
Static Binary Rewriting without Supplemental
Information

Overcoming the Tradeoff between Coverage and Correctness

Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, Rajeev Barua
Department of Electrical and Computer Engineering

University of Maryland, College Park, USA
{msmithso,wazeer,kapil,akotha,barua}@umd.edu

Abstract—Binary rewriting is the process of transforming
executables by maintaining the original binary’s functionality,
while improving it in one or more metrics, such as energy use,
memory use, security, or reliability. Although several technologies
for rewriting binaries exist, static rewriting allows for arbitrarily
complex transformations to be performed. Other technologies,
such as dynamic or minimally-invasive rewriting, are limited in
their transformation ability.

We have designed the first static binary rewriter that guar-
antees 100% code coverage without the need for relocation
or symbolic information. A key challenge in static rewriting
is content classification (i.e. deciding what portion of the code
segment is code versus data). Our contributions are (i) handling
portions of the code segment with uncertain classification by
using speculative disassembly in case it was code, and retaining
the original binary in case it was data; (ii) drastically limiting the
number of possible speculative sequences using a new technique
called binary characterization; and (iii) avoiding the need for
relocation or symbolic information by using call translation at
usage points of code pointers (i.e. indirect control transfers),
rather than changing addresses at address creation points.
Extensive evaluation using stripped binaries for the entire SPEC
2006 benchmark suite (with over 1.9 million lines of code)
demonstrates the robustness of the scheme.

I. INTRODUCTION

Reverse engineering binary executable code is common-
place today, especially for vulnerable code, untrusted code,
and malware. Agencies as diverse as anti-virus companies,
security consultants, code forensics consultants, and law-
enforcement agencies routinely attempt to understand and/or
rewrite binary code. Binary code is often examined because
either (i) the source code is not available (such as for IP-
protected commercial code, third-party code, or malware); (ii)
the source code has been lost; (iii) the end-user of the binary
rewriter does not trust the developer, and wants independent
verification of the code; or (iv) the compiler does not offer the
security guarantees needed. If capable binary rewriters become
available, we envisage growth in the areas of analyzing third-
party binary code for vulnerabilities [1], and rewriting the code
to plug those vulnerabilities. We also anticipate increasing use
in the area of enforcing security via added checks in third-
party code [2, 3], including potentially untrusted code. Outside
of security, a potential use of binary rewriting exists for
recovering source code from legacy software. It is a common
occurrence for legacy software, which is often decades old,

to have the source code become unavailable. This happens
because of a variety of reasons including poor record-keeping,
employee turnover and retirement, corporate mergers and re-
structuring, and loss of records. Sometimes even if the source
code is available, it becomes unusable because it relies on an
old build environment which cannot be re-created today.

To a lesser extent, binary rewriting has also been proposed
for program optimization. Efforts in using binary rewriting
for optimization include inter-procedural optimization [4, 5],
cache optimization [6], program parallelization [7], software
caching [8], and distributed virtual machines for networked
computers [9].

Existing binary rewriting frameworks have failed to deliver
a platform that is capable of meeting the full vision of
binary rewriting as described above. This includes both static
rewriters, which rewrite an executable into another executable
without running it; and dynamic rewriters, which rewrite
binaries during their execution into a temporary code cache. To
understand the shortcomings of existing rewriters, we note that
in order to perform the various tasks above, a binary rewriting
framework must satisfy at least the following four criteria:

• Complete code coverage A good rewriter should ensure
that 100% of the code can be rewritten if desired. The
fraction of the code that they can rewrite is called the code
coverage. Covering all the code is important especially for
security applications where non-rewritten code may hide
harmful behaviors that cannot be analyzed or corrected by
the rewriter. It is also important for legacy code, where the
recovered source code for the entire application is required.
It is also needed for code optimization, where unknown side
effects in non-rewritten code may inhibit optimizations.

• Guaranteed correctness For obvious reasons, the code
produced by the binary rewriter should execute correctly.

• Analysis and transformation ability The rewriter should
be capable of statically analyzing and transforming the code
as needed, just like in a compiler. Deep static analysis and
transformations require the precise and correct recovery of
all the code, a relatively high-level intermediate representa-
tion of the binary code amenable to analysis, and adequate
time to do the analysis. Indeed deep analysis is needed just
to discover many source-level (high-level) artifacts from the

978-1-4799-2931-3/13/$31.00 c© 2013 IEEE WCRE 2013, Koblenz, Germany52

binary, such as variables, types, functions, arguments, and
return values. Deep analysis is needed in many security
applications to discover program vulnerabilities; perform
information flow tracking; and reason about the behavior
of untrusted code. Deep analysis is also helpful for cer-
tain program optimizations since they require knowledge
of source-level artifacts. Further, recovering source-level
artifacts from binaries requires complex transformations
such as type recovery, variable detection, and argument and
return values detection. Transformations are also required
for many security schemes and optimizations.

• Should work on stripped binaries The rewriter should
be able to rewrite stripped binaries, i.e. those without relo-
cation or symbolic information. Static relocation entries are
processed and then (unless explicitly instructed otherwise)
discarded by the linker. As a result, almost all production
binaries do not contain this information.

