to recover wasted space using an innovative paging system
as follows: First, compile time checks are inserted at the be-
ginning of each procedure which check for stack overflow [3].
Second, if an overflow is detected, then a fixed size block of
memory, called a page, is allocated in the free space of one
of the other tasks that has such free space. The page is allo-
cated in the stack space at the far end from the direction of
stack growth so that the chance that the native stack in that
space will itself overflow is reduced. If multiple tasks have
free pages, then the task with the least number of already al-
located overflow pages is selected for discontiguous growth of
the overflowing stack. Third, if the current overflow page(s)
is also filled, additional page(s) are allocated using the same
scheme as above. Fourth, compile time checks are inserted at
each procedure return, to check if the overflowing stack has
withdrawn from the page. In that case, that page is released
back to the free list of pages. Thus, using this scheme, all
the free space is utilizable across all the tasks in the system.

Our scheme offers the following advantages: First, it meets
the objective of reusing memory across different tasks in the
embedded system. Thus, a task will not run out of memory
if the required amount of free space is available in any other
task’s stack. This increases the reliability of the embedded
system. When only one task overflows, our results show
that MTSS, on average, is able to recover 47% of the stack
space allocated to the overflowing task in the free space of
other tasks. Second, our scheme incurs very little run-time
overhead in the common case when no stack in the system
overflows. This is because in the common case, only the
compile time check for overflow is executed on every pro-
cedure entry and return. Results show that this overhead
is less than 1.8% on an average across various multi-tasking
workloads. Furthermore, a task grows in its own native stack
until it runs out of space there; thus additional run-time is
only incurred on an overflow. Third, our scheme offers good
real time guarantees, since it never incurs a large episodic
increase in run-time. Rather, due to fixed size page alloca-
tion, the overhead is spread out over the program, with a
small overhead every time a page overflows. Results show
that the increase in the worst-case execution time (WCET)



is less than 11% on an average for our benchmarks. This
increase in the WCET is modest compared to the increase
from hardware-assisted virtual memory which achieves shar-
ing of space across stacks like our scheme, but may incur
page faults that dramatically degrade the WCET.

In an alternate configuration, our scheme can also be used
to reduce the physical memory needed for an embedded sys-
tem without reducing its reliability. In this configuration
the memory provided to each task is deliberately reduced to
below what it needs, and the deficit is recovered from the
stacks of other tasks. Experiments show that MTSS used
in this way can be used to reduce the memory required in
multi-tasking embedded systems by 18% on average, thus
reducing the dollar cost of the system.

The rest of the paper is organized as follows. Section 2
outlines the related work in the area of sharing stack space.
Section 3 describes the compile time checks inserted to de-
tect stack overflow. Section 4 describes our overall scheme
in detail for reusing stack space across different tasks. Sec-
tion 5 describes the experimental platform, which we use for
our evaluations. Section 6 discusses the results. Section 7
concludes.

2. RELATED WORK
The broad impact of this work is the reproduction in soft-

ware of a portion of the functionality of virtual memory
hardware. Virtual memory hardware detects physical mem-
ory overflow and provides stack space on disk upon overflow.
Furthermore, it is capable of utilizing all the physical mem-
ory available in the system, since it performs non-contiguous
allocation of each process segment, including stack, making
use of fixed size pages. Thus, MTSS is not useful for systems
with virtual memory support. However, hardware virtual
memory is unappealing for use in embedded systems be-
cause, as mentioned earlier, many systems lack the support
for such hardware, and even if they did have such support,
the increased CPU, memory resources, and energy consump-
tion associated with its functionality would not be as low as
they could be with a software-only solution. Energy con-
sumption is a particular concern since protection hardware
is activated for each data and instruction memory access.
Moreover, real-time guarantees are a concern for systems
using TLBs because of the possibility of TLB misses.

Specialized hardware schemes for providing memory pro-
tection in embedded systems have also been devised. The
Mondrian Memory Protection (MMP) [29] scheme is a hard-
ware approach designed to provide fine-grained memory pro-
tection for systems requiring data sharing among processes.
Another hardware approach [6] provides basic segment-level
protection without requiring any TLBs, relying only on the
permissions capability of the MMU. Similarly, some embed-
ded processors, like ARM926EJ-S instead of supporting full
virtual memory hardware are equipped with a coprocessor
known as Memory Protection Unit (MPU) [18]. MPU pro-
vides protection by dividing the address space into regions
with individual access permissions. All these specialized
schemes still incur some hardware and energy cost as com-
pared to our software-only scheme and more importantly,
do not provide any way to share stack space among dif-
ferent processes, which is the goal of this paper. None of
these schemes are related to software-managed TLBs [27]
and software address translation [17], which are two tech-
niques used to give the operating system more control over

address translation and are, therefore, unrelated to the no-
tion of protection or sharing.