Surprisingly, the above four criteria are not all simultane-
ously met by any single rewriter today. In particular, existing
static rewriters cannot ensure complete code coverage; often
make unsafe assumptions that may break correctness; and
cannot rewrite stripped binaries. Dynamic rewriters also do not
ensure 100% code coverage; only have the time for the most
rudimentary forms of program analysis and transformations;
produce no durable output code; and most analysis conclusions
they do reach are generally input-data-dependent.

To understand the drawbacks of existing rewriters, it is
helpful to understand a key problem in binary rewriting: distin-
guishing code from data. We call this the content classification
problem. Content classification is difficult because binary
executables contain not code, but also data. This includes
data which may be buried inside code sections at any location
where control does not flow to. Examples of such data include
literal constants, jump tables, and literal tables. For coverage,
rewriters must recognize and rewrite all of the code; however
for correctness they must rewrite none of the data mistakenly
as code, since data must be preserved.

In the following sections, we present the underlying tech-
nologies of our binary rewriter known as SecondWrite. Sec-
ondWrite is the first static binary rewriter that guarantees
100% code coverage without the need for relocation or
symbolic information. Our contributions are (i) a speculative
approach for handling portions of the code segment with
uncertain content classification; (ii) drastically limiting the
number of speculative sequences by introducing a technique
known as binary characterization; and (iii) avoiding the need
for relocation or symbolic information by using address trans-
lation at usage points of code pointers (i.e. indirect control
transfers), rather than changing addresses at creation points.

This paper differs from previous publications related to
SecondWrite. Previous publications focused on automatic par-
allelization [7], symbol promotion [10], variable and function
argument recognition [11], and security check insertion [3].
None of these publications deal with the underlying problem
of disassembling and rewriting binaries without relocation

information, the main topic of this paper. However, before
presenting our solution, we first look at existing rewriting
approaches in more detail, in light of the criteria above.

A. Dynamic Rewriting

Dynamic rewriting technologies can be found in rewriters
such as Pin [12], Bird [13], and DynInst [14]. These tools
perform disassembly, analysis, and transformation while the
target program is executing. The code is rewritten to a tem-
porary cache in binary form. No durable code is output. The
benefit of dynamic rewriting is that content classification (i.e.
distinguishing code from data) is delayed until runtime, where
it is easy since only code that is actually executed is rewritten.
Dynamic rewriters have seen some commercial success such
as in the use of DynamoRIO by Determina Inc. for its
security checks on control flow, because of their applicability
to arbitrary binaries without relocation information.

The main drawback of dynamic rewriters is that they do
not have the time to run complex tasks required by many
analysis techniques since the analysis time gets added to the
application run-time. Binary rewriters require many complex
analyses to recover source features and analyze the program;
such required analyses include type recovery, symbol analysis,
alias analysis, and information flow tracking. As a result of
this drawback, uses of dynamic rewriters has been restricted
to simple tasks such as code instrumentation and peep-hole
optimization, since they cannot afford to run more complex
tasks.

A second drawback is that dynamic rewriting often has
high overheads even without complex analyses. For example,
reported overheads range from 20% for DynamoRIO [15] to
54% for Pin [12]. A third drawback of dynamic rewriters is
that they only rewrite the code that is reachable with the given
input data set, and therefore any deductions they make are only
valid for that input data. Hence they are limited in their ability
to draw any general conclusions about the program’s behavior.

B. Static Rewriting

Static binary rewriting technology can be found in rewrit-
ers, disassemblers, and link-time optimizers such as IDA
Pro Disassembler [16], objdump [17], OM [18], Atom [19],
Spike [20], Diablo [21], Alto [5], and PLTO [4]. These
technologies are designed for rewriting code offline. Given
their offline nature, they have the time to perform complex
analysis and transformations.

A major challenge with static rewriting is content clas-
sification (also known as distinguishing code from data),
which other research has determined to be ‘unsolvable’ [22]
statically. To understand why, consider that there may be
data buried inside code sections. Hence static techniques are
used to discover what portions of the binary program are
code so that they can be rewritten, while preserving the data
without modification. In general the only way to prove that
a sequence of bytes in the program is code is to discover a
guaranteed control-flow path from the program’s entry point
to that sequence of bytes. This method is called recursive

53

traversal. This is statically easy to do only via direct control-
flow transfer instructions (CTIs). For indirect CTIs, i.e. those
whose address is decided at run-time, it is hard to prove which
addresses may be chosen, and hard to prove that any possible
control-flow path will actually be taken with some input data
set. Without these guarantees, many code targets cannot be
proven, leading to incomplete code coverage.

Another problem with static rewriters is that all instruction
locations may move after rewriting. Handling such instruction
movement means stripped binaries cannot be rewritten, since
existing static schemes use relocation or symbolic informa-
tion. To see why, consider that with instruction movement,
all indirect control-transfer instructions (CTIs) must jump to
moved addresses. To do this all existing static rewriters rely
on updating all address creation points (ACPs) in the binary,
which are the points the addresses of indirect CTIs are created.
However, the location of ACPs is not apparent, and requires
relocation or symbolic information to derive a list. As a result,
stripped binaries cannot be rewritten.