Several other attempts have been made to reuse mem-
ory across different tasks for multi-threaded applications.
One such attempt consists of allocating stacks on the heap
[12, 28]. In older schemes, which used heap based alloca-
tion of stacks [4, 14], the activation records are allocated
on the heap, and explicitly deallocated when the procedure
returns. Thus, no task runs out of memory, unless there
is no space left globally. However, since the granularity
of allocation is unequal, these schemes suffer from the in-
creased run-time overhead of allocation (malloc) and deal-
location (free) for each procedure call and return. In one of
the recent schemes [28] a stack management scheme is im-
plemented that allows high-concurrency desktop servers to
support large number of threads without allocating a large
contiguous portion of virtual memory for their stacks. In
their scheme, a thread’s stack is allocated in a small fixed-
size heap chunk, and is grown discontiguously into other
heap chunks when one is full. This scheme inserts run-time
checks similar to our scheme, and exhibit similar dynamic
allocation efficiency, due to the presence of fixed-size heap
chunks. Five differences of our scheme with respect to [28]
are as follows: First, our scheme is applied, optimized, and
evaluated for embedded systems; their scheme is applicable
to desktop servers with virtual memory hardware. Second,
our scheme does not incur the extra run-time overhead of
discontiguous stack growth unless all the stack space in the
task is exhausted, which is rare, while their scheme would
incur that overhead whenever the small fixed-size chunks
run out, which is more common. Third, their scheme does
not utilize all the physical memory available in the system,
while MTSS does. Their scheme uses different sized memory
pools for different types of functions, which are not sharable.
Fourth, our scheme is applied for a different goal, to improve
the reliability and physical memory utilization of the system,
not their goal of saving on virtual address space and reduc-
ing load on segment tables. Fifth, our evaluation measures
the impact on code-size and energy consumption, which are
important for embedded systems; they do not, given their
focus on servers.

Two other attempts have been made to recover unused
space from other tasks in a multi-tasking system. In the
first scheme, run-time information of several parallel tasks
is kept on a single stack, leading to a meshed stack organiza-
tion [16]. In this scheme, new activation records are always
generated on top of the stack. If a procedure terminates
and its activation record is not on the top of stack then it is
not removed, but marked as garbage. Special garbage col-
lectors are then invoked periodically to crunch the stack in
place. This scheme suffers from an episodic increase in run-
time when the garbage collector is invoked, leading to poor
real time guarantees. Our scheme, on the other hand, of-
fers better real time guarantees since the discontiguous stack
growth overhead is non-episodic. This is because every time
the stack overflows, one fixed size page is allocated from a
list of free pages, which incurs the same cost throughout the
execution of program. Also, the total run-time with their
scheme is higher because of the need for scanning the entire
contents of stack memory. A scan of memory is needed to
correctly update pointers, as in any copying garbage collec-
tor. No such scan of memory is needed in our scheme since
our scheme never copies any value from memory.



In the other attempt for reusing memory across tasks,
each thread shares stacks from a stack pool [21,30]. In [30],
the authors propose a hybrid stack sharing scheme in which
each thread is allocated a stack from a stack pool containing
a fixed number of stacks. The size of each stack in the stack
pool can be set by the user. When the number of threads
are less than the number of stacks in the stack pool, it is the
same as the cactus stack. But, in the common case, though,
when the number of threads is more than the number of
stacks in the stack pool, all the threads share the stacks from
the stack pool leading to greater memory savings. However,
when the number of active threads exceed the number of
stacks in the stack pool, then on a context switch, in addi-
tion to the processor state, the whole contents of the task
stack also need to be saved in the heap memory and sim-
ilarly restored back when the thread becomes active. This
leads to increased run-time overhead. Our scheme is appli-
cable independent of the number of threads. In addition,
the hybrid stack sharing scheme has two more drawbacks.
First, even in this scheme, the task’s stack can overflow,
even when space is available in other stacks in the stack
pool since no mechanism for sharing across stacks in the
stack pool is implemented. Second, this scheme offers poor
real time guarantees since every time, the number of active
threads increase, the run-time of the system increases by
potentially a very large value due to increased cost of the
context switch.

In [2] a stack sharing scheme for real-time tasks is pro-
posed. This scheme is complementary to our scheme. Here,
each task is assumed to have a fixed priority, and all tasks
share a single stack. When a task T1 is preempted by a
higher priority task T2, T1 continues to hold its stack space
and T2 is allocated space immediately above T1. The only
special requirement is that T1 cannot resume until all tasks
occupying space above it have completed. This will always
be the case since T1 will be preempted by higher prior-
ity tasks only. Thus in a real time pre-emptive system in
which each task has a fixed priority, this scheme precludes
the need for our scheme. However, for other systems, their
scheme can be combined with our scheme in which each set
of fixed priority intra-pre-emptible tasks are given a single
stack, and memory reuse across such task sets is accom-
plished using our scheme. Our scheme is also applicable to
non-real-time systems with pre-emptible tasks.

Methods for estimating the maximum depth of the stack [5,
25] are complementary to our work. Such work relies on an-
alyzing the call graph to compute a worst-case estimate of
the stack size when possible. Indeed, if for a particular pro-
gram the size of the stack can be perfectly estimated and
no heap data is present then stack overflow cannot occur.
The compiler should turn off our scheme for such programs.
However, the presence of heap data is not rare in embedded
benchmarks – a survey of the MIBench embedded bench-
mark suite [13] shows that 17 out of the 29 benchmarks
in that suite have heap data. In conclusion, our scheme is
valuable in three cases: (i) if the stack size cannot be esti-
mated because of the difficulties with estimation mentioned
in section 1; (ii) if the estimates are too conservative to be
acceptable; or (iii) if heap data is present. In all three cases,
our scheme provides good back-up insurance against stack
overflow and allows the application to continue execution
and in many cases prevent the stack overflow altogether.