A third drawback of static rewriting is that they often make
unsafe assumptions that may violate correctness. For example,
Harris et al [23] assumes that instruction sequences that appear
to be function prologues are, in fact, function prologues. This
is an unsafe assumption since a portion of the binary file that is
not a function (such as data) may nevertheless coincidentally
have a sequence of bytes that looks like a function prologue.
If this happens, the output code of the rewriter will be wrong.
Another common behavior is that jump tables are recognized
using compiler-specific patterns in the binary code. However
these heuristics may fail, leading to incomplete coverage or
wrong output, depending upon subsequent handling.

C. Minimally-Invasive Rewriting

Minimally-invasive rewriting, found in rewriters such as
Etch [24], is a static approach that works on stripped binaries,
but sacrifices coverage and the ability to perform complex
transformations. In this approach, the binary image is kept
mostly unchanged; as a result all targets of indirect control
transfers remain in place. Hence no ACP translation is needed,
so stripped binaries work. However they still suffer from the
same problem of incomplete code coverage that all other
static rewriters have. Moreover the requirement to keep the
code mostly unchanged greatly hampers the ability to apply
transformations. As a result only minimal transformations are
allowed, such as the insertion of ‘trampolines’ to jump into and
out of instrumentation blocks [14], and peephole optimizations
affecting small sequences of instructions.

D. Our New Approach

We present a new static binary rewriting technology that can
support arbitrarily complex transformations, provides 100%
code coverage, makes no unsafe assumptions, and works for
stripped binaries. This allows rewriting to achieve its full
potential. The key idea behind our approach is avoid the un-
solvable problem of content classification by treating portions
within the code segment that cannot be definitively classified

as both code and data. Unclassified portions are disassembled
as speculative code. They are also copied, unmodified into the
output binary, and loaded to their original memory locations,
so that any data references to the unclassified portions will
continue to work. The need for relocation information is
avoided by not updating ACPs; instead, indirect CTIs are
translated at run-time using a light-weight address translator.

Our technologies are applicable to any static rewriter. How-
ever our evaluation platform is SecondWrite, which relies
on other technologies we have developed, such as those to
convert binaries to a high-level intermediate representation
(IR) [10, 11]. High-level IR is helpful for allowing effective
static analysis and transformations of the code. However it is
not essential for the functioning of the method in this paper.

We recognize that rewriting all programs statically is a very
challenging problem. This work should be seen as what it is:
the first successful attempt to build a static rewriter which can
rewrite stripped binaries while guaranteeing both correctness
and complete code coverage. Statically handling every pro-
gram in the world may still be an elusive goal. Legitimate
binaries (which are the main target of this work) are easier
to rewrite, but regarding malwares, some are obfuscated or
packed; unpacking tools such as Quick unpack [25] may need
to be run in advance. We expect future work incorporating
dynamic feedback to the static rewriter will be helpful in
such cases. Nevertheless, we believe that expanding the scope
and practicality of static rewriting in this paper is a valuable
contribution to the community.

II. RELOCATING INSTRUCTIONS

Let us consider how static binary rewriters account for
instructions or data that move upon rewriting. Load and store
instructions reference locations containing data. Branches and
calls reference locations containing other instructions. Rewrit-
ers must first identify the places in the binary where constant
target addresses are stored, which we refer to as address
creation points (ACPs), and secondly adjust the addresses to
account for any movement.

In some cases, the identification of ACP locations is trivial.
Consider direct control transfer instructions (CTIs), such as
direct branches and direct calls. For these instructions, the
ACP is found directly following the instruction opcode in the
binary. However, for indirect CTIs, the ACP is decoupled from
the opcode. The ACP may exist in some remote location in the
binary, where it is passed through a variety of mechanisms (via
registers, memory, function arguments, global variables, etc.)
to the usage site (i.e. the indirect call). Thus, the identification
of ACPs for indirect CTI is non-trivial.

To overcome the problem of ACP identification, assisted
static rewriters rely upon supplemental information. Often, this
supplemental information comes in the form of static reloca-
tion entries. Because absolute addresses are not computable
until the linking phase, the compiler will instead generate
a relocation entry wherever an absolute address is required.
These entries direct the linker to generate absolute addresses
at certain locations within the binary. As a result, the set of

54

relocation entries reveals all of the absolute ACPs within the
binary. For those ISAs, such as Intel’s x86, which do not sup-
port PC-relative indirect addressing for CTI instructions, this
list of absolute ACPs is sufficiently comprehensive to account
for all indirect CTI targets. Thus, to account for instruction
relocation, assisted static rewriters can simply iterate across
the list of relocation entries, updating each ACP with the
associated address in the rewritten binary.

Our goal is binary rewriting without relocation entries.
Unlike traditional static rewriters, we handle indirect address
translation by updating the address usage point instead of the
address creation point. This solution, applying usage point
translation to a static rewriting technology, is a central novelty
to our scheme.