MTSS builds upon our previous work in [3], which also

uses run-time checks to detect stack overflow and recovers
space from within the overflowing task. More specifically,
in [3] an overflowing stack is grown in dead global variables
and space freed by compressing live variables. Two differ-
ences of our scheme with respect to [3] are as follows: First,
our scheme is applicable and optimized for multi-tasking sys-
tems; their scheme is optimized for single tasking systems.
Second, our scheme recovers space by sharing stack across
different tasks in the system, while they recover space from
within a task. However, the work in [3] is complimentary
to our scheme in that it can be combined with MTSS to
result in a system that detects a stack overflow using run-
time checks and recovers space both within a task and across
different tasks, leading to increased system reliability.

3. RUN-TIME CHECKS TO DETECT STACK
OVERFLOW

Our scheme builds upon the software scheme for detect-
ing stack overflow in our previous work [3]. A brief overview
follows. To see how overflow can be detected, consider that
the stack grows only at procedure calls. Figure 1 shows
the check, which we insert at the beginning of every proce-
dure. Without loss of generality, we assume that the stack
grows from higher-numbered addresses to lower. Now, to
understand figure 1, consider that the stack pointer is decre-
mented (not shown) at the start of each procedure by the
size of the current procedure’s frame. The code in figure 1 is
inserted immediately after the stack pointer is decremented.
Thus, the check compares the updated stack pointer to the
current allowable boundary of the stack. If the check suc-
ceeds, then stack overflow has occurred. Without MTSS,
the stack boundary is specified by the cactus stack layout
or is the heap pointer in case the heap adjoins the stack
in question. MTSS modifies the stack boundary to be the
overflow pointer of that task instead. The overflow pointers
store the upper limit of overflow space for every task and
are explained in further detail in section 4.

The overheads of the added stack checks in the baseline
scheme can be reduced by the rolling checks optimization [3].
The intuition behind this optimization is that if a parent
procedure calls a child procedure then, instead of checking
for stack space at the start of both procedures, it might be,
in certain cases, enough to check once at the start of the
parent that there is enough space for the stack frames of
both parent and child procedures together. In this way, the
check for the child is ‘rolled’ into the check for the parent,
eliminating the overhead for the child. The rolling checks
optimization reduces the run-time overhead since if a child
is called more frequently than the parent then the reduction
in overhead can be more than half. We have not yet imple-
mented the rolling checks optimization in our scheme, but
it is likely that the run-time overheads will be reduced even
below 1.8%, once the optimization is in place. Results in [3]
show that this optimization reduces the overhead by about
half.

The safety checks are easily extended to handle any calls
to the alloca() library function. The alloca() function, pro-
vided in some dialects of C, allocates additional space on the
current procedures stack frame. The amount of additional
space is an argument to alloca(), and need not be known at
compile-time. If a procedure calls alloca(), its basic safety
run-time check in line 1 of figure 1 is modified to check that



1.if (Stack-Ptr < STACK BOUNDARY)
2. call routine to handle stack-overflow condition
3.}

Figure 1: Code inserted at procedure entry for de-
tecting stack overflow.

Stack-Ptr - Size-argumentof-alloca < STACK BOUNDARY.
If the alloca function is called from within a loop or con-
structs it argument from a combination of local variables
of the function, then the size of its argument is unknown
both at compile time and at runtime during the beginning
of function. This case is not handled by our scheme. In
future work we will investigate mechanisms to handle this
case.

4. MULTI-TASK STACK SHARING
This section presents our scheme of reusing stack across

different tasks. When a stack overflow is detected by the
run-time checks above, the scheme allows the overflowing
stack to grow in the free space available in the stacks of
other tasks. It is implemented as follows: First, run-time
checks are inserted by the compiler to detect stack overflow
in each task. Second, if an overflow is detected in a task,
then a fixed block of memory called a page is allocated in
another task’s stack that has free space, and the overflowing
task is grown into it.

Our basic scheme is best understood with the help of an
example. Figure 2(a) shows the normal behavior of the sys-
tem in which none of the three tasks T1-T3 in the system
are out of memory. Figure 2(b) shows the snapshot of the
system when T1’s stack has overflowed its bounds into space
in other tasks. Figure 2(c) shows a magnified view of the
overflow space in figure 2(b). Let us now consider the steps
taken by our scheme when T1’s stack overflows. Since free
space is available in T2, page 1 is allocated in it and the
stack is grown there. Thereafter pages 2 to 5 are allocated
alternately in the remaining space in T2 and T3 since when a
page is allocated in one, the other becomes the stack space
with the least amount of overflow space. In this way, the
overflow pages are distributed equally among the stacks with
free space, reducing the chance that the native stacks with
free space will also themselves overflow soon. If T1’s stack
overflows again, then the system is declared to be out-of-
memory.