Before expanding upon our approach, let us first consider
the alternatives. Without relocation entries, an initial approach
would be to scan the binary for instruction operands that ap-
pear to be addresses. Unfortunately, because a binary contains
no information about operand types, it is difficult to determine
whether an operand represents a constant data value or the
address of an object.

Consider the following move instruction:

0x8200: mov $0x8900, %eax

Assume that in the original binary, address 0x8900 corre-
sponds to the base address of function foo, and that function
foo was subsequently rewritten to a different location. It would
be unsafe to modify the above move instruction’s operand to
point to the new location of foo, unless we can somehow prove
that the operand actually represents an address rather than a
data value 0x8900 that coincidentally looks like an address.
Suppose that we did choose to modify the operand, but the
operand was actually representative of a data value (perhaps
a loop bound). In this case, the rewritten program would be
incorrect.

On the other hand, if we choose not to update the operand,
but the operand actually did represent the address of foo (an
indirect call operand), then the program will also be incorrect.
In this case, the rewritten operand would point to foo’s original
(now incorrect) location. Thus, in order to take the same
approach as assisted rewriters and update ACPs statically, we
must be able to definitively prove a value to be an address and
not a constant data value.

Unlike static ACP translation, our usage point translations
approach avoids the requirement of definitively identifying
ACPs in the binary altogether. Identification of indirect address
usage points is trivial, as these instructions are readily revealed
by their opcodes. In order to adjust the address operands for
these instructions, we introduce the notion of a translator.

Translators are comprised of code that is inserted directly
into the intermediate representation just prior to every indirect
CTI. Translators examine the indirect CTI operand and provide
an appropriate adjustment to effectively translate the original
address into the corresponding address in the rewritten binary.
Since no translation is done for data values, they remain
unchanged.

Consider the following indirect call:

call *fp;

In the intermediate representation for the rewritten binary,
the indirect call would be prefaced with its associated call
translator. Consider the following example of a 2-entry call
translator where the rewriter is able to statically prove that
fp can only point to foo (located at address 0x8300 in the
original binary) or bar (located at address 0x8400). Larger
target sets are accommodated by simply adding additional
cases. In this example, the symbols foo and bar represent the
created function symbols in the rewritten IR.

if (fp == 0x8300):
fp_modified = &foo;

else if (fp == 0x8400):
fp_modified = &bar;

else:
assert(false);

call *fp_modified;

To guarantee correctness, a translation must be provided for
every possible target of the indirect CTI. Before we discuss
how these target sets are generated, it is significant to first
point out that the usage point translation approach allows
for the inclusion of extraneous translations without sacrificing
correctness. Extraneous targets are those which the associated
indirect CTI never actually targets. Assume in the previous
example that foo is not an actual target for fp. In this case,
including foo in the translator is useless, as that particular
translation will never be executed. However, the presence of
the foo translation does not jeopardize correctness. This notion
is important, because it allows us to construct the target list
for each CTI in a conservative manner. We will leverage this
feature by assuming, for now, that an indirect CTI may target
any location in the code section. In this way, we guarantee
that we will always rewrite 100% of the binary’s code.

Clearly, any usage point translation will introduce run-time
overhead. Indeed the translation code as shown above with
cascading if-else statements will have high overheads when
the number of possible targets is large. There we do not use
the code structure above.

Instead, we store translated addresses in a table which we
can access with O(1) overhead, regardless of the number of
targets. Our table contains an entry, for each byte offset within
the code section. Each entry stores the translated address for
the associated byte offset. For the x86 ISA, which uses 32-bit
addresses, each table entry requires 4 bytes of space, yielding a
translation table that is 4 times the size of the original binary’s
text section. Later, we will present techniques for eliminating
a vast number of possible indirect CTI targets. This has the
effect of producing a large number of unused (empty) entries
in the translation table. In this case, a more dense hash table
structure could be used to store the translated addresses, at the
potential expense of additional runtime overhead in order to
check for collisions.

55

III. RELOCATING DATA

The previous section discusses how instruction references
are adjusted to account for movement during rewriting. How-
ever, the solution did not address indirect data references.

Our approach maintains correctness of indirect data ref-
erences by prohibiting movement of data targets during the
rewriting process. This is realized by maintaining the original
data segments in the rewritten binary for subsequent loading to
their original address locations. The original code segment is
also preserved in a similar fashion, as it may contain embedded
data. Stack and heap segments are not part of the input binary
and their addresses are run-time determined; hence there is no
need to anchor these segments during rewriting.

Note that this approach leads to some duplication. The origi-
nal code segment will exist in the rewritten binary alongside its
functionally-equivalent rewritten copy. Our results show that
despite this size increase, the runtime overhead of our scheme
was measured to be negligible.

IV. CODE DISCOVERY

In addition to instruction relocation, binary rewriters must
overcome the challenge of identifying which portions of
the binary contain instructions. Our approach addresses this
challenge by employing a technique known as speculative
disassembly. Before explaining our speculative technique in
more detail, let us motivate the problem and discuss the issues
in more detail.