To implement the scheme, we use the following data struc-
tures. First, the set of stack pointers for inactive (swapped
out) tasks is stored as an array in memory. This information
is maintained by the operating system, and it allows the ac-
tive task to access the other stacks upon overflow. Second,
a set of overflow pointers, one per task, is also maintained.
The overflow pointer for a task stores the upper limit of the
overflow space for that task. The free space available in a
task is the difference between its stack pointer and overflow
pointer. As an example, the overflow pointer of task T2
can be seen in Figure 2(b). Third, a set of overflow started
global boolean variables is also maintained. This variable is
set to true if the task overflows its native stack bound, and
it is unset when the stack recedes back to its native space.
Below, we discuss our basic scheme for sharing stack among
multiple tasks.
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Figure 2: Example showing reuse across tasks (a)
Normal operation of Cactus Stack (b) Overflow han-
dling in MTSS; and (c) Magnified view of overflow
space

1.if ((Stack-Ptr < Overflow-Ptr[current-task-id]) ||
(Overflow-Started[current-task-id])) {

/* Stack Overflow */
2. call routine to handle stack-overflow condition
3.}

Figure 3: Code inserted at procedure entry for de-
tecting stack overflow with MTSS.

Stack overflow is detected using the run-time checks in-
serted by the compiler at the beginning of every procedure,
as shown in figure 1. Here, the STACK BOUNDARY is
replaced by the overflow pointer for that particular task,
which forms the upper limit on the overflow space for that
task. Furthermore, if the task is already overflowing, then
this condition is also detected and handled. This is imple-
mented by checking whether the overflow started variable is
asserted or not. The modified check is shown in figure 3.

Once an overflow is detected, our scheme allocates a fixed
block of memory called a page to grow the overflowing stack.
The method of choosing the free pages is described as fol-
lows. First, if there is only one task with free pages then
that task is chosen for growing the overflowing stack. Sec-
ond, if there are multiple tasks having free pages then the
task with the least value of already allocated overflow pages
is chosen for discontiguous growth of the overflowing stack.
This heuristic tries to minimize the chances of overflow in
this task and works well in principle as we show in the results
section.

When a task is in overflow space, the stack pointer of the
task is compared against the page boundary instead of the
overflow pointer. Thereafter, if the stack overflows in the
page, then additional pages are allocated using the same
scheme. This is also the reason why the second condition of
checking the overflow started variable is added in the check
for detecting stack overflow in figure 3 since page overflows
need to be detected for overflowing stacks.

Once the out-of-stack condition is detected by the run-
time checks, growing the stack discontinuously in other task’s
stack pages is done by changing the original stack pointer
to overflow pointer + page size. Further calls occur as usual
- procedure returns are handled by copying the old frame



1.if (Overflow-Started[current-task-id]) {
/* Stack Overflow */

2. if (Stack-Ptr > Overflow-Pointer[overflow-task-id])
3. Overflow-Pointer[overflow-task-id] =

Overflow-Pointer[overflow-task-id] - pagesize
4.}

Figure 4: Code inserted at procedure exit for reced-
ing the overflow pointer.

pointer, which stores the stack pointer value for the (non-
overflowing) parent procedure, in to the new stack page.
The old frame pointer in the current stack frame is correct
because it is saved before the discontinuous stack pointer
assignment upon overflow. The same mechanism is used to
return to the previous overflow pages, for overflowing stacks
spanning multiple discontinuous pages. Moreover, overflow-
ing procedure arguments are copied over to the new stack
page to ensure correct semantics.
Receding the overflow pointer The overflow pointers
maintained per task represent the upper limit of overflow
space of each task. In order to reduce the possibility of na-
tive stack overflow due to the presence of overflowing stacks
of other tasks and to maximize the amount of memory avail-
able for reuse, overflow pointers must be receded as soon as
the overflowing stack recedes from the page. To understand
this more clearly, let us first consider how overflow pointers
are implemented in our scheme. First, each overflow pointer
is assigned to the base of a particular task’s stack. Second,
overflow pointers are always grown in the direction opposite
to that of the growth of the stack pointer, that is from lower
memory addresses to higher memory addresses. Third, each
time a page is allocated for an overflowing stack in a task,
the overflow pointer for that task is incremented by the size
of the page. This is required, since overflow pointers main-
tain the upper limit for each task’s stack. When one page
is allocated for an overflowing stack in a task T, the upper
limit for that task is reduced by the page size. In other
words, in effect, the available stack size in task T is reduced
by the size of the page, until the overflowing stack remains
in task T.