At first glance, the process of code discovery appears to
be trivial. Binaries must adhere to common file formats such
as the Executable Linking Format (ELF) or the Portable
Executable (PE) format in order to facilitate loading by a target
operating system. These file formats will typically require the
program to be separated into executable code segments and
non-executable data segments.

However, this simplistic view is complicated by the presence
of data embedded within the code segment. Data can appear
in the code segment for a variety of reasons, including jump
tables, padding bytes, alignment bytes, and literal tables. Thus,
it cannot be assumed that the code segment is comprised solely
of instructions alone.

One code discovery algorithm is known as linear sweep [26,
17]. This algorithm marches through a region, disassembling
each location in a linear fashion. However, this algorithm
will disassemble past unconditional branch instructions. This
can lead to situations where the algorithm disassembles into
a region of embedded data, (incorrectly) disassembling the
contents of the data region as if it contained instructions.

A more appropriate code discovery algorithm for binary
rewriting is recursive traversal [26], which discovers code
by following only valid control-flow edges. As CTIs are
encountered, recursive traversal continues discovery at the
CTI target locations, rather than at the subsequent file offset.
Unfortunately, the targets of indirect CTI are not readily
identifiable statically. As a result, recursive traversal cannot
continue discovering code past these instructions. Our findings
show that recursive traversal alone covers less than 1% of the

binary due to indirect CTI present in compiler-inserted startup
code.

The previous section discussed how static rewriters use
relocation entries to identify indirect CTI targets stored at ad-
dress creation points (ACPs). Thus, assisted static rewriters can
rely upon relocation entries (or their equivalent) to guarantee
complete code discovery.

However, our goal is to perform complex transformations on
arbitrary binaries, requiring complete code discovery without
access to relocation entries. Previously, we assumed that
indirect CTIs could target any location. We indicated that this
conservative approach might produce extraneous translations,
but would not sacrifice correctness. However, extraneous CTI
targets imply that disassembly will occur at locations not
necessarily guaranteed to be targets, and which in some cases
may actually not contain valid instructions at all.

To correctly handle portions of the code segment which
we are not sure are code or data, we perform speculative
recursive traversal disassembly on those portions as if they
contained instructions, even though that is not guaranteed to
be the case. Since we employ usage point translation rather
than creation point translation, and retain a copy of the original
code segment, our method maintains correctness as we show
next.

Let us examine how our method would handle a portion
of data mistakenly identified as a possible indirect CTI target.
First, it will be speculatively disassembled as if it contained
instructions. A translation will be inserted in the associated
translator, pointing to the newly-disassembled instructions in
the IR. Because the target region was actually data, the
original indirect CTI could not have actually targeted the
location. Thus, in the rewritten binary, the translator will never
redirect execution to the speculatively-disassembled sequence,
thus maintaining correctness. As mentioned previously, we
maintain a copy of the original code segment in place in order
to guarantee that any data references to this region will also
maintain their correctness.

Although other research has used speculative techniques
for code discovery in order to increase code coverage [27],
our method is the first to incorporate speculation with usage-
point translation in order to guarantee both 100% disassembly
coverage while also maintaining correctness.

The speculative disassembly process can help to reduce
the target set size for a given indirect CTI through the
identification of invalid speculative code sequences. Invalid
sequences are identified as violating certain characteristics of
well-formed code, such as containing control flow inconsistent
with known code (non-speculative) sequences. For example, a
speculative sequence containing a branch into the middle of a
known code instruction would qualify as containing inconsis-
tent control flow. Additionally, encountering an invalid opcode
would be sufficient to classify a sequence as invalid. Once
identified, invalid sequences are pruned from the intermediate
representation and removed from their associated translators.

We prune invalid code sequences from the IR. On average,
we eliminate only 3.7% of speculative code sequences using

56

this technique. The number that can be pruned is low, as the
x86 ISA has few invalid opcodes, and only a small portion of
the binary is categorized as ’known code’ due to the presence
of indirect CTI within startup code. The following sections
will discuss additional mechanisms for reducing the target set
size for a given indirect CTI.

V. OPTIMIZING TARGET SETS

Sections II and IV presented an approach for discovering
and relocating code statically and without supplemental in-
formation. Although the technology guaranteed correctness of
the rewritten binary, it is extremely conservative in identifying
indirect CTI targets. This section identifies the downsides to
this conservative approach, and presents some solutions, the
most powerful of which is a new technique known as binary
characterization.

Without further optimization of the speculative target set,
our technique would be forced to accept every offset within
every gap as a potential starting point for a speculative func-
tion. Restarting disassembling at every offset is a technique
referred to as ‘speculative completion’ [27]. Extraneous targets
increase code size, and also increase the complexity of the
intermediate representation by introducing unnecessary control
flow edges, which can hinder inter-procedural transformations.
Most importantly, introducing too many extraneous targets can
lead to very large IR, prohibiting the ability of our scheme to
realistically scale to large binaries. To address these concerns,
we can apply the following techniques for reducing the size of
indirect CTI target sets through the elimination of false targets.