To recede the overflow pointer, run-time checks are in-
serted by the compiler at the exit of every procedure. Fig-
ure 4 shows the check inserted at the exit of every procedure
call. To understand figure 4, consider that the stack shrinks
only at procedure return and is incremented by the size of
the procedure frame. The code in figure 4 is inserted im-
mediately after the stack pointer is incremented. Thus, the
code first checks, if the overflow has already started. If not,
then there is no overflow pointer to adjust and the code re-
turns. If the overflow has already started, then the check
compares the updated stack pointer to the current value of
overflow pointer of the task in which the overflowing stack is
being grown (this is represented by the overflow-task-id in
figure 4). If the check succeeds, then the overflowing stack
has receded from this page and the overflow pointer is decre-
mented by the size of the page.
Holes in the Overflow Space If multiple stacks over-
flow their bounds, then the result could yield in holes in
the overflow space, as depicted in figure 5. To understand
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Figure 5: Example showing holes in overflow space
(a) T1 overflows in T2 (b) T1 and T2 overflow in T3;
and (c) T1 recedes leaving holes in overflow space

figure 5, let us consider that there are three tasks T1-T3 in
the system. Let us assume that task T1 overflows its bounds
and starts growing in page P1 in task T2 as shown in Fig-
ure 5(a). Subsequently, T2 also overflows its bounds and
starts growing in page P2 in task T3. Thereafter, both T1
and T2 overflow their bounds once again leading to the allo-
cation of pages P3 and P4 in task T3 as shown in figure 5(b).
Now, if the stack of T1 recedes back to its native space it
vacates pages P1 and P3. This is shown in figure 5(c). Of
these, page P3 is called a hole since it is not at the overflow-
pointer-end of the overflow space, but rather in the middle.
For this reason, it cannot be reclaimed by receding the over-
flow pointer. Instead holes must be reclaimed through a
different mechanism. We reclaim holes by classifying every
page in a task stack as either free or filled. This information
is maintained in an array data structure for each task. Sub-
sequently, before allocating a free page, we traverse this list
to check for the presence of holes and allocate free pages in
holes, if possible, before moving upwards in the stack space.
Although this situation does not arise if only one task over-
flows in the system, it can happen and must be handled as
above. In our experiments we observe that the presence of
holes is rare.
Multiple-Page Allocations The base scheme to share
stack across multiple tasks is enhanced by incorporating
multiple page allocations. Multiple page allocations are re-
quired if the procedure frame of the overflowing task is larger
than a single page. This is because a procedure frame can-
not be allocated discontiguously. If it were, then we would
have to modify the stack pointers within the procedure in
the case of overflow but not otherwise, leading to an ex-
tremely complex implementation. Multiple page allocations
in our scheme are implemented as follows. First, the re-
quired number of pages are calculated by dividing the frame
size with the pagesize, and taking the ceiling. Second, each
task is searched for availability of multiple pages instead of
a single page. If the overflow space contains holes, then the
scheme looks for the availability of contiguous holes equal
to the number of pages required. Third, the check for page
overflow is modified to handle multiple pages. So, the stack
is now declared to have overflown its page, if it grows by an
amount equal to the number of pages allocated to it. Fourth,
the overflow pointer is grown and receded by number of al-
located pages rather than a single page.



Our scheme declares a system to be out of memory if
there is no task in the system that has number of pages
corresponding to a procedure frame available contiguously,
even though the total space available discontiguously might
be larger. We do not consider compaction of holes to create
more space, since this would adversely impact the real time
guarantees.
Choice of page size Next, we discuss why allocating
fixed sized blocks of memory is advantageous for our scheme
and what is a good page size for our scheme. Allocating
fixed size blocks of memory gives us the following advan-
tages over variable-sized allocation: First, variable-sized al-
location leads to external fragmentation (holes in the mem-
ory). This leads to increased run-time for allocation on over-
flow as compared to a fixed size allocation since allocating
memory requires a scan through all the holes in order to
determine a fit; further a mechanism to merge holes is usu-
ally also needed to limit the number of small, useless holes.
Second, if the variable-sized allocation scheme allocates ex-
actly the amount of stack space required by the overflowing
procedure and no more, then the number of page overflows
may increase. If the overflowing procedure in turn calls an-
other procedure, then it will result in another page over-
flow. Allocating additional memory than required might
lead to wastage and make the implementation more com-
plex. Third, with variable-sized allocation compaction will
be required at frequent intervals, as otherwise space recov-
ery will suffer. This will degrade the real time guarantees of
the reuse scheme.

With paging, page size is also an important consideration.
Both small and large page sizes have their own advantages
and disadvantages, as in hardware virtual memory, but with
different tradeoffs. Let us consider the advantages of small
page sizes. Fixed size allocation leads to internal fragmen-
tation. Smaller page sizes reduce internal fragmentation as
compared to larger page sizes and therefore, are capable of
recovering more space as compared to larger page size. On
the other hand, small page sizes worsen the real time guaran-
tees of the system. This is because the probability of a page
overflow increases as the page size reduces. Furthermore,
smaller page sizes lead to increased run-time overhead in
the presence of stack overflows since the probability of page
overflow increases. Our experiments explore the choice of
page size further.
Re-using heap for stack Our method can be easily ex-
tended to allow for reuse of the heap when a stack frame
overflows, and there is no space available across all the tasks
in the system. Since in a multi-tasking system the heap is
shared by all the tasks, we can inherit the scheme proposed
in our previous work [3] that allows overflowing stack to be
discontiguously grown in the heap. Since the method to
reuse the heap is inherited from previous work, to be fair, in
our experiments we do not count the space recovered from
the heap towards the benefit from our method.
Alloca function calls The alloca() library function calls
are handled by adding the size of alloca’s function argument
to the calling procedure’s frame size before allocating pages
for it. All the other steps of the algorithm are applied to
this modified frame size.
Dynamic Tasks MTSS can be extended to handle cre-
ation and deletion of dynamic tasks in the system. This is
implemented as follows: First, the operating system is mod-
ified to notify our system about the creation and deletion

of new tasks. Second, the algorithm is modified to handle
variable number of tasks while considering tasks for sharing.
Third, a pool of stack space is maintained for dynamic tasks.
Any incoming dynamic task can be allocated any amount of
initial space - an estimate can be used if available, or simply
one page can be conservatively allocated for a start, at the
cost of more frequent future overflows.

5. EXPERIMENTAL SETUP
This section presents the experimental platform which is

used for evaluating our scheme. We have implemented our
scheme inside the ARM GCC v3.4.3 cross compiler [10] tar-
geting the ARM7TDMI [1] embedded processor. The ARM
GCC compiler is suitably modified to insert run-time checks
as required by our method.

Since we run multi-tasking applications, we also need the
support of an operating system for scheduling the applica-
tion. We use the µClinux operating system [8] for imple-
menting the proposed techniques. µClinux is a derivative
of Linux 2.0 kernel intended for microcontrollers without
Memory Management Units. We use the SCHED OTHER
scheduling policy for scheduling the different tasks in the
system. This policy chooses processes based on their dy-
namic priority. The dynamic priority is based on the nice
level of each task and is increased for each time quantum
the process is ready to run, but is denied to run by the
scheduler. This ensures fair progress among all processes.
We also modify the operating system to provide a new sys-
tem call that returns the value of stack pointer of an inactive
(swapped out) task. This is implemented by saving the value
of stack pointer of a task on a context switch into the array
of stack pointers maintained by our method. This informa-
tion is utilized by our scheme to select the task for growing
the overflowing stack.

We use the public domain cycle accurate simulator for the
ARM v5 embedded processor available as part of the GDB
v6.3 distribution [11] for running the operating system as
well as the multi-tasking applications. We enhance the sim-
ulator to enable it to run µClinux along with the applica-
tion. Specifically, we add support for I/O modules such as
timers and interrupt controllers required by the OS. Thus,
the overall framework consists of multi-tasking applications
running on top of µClinux operating system, which in turn
runs on top of the ARM GDB simulator. Since we use a
full-fledged operating system, our setup accurately models
all the software in a real embedded system.

6. RESULTS
This section presents the results for the proposed scheme

for reusing stack across multiple tasks in an embedded sys-
tem. The multi-tasking workloads that are used for evalua-
tion are constructed by combining together multiple bench-
marks from one domain of the MIBench embedded bench-
mark suite [13]. Each domain in the MIBench embedded
benchmark (such as automotive) targets a specific embed-
ded market, and typical embedded multi-tasking workloads
for a domain consist of one or more similar tasks. Hence,
combining benchmarks in this way forms a reasonable set
for evaluation. Table 1 shows the names and characteristics
of the resulting workloads that we use for our evaluation.
Combined together, we evaluate four workloads each of four
benchmarks, for a total of 16 benchmarks. Unless otherwise



Workload Benchmark Description Number of Stack size
lines of code Allocated(Bytes)

Automotive

Basicmath Basic Math 132 1024
Qsort Quick Sort Algorithm 78 65536
Bitcnt Bit Manipulation 383 1024
Susan Digital Image Processing 2183 13824

Security

Blowfish Block Cipher Encryption/Decryption 2362 6144
PGP Public Key Encryption 34973 65536
Rijndael Block Cipher Encryption/Decryption 1812 1536
SHA Secure Hash Algorithm 286 10240

Telecomm

ADPCM Pulse Code Modulation 759 768
FFT Fast Fourier Transform 505 1280
CRC32 Cyclic Redundancy Check 307 1024
GSM Voice Encoding/Decoding 6062 2176

Network

Dijkstra Shortest Path Algorithm 371 1216
Patricia Tries for Network Routing Tables 620 1280
Treeadd Recursive sum in balanced B-tree 287 1280
TSP Traveling Salesman Problem 603 1856

Table 1: Multi-tasking benchmark programs and characteristics

stated, all the results are generated for a fixed page size of
128 bytes.
Stack Allocation The initial stack memory allocated to
each task as shown in column 5 in table 1 is calculated as
the maximum observed stack size across different input data
sets. This guarantees that a task does not overflow with its
initial allocation of stack. We then perform several exper-
iments, in which a task is allocated less stack space than
required causing it to overflow. This activates MTSS, al-
lowing stacks to be shared across all tasks.

An alternative implementation of the scheme consists of
giving 0 bytes to each task stack in the beginning, and then
to demand page in stack blocks as necessary from a com-
mon stack memory pool. However, this scheme will have
the following disadvantages: First, it will incur increased
runtime and energy overhead as the number of page over-
flows will increase. The current scheme on the other hand
incurs very low overhead in the common case of no overflow.
Second, it will lead to increased fragmentation of memory
generating more holes. This is because memory will now be
allocated from a common pool on procedure calls, and freed
on procedure returns, which will depend on control flow of
each task, leading to generation of additional holes. This
will reduce memory utilization. To offset this, compaction
of holes might be necessary, but that will spoil the real time
guarantees.
Overheads of run-time checks Table 2 shows the over-
heads due to run-time checks inserted at the beginning and
end of every procedure. These overheads are in the com-
mon case when no task in the system overflows. The results
indicate an average code size overhead of 2.6% and an aver-
age run-time overhead of 1.8%. These results show that the
multi-task stack sharing scheme is possible with very low
overheads. Moreover, quantitative results cannot evaluate
the benefit of increased reliability of the embedded system
due to multi-task stack sharing.