A. Constant Propagation

Constant propagation is a dataflow optimization where the
use of a variable assigned to only a single constant is replaced
by that constant. Indirect call target identification via constant
propagation is a technique used by DeSutter et. al. [26]. It was
discovered that the targets of 92% of indirect calls could be
discovered via propagation. However, these particular results
are heavily reliant upon the Alpha architecture, where all
inter-modular calls are made via indirect CTI. As a result,
a vast number of indirect calls have only a single target.
Unfortunately, compilers for other architectures, such as x86,
tend to introduce indirect calls only when multiple targets are
possible. In these situations, constant propagation does not
apply.

B. Binary Characterization

One key novelty to our entire scheme is a new technique
to effectively eliminate the vast majority of presumed indirect
CTI targets. Our technique, termed binary characterization,
leverages the restriction that indirect CTI require an absolute
address operand, and that these address operands must appear
within the code and/or data segments. As discussed previously,
in a stripped binary without type information, it is not always
possible to prove whether a data location is an address (and not
constant data). However, it is sometimes possible to prove that
a location is not an address. Thus, it is possible to generate

a reduced list of values that may represent addresses. This
address list will be guaranteed to be a superset of the actual
list of indirect CTI targets.

Binary characterization generates this list of possible ad-
dresses by first constructing a valid address range. The ex-
ecutable provides both the base virtual address and the size
of the code segment. Together, these values form the basis
for the binary’s virtual address range. The contents of the
code and data segments are subsequently scanned for binary
patterns that could represent addresses within the constructed
range, taking into account the endian-ness and native address
size of the underlying instruction set architecture. The result
is a list of values guaranteed to contain, at a minimum, all
of the indirect CTI targets. Although the list may still contain
extraneous targets, binary characterization can still eliminate
a significant number of potential targets. Our results show
that binary characterization alone eliminates 99.88% of all
speculative targets.

Binary characterization is only appropriate for reducing tar-
get sets in those situations where addresses are not calculated
at runtime. This will be explored further (see section VIII).

C. Alias Analysis

Constant propagation is sometimes able to propagate in-
direct CTI operands directly to their usage sites in rare cases
where the indirect CTI has only a single target. However, most
indirect CTI exist specifically because they contain multiple
targets can cannot be effectively expressed as a direct CTI. In
these situations, a more robust analysis is required for tracing
operands to their usage sites.

Alias analysis is a dataflow analysis that can identify which
locations can be pointed to by each program address (such as
a CTI operand). Alias analysis can provide information about
which ACP may be contained within a CTI operand even if
the operand is passed through global memory locations, the
stack, function arguments, or registers. We leverage the results
of Andersen’s algorithm [28] for alias analysis by examining
each indirect CTI operand against each entry in the reduced
set of CTI targets provided by binary characterization. This
allows for the elimination of CTI targets that are guaranteed
not to alias a particular CTI operand. In cases where alias
analysis discovers that an indirect CTI operand may alias a
set of targets, those entries not included in the ‘may alias’ set
can be eliminated from the indirect CTI’s translator.

Further optimization is possible in special situations. When
alias analysis discovers a single target that must alias a partic-
ular indirect CTI operand, the indirect CTI can be promoted
to a direct CTI. In situations where a set of targets is known to
‘must alias’ an operand, traditional creation point translation
can be used in favor of usage point translation.

VI. FUNCTION BOUNDARIES

Although the correctness of our scheme is not reliant
upon reconstitution of the function boundaries present in the
original binary, our disassembly process does split the IR into
individual functions at the following locations:

57

• The targets of direct CALL instructions
• Binary characterization entry points
• BRANCH targets where a function lies between the

instruction and the target

Note that because indirect branch targets will appear as
binary characterization entry points, jump table targets will be
extracted into separate functions. Although this does create IR
that appears different from the original, it remains functionally
equivalent. If desired, heuristics that identify jump tables [29]
can help recover function boundaries more representative of
the original binary.

VII. CALLBACKS

So far, we have used usage-point translation of target
addresses at indirect CTIs to account for instruction movement
during rewriting. However this is not possible for callbacks.
A callback happens when a function pointer is passed as an
argument to an external library function. Later the library
function calls the pointed-to function in the application, which
is the callback event. This section presents an optimized
solution for handling most callbacks (static ACP translation),
as well as fall-back solutions to handle the remaining cases.

Let us first understand why callbacks present a problem to
static binary rewriters. Because callbacks to application func-
tions are executed outside of the application being rewritten, a
static rewriter cannot translate the address at the point of call.
Without modification, this address will refer to the function’s
address in the original binary, not the rewritten binary, leading
to incorrect execution.

There are two possible solutions to the problem of un-
translated callback function addresses. In the first solution,
we identify callbacks by finding function pointer arguments
passed to external library calls. However, identifying argument
types requires prototype information to be available, which
is not generally available within in the binary itself. We use
a solution where we have collected the prototypes of all
standard libraries, such as C run-time libraries and Win32 API
libraries. Once the callback arguments have been identified,
our tests show that on average, 82% of callback arguments are
constants, allowing SecondWrite to perform static translation.
For the remaining non-constant arguments, instructions are
inserted to translate the callback address just prior to making
the library call.

However, in the rare situation in which prototype informa-
tion is not available for a particular library function

, it is unsafe to modify call arguments. When untranslated
functions perform callbacks, they will target the original code
segment. SecondWrite avoids execution within the original
code segment by marking the segment as non-executable.
During execution, any callback to the original code causes the
operating system to produce a segmentation fault. To ensure
correctness, we register a custom segmentation handler during
startup which translates all original code addresses to rewritten
code addresses using our translator and then restores control
flow to the proper location within the rewritten code segment.

VIII. LIMITATIONS

Thus far, we have presented an approach for performing
static binary rewriting without relocation information. This
approach guarantees correctness of any rewritten binary, aside
from three limitations. First, like most static binary rewriters,
self-modifying code is not handled. Existing methods [30]
could be integrated to statically detect the presence of runtime
code generation and prevent rewriting.

Second, our technology does not handle binaries containing
obfuscated control flow. This technology relies upon the re-
cursive traversal discovery algorithm, and assumes that CTIs
exhibit normal behavior. For example, it is assumed that return
addresses are not modified after being pushed onto the stack
by a CALL instruction.

Additionally, our approach does not address control flow
introduced as a result of software exceptions. Typically, com-
pilers will store information about code execution within
the binary in order to facilitate stack unwinding at runtime.
Additional analyses, such as the examination of compiler-
specific exception handling data, are necessary to maintain
exception handling support in a static rewriter. Although we do
not address exception handling, our approach does not prevent
these analyses from being incorporated.

Finally, binary characterization, introduced below, assumes
that absolute addresses will appear statically within the binary,
and will not be assembled at runtime. There are two cases
where runtime-computed addresses may be found in binaries.

A. Position Independent Code (PIC)

Shared system libraries may be compiled in a position-
independent fashion in order to allow applications to map
shared code to different base virtual memory addresses. In
situations where local functions and data are indirectly refer-
enced within position-independent code, the target address is
computed at runtime. We have begun drafting a solution that
will detect and track address-computing PIC instructions. Our
solution will be investigated in future work.

B. Certain Jump Tables

Compilers use jump tables to implement dense switch
statements. The typical implementation is to store the address
of each case’s code entry point in a table. The input value is
used as an index into the table of absolute addresses. Although
the address used to access the table is calculated at runtime,
it does not present a problem, as this is a data reference.
Importantly, the indirect control flow target addresses are all
statically calculated.

However, an alternate implementation is possible where the
basic block targets themselves (and not their addresses) are
arranged in the form of a table. In this instance, an address
constructed at runtime is used as an indirect CTI operand,
and the absolute target addresses do not appear in the binary.
This is a much more complex approach to implement, and
only serves to eliminate one indirect reference. This approach
would require the code for each case to be compiled and
measured for size prior to constructing the address calculation.

58

Nevertheless, such an implementation is possible, and would
require introduction of a heuristic to support within our
scheme.

IX. IMPLEMENTATION

The technologies presented herein have been implemented
as the basis for the disassembly within our binary rewriter
known as SecondWrite. SecondWrite integrates binary rewrit-
ing technology with the LLVM [31] compiler by disassembling
input binaries into LLVM’s intermediate representation (IR).

The original binary is disassembled into an IR along with
supporting metadata. Next the IR is passed through a series
of generic and binary aware analyses and transformations,
such as alias analysis, constant propagation, data set analysis,
and usage point translator refinement (target set reduction).
The resultant IR is sent through code generation, where it
undergoes a process of (re)compilation, including instruction
selection and register allocation. Finally, the rewritten object
code, along with memory placement restrictions (specifying
locations for the original copies of the code and data segments)
are provided to the linker in order to produce the output binary.

Although SecondWrite converts the input binary to high-
level IR, our scheme does not rely on such a conversion. Our
method can be applied equally to rewriters such as PLTO [4],
which maintain a lower-level representation of the binary
throughout the rewriting process.

Figure 1 shows a simplified overview of an example rewrit-
ten binary. The figure shows the original code and data
segments retained in the output binary. The rewritten binary
contains a combination of functions guaranteed to be code (A
and C), and speculative functions (B). The binary also contains
a callback and its associated stub that serves to preserve the
original function prototype. Function A contains an indirect
call, which is illustrated by the edge to the call translator,
which then redirects control flow to either B or C.

X. RESULTS

We tested SecondWrite on the SPEC CPU2006 benchmark
suite, which includes 29 benchmarks written in C, Fortran,
C++ or some combination thereof. Each input benchmark
was compiled with gcc and then stripped of all symbolic
information and static relocation entries.

To test the main purpose of our scheme, correctness without
relocation information, each rewritten binary was tested for
correctness by comparing its behavior to that of the original
binary using the associated dataset. Test results indicated that
SecondWrite produced correctly functioning binaries, success-
fully rewriting the entire SPEC 2006 benchmark suite.

Our scheme produces successful results not just for trivial
binaries, but for binaries of significant size and complexity,
including gcc, xalancbmk, and gamess, each of which are
compiled from more than 200,000 lines of source code. In
total, the binaries tested collectively were compiled from 1.9
million lines of code as measured by SLOCCount.