The automotive workload has somewhat higher run-time
overhead due to the presence of one benchmark bitcnt with
small-sized recursive functions. Recursive functions lead to
the execution of run-time checks for every invocation with

Workload Code Size Run-time Energy
Increase(%) Increase(%) Increase(%)

Automotive 2.15 5.43 2.02
Security 1.25 0.84 1.07

Telecomm 3.52 0.62 0.03
Network 3.41 0.47 1.68

(Average) 2.59 1.84 1.20

Table 2: Run-time, code size and energy overheads
of MTSS

few intervening instructions, increasing the run-time over-
head.
Maximum Satisfiable Overflow (MSO) Maximum Sat-
isfiable Overflow is defined as the maximum amount of stack
space that can be recovered for each task expressed as a
percentage of the total stack allocated to the task. Figure 6
shows the maximum satisfiable overflow for each task in dif-
ferent workloads. In figure 6 each bar represents the MSO
of a particular task in the corresponding workload, the last
bar in each workload is the average across all tasks. The
average workload represents the average of all tasks across
all workloads. The figure shows that on an average we can
recover 47% of stack space per task by reusing stack across
tasks. In other words, even if we underestimate the size of
a task stack by 47% on an average, the workload will still
run to completion. The space recovered is highly application
dependent and depends on both the stack usage of the task
and the workload of which it is a part. Furthermore, the
space recovered also depends on the initial stack allocation
of each task, since more space in other tasks will allow more
space to be recovered for overflowing task. However, the
memory allocated to each task is often limited in embedded
systems due to cost constraints.

For some tasks in figure 6, such as task 1 (blowfish) in the
security workload, the space recovered is 0%. To understand
this, consider that blowfish has a total stack requirement of
5632 Bytes, and it contains a procedure of size 4608 Bytes,



as its main procedure. Procedure frames needs to be allo-
cated contiguously on a stack. Thus, if stack size of blowfish
is underestimated by even 1 byte, it will require a contiguous
space of 4608 Bytes across other tasks to continue execution.
No task in the security workload contains 4608 bytes of free
space contiguously. Therefore, no space can be recovered for
blowfish. This also points to the fact that all other tasks in
the security workload are using their stack deeply. There-
fore, even though PGP and SHA have large stack sizes of
65K and 10K respectively, the required 4608 bytes cannot
be allocated in either of them. On the other hand, for task
3 rijndael in the same workload, we can recover 100% of
stack space. This indicates, that even if no stack is allo-
cated to rijndael, the workload will still run to completion
by recovering space from the stacks of other tasks.
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Figure 6: Maximum Satisfiable Overflow for differ-
ent tasks in different workloads

The numbers in figure 6 are collected as follows. The
workload is first executed with the stack size for each task
equal to its observed requirement for a particular input data
set. Thereafter, to calculate the MSO amount for a particu-
lar task T, we successively decrease the stack size allocated
to T, keeping the stack size for the other tasks unchanged.
This activates our method since task T overflows. We then
observe if the workload still runs to completion without in-
curring an out-of-memory fault. This is repeated several
times with progressively lesser amount of stack space allo-
cated to T each time, until it no longer runs to completion.
The percentage difference between the original stack space
allocated to T (with no overflow) and the minimum stack
space allocated to T at which the program still runs to com-
pletion is the MSO for task T.
Proportional Reduction Satisfiability (PRS) An al-
ternate use of MTSS is to decrease the physical memory re-
quired by an embedded system while maintaining the same
reliability. This is in contrast to its primary use discussed
above as a measure to increase reliability for the same amount
of memory. When used to reduce the amount of memory,
each task is given less stack space than is needed by the
input data set, which yields the largest stack size seen dur-
ing testing. Surely this will cause overflow, which is then
satisfied by MTSS.

To measure the amount of memory savings in this alter-

nate use, we define the Proportional Reduction Satisfiability
(PRS) of a workload to be the percentage by which its total
stack space can be reduced (by an equal fraction across the
tasks) such that the workload still runs to completion with
MTSS. To calculate the PRS for a workload, we propor-
tionally reduce the stack size of each task in the workload,
hence the name Proportional Reduction Satisfiability. This
process is repeated with successively greater reduction per-
centages until the workload incurs an out-of-memory fault.
The percentage difference between the original stack space
allocated to the workload (with no overflow) and the mini-
mum proportional stack space allocated to the workload at
which the program still runs to completion is the PRS for
the workload.

Figure 7 plots the PRS numbers for different workloads.
The difference in the MSO and PRS numbers is that MSO
numbers are calculated at per task level, while PRS numbers
are calculated at the workload level. The figure shows that
on an average we can recover 18% of stack space across all
the multi-tasking workloads, reducing the cost of the mem-
ory needed. The run-time at the PRS configuration will be
higher than that for MSO because of the more frequent over-
flows, but is still upper-bounded by the worst-case real-time
bounds measured later in this section.
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Figure 7: Proportional Reduction Satisfiability for
different workloads

Effect of Page Size Figure 8 shows the effect of the page
size on the MSO for the network multi-tasking workload.
The figure shows that as the page size increases, the MSO of
a task decreases in general. This follows from the discussion
in section 4, in that larger page sizes leads to larger internal
fragmentation. Therefore, a workload may be declared out-
of-memory if a task requires a few bytes of overflow space
and no other task in the system contains free space equal to
the size of the page. This happens since our scheme allocates
stack space in the granularity of pages.

The treeadd benchmark is an anomaly in that smaller page
sizes of 32 and 64 bytes lead to lesser space recovered. To
understand why, consider that Treeadd contains recursive
functions with small procedure frame sizes. With small page
sizes, the space remaining in the page is substantial but less
than that required for the next frame, and so is wasted. For
example, consider a recursive procedure P with a frame size



0

20

40

60

80

100

120

Dijikstra Patricia TreeAdd TSP

M
a
x
im
u
m
 S
a
ti
s
fi
a
b
le
 O
v
e
rf
lo
w
 (
%
)

32B 64B 128B 256B 512B 1024B

Figure 8: Effect of page size on MSO for network
workload

of 40 bytes that causes a task’s stack to overflow its bounds.
With a page size of 64 bytes one page is allocated, wasting 24
bytes in internal fragmentation. This process is repeated for
every invocation of P leading to large scale memory wastage
and premature declaration of the out-of-memory condition.
A page size of 128 bytes, on the other hand, wastes eight
bytes for every three invocations of P (128 - 3*40 = 8).
This is a factor of nine lower in wastage compared to a page
size of 64 bytes, leading to better utilization of memory.
Real time bounds Figure 6 shows the variation of real
time guarantees for different workloads expressed as a per-
centage run-time overhead. The real-time bound increase
for a workload is an average of the increase for a particular
task. These numbers are calculated by simulating an en-
vironment in which every page overflows, thereby incurring
the overhead of page allocation every time. These numbers
represent an upper bound on the run-time overhead of our
scheme; the actual run-time increase is usually much lower
(it averages 1.8% in the common case of no overflow). As
shown in figure 6, on an average the run-time overhead in
the worst case is about 11%. This overhead is low enough to
warrant the use of our scheme in pre-emptive real time sys-
tems. In particular it is much lower than the worst case run-
time of hardware virtual memory which our scheme seeks to
replace, which has very poor real-time guarantees because
of the possibility of page faults. However if the real-time
bound for a particular application is found to be too high
with MTSS in a hard-real-time system, MTSS should not
be used.

If the real-time bound with our default page size of 128
bytes is found to be too high, a higher page size can be
used to reduce the real-time bound. Figure 6 shows the
variation of page size on real time guarantees for the network
multi-tasking workload. As the figure shows, an increase
in page size reduces the worst case run-time overhead, and
therefore, offers better real-time guarantees. To understand
this, consider that a large page size reduces the chances of
page overflow, and therefore, does not incur the overhead of
page allocation frequently. However, large page sizes recover
less space as shown in figure 8.
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Figure 9: Worst case run-time overhead for different
workloads
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Figure 10: Variation of page size on real time guar-
antees

Additional Statistics We also measure the frequency of
holes on our scheme. Among the multi-tasking workloads we
used, only a few holes are generated in the overflow space.
On an average, the number of pages, which lead to genera-
tion of holes is less than 5% of the total stack pages allocated
to a particular task.

Some of the workloads, for example, the telecomm multi-
tasking workload did not generate any holes in the overflow
space. To understand why, consider that holes are generated
only when multiple tasks overflow in the same task. The
telecomm workload always had multiple tasks overflowing
in different overflow spaces, never generating holes. These
results indicate, that a hole compaction scheme will not yield
significant benefits for our scheme.

An experiment is also performed to calculate the average
number of pages in multiple-page allocations. This number
depends on the frame sizes of the overflowing procedures
and the page size used. With 128-byte pages, we observed
the maximum number of pages allocated is just four in the
network multi-tasking workload, with the median being 1,
and the average close to 1.25.

7. CONCLUSION
This work presents a method for reusing stack across tasks

in a multi-tasking embedded system whose main goal is to
improve the reliability of such systems in case of out-of-



memory errors. This is achieved by sharing stack across
multiple tasks in case of stack overflow through the use of
an innovative paging system. Results indicate that the over-
heads of our scheme in the common case of no overflow are
extremely low: the run time, code size and energy consump-
tion are 1.8%, 2.6% and 1.2% on average. Our scheme is able
to recover 47% space on an average for the overflowing task
in the multi-tasking workload. Alternately, when MTSS is
used to reduce the amount of physical memory in the system
instead of increasing reliability, it is able to reduce the stack
space required by 18% on average for our workloads. Our
scheme provides good real time guarantees, and therefore
can be used for real-time systems.

In future work, we wish to explore the effect of MTSS on
presence of pages of multiple sizes, rather than one fixed
size. We also wish to explore the effect of different types of
task scheduling on MTSS.
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