Areas of each benchmark not guaranteed to be code were
measured. This is the area of the code segment (the gaps) that

Fig. 1: Example Rewritten Binary Layout

remains after traditional disassembly. On average, more than
99% of each benchmark remained after traditional recursive
traversal disassembly. This is due to the presence of indirect
CTI within the startup sequence inserted into each binary dur-
ing compilation. Therefore, the only code directly reachable
from each binary’s external entry point is a portion of the
startup code, leaving the vast majority of each binary to be
disassembled speculatively.

In order to calculate the effectiveness of binary characteriza-
tion, we calculated the number of entry points identified by this
technique. As presented earlier, without target set optimization,
every offset of every gap would be a potential starting point
for a speculative function. For the SPEC benchmark suite,
on average binary characterization was able to successfully
eliminate 99.88% of all speculative targets. Without this reduc-
tion in targets, the IR would have ballooned in size, rendering
rewriting infeasible. On average, our scheme produced a 55%
increase in the number of functions and a 44% increase in
code size for instructions versus the input binary.

Figure 2 identifies the number of indirect CTI in each binary
as discovered by SecondWrite. This includes all indirect jump
and indirect call instructions encountered during disassembly,
including speculative disassembly. Some binaries (typically
the smaller programs), contain only a few indirect CTI while
others such as xalancbmk, contain many thousands.

Figure 3 identifies, for each binary, the percentage of
runtime spent performing indirect call translation as measured
by Perf, a profiler tool for Linux. The overhead is broken
into two portions : time spent translating the target address
(address overhead) and time spent pushing memory arguments
onto the stack (argument overhead). Our address overhead
was found to be on average .08%. Only this first overhead is
inherent to our scheme, and it would be the only overhead
if our scheme were applied to most existing static binary

59

1 10 100 1000 10000 100000

bzip2
gcc

gobmk
h264ref
hmmer

lbm
libquantum

mcf
milc

perlbench
sjeng

sphinx3
cactusADM

calculix
gromacs

wrf
astar

dealII
namd

omnetpp
povray
soplex

xalancbmk
bwaves
gamess

GemsFDTD
leslie3d

tonto
zeusmp
average

C

C
 /

 F
o

rt
ra

n

C
+

+

Fo

rt
ra

n

A
ll

Fig. 2: Static Count for Number of CTI Instructions

rewriters such as PLTO [4] and ATOM [19], which represent
the binary internally in a lower-level binary-like IR. This
overhead just translates original addresses at each indirect CTI
to their rewritten counterparts using the table lookup described
in section II. The overhead is low because indirect CTIs are
relatively rare, and the overhead of each translation is small
(a single table lookup).

The second overhead for address translation (on average
2.12%, but higher in C++ programs which have many indirect
calls) occurs only in SecondWrite since it converts binary
code to a high-level source-like IR (LLVM IR in our case).
SecondWrite does so because it has a more ambitious goal of
not just binary rewriting, but recovery of source code from
binaries. Therefore it performs register reallocation and does
not maintain a monolithic view of the original stack layout
from the input binary; instead SecondWrite dismantles the
stack to its component source code variables [10]. When the
stack is dismantled, the arguments to indirect calls must be
explicitly represented in high-level code. When the output code
from SecondWrite is compiled, the compiler then incurs addi-
tional overhead in copying these arguments from their original
locations to the argument locations of the new functions. This
argument overhead would not be present if our scheme were
to be applied to more traditional rewriters that did not seek to
break up the stack or reallocate registers.

Figure 4 shows the increase in the size of the rewritten
binary. The rewritten binary is comprised of three different
regions : rewritten code, translation table, and original content.
The rewritten code segments are observed to be 44% larger on

Fig. 3: Translator Runtime Overhead (as % of application runtime)
Programs in Figure 2 not shown here have zero overhead.

average than the original. This is expected due to the presence
of speculative code. For our testing, in order to minimize
callback translation runtime overhead, we chose to use the
sparse lookup table, which requires a table size of 4 times the
size of the original code segment.

In total, with sparse tables, the rewritten binaries were on
average 6.3 times larger than the input binaries. As discussed
in section IX, this code size increase can be greatly reduced
by using a dense hash table. Further, we have found the code
size overhead to not be a serious concern primarily because
most of the code size increase only exists in disk and virtual
memory, with minimal increases in physical memory and
cache footprint. This is because (i) invalid rewritten speculative
code is never accessed; (ii) the original code segment is never
executed; and (iii) translation tables are very sparse, so only
a small fraction of them are ever accessed. It is important to
note that the run-time overhead (measured above as negligible)
includes any run-time impact from increased code size.

Because we provided all necessary prototypes to Second-
Write for common external functions, such as the C and C++
standard library, were are able to statically translate more
than 82% of all callback arguments, and insert translations for
the remaining arguments. This optimization, and the fact that
callbacks are rare, results in negligible overheads for callback
address handling (less than .01% of the total runtime).

Researchers have leveraged our platform for many rewriting
applications, such as applying symbol promotion to realize
an average 8% speedup in previously-optimized binaries [10],
applying automatic parallelization to realize 2.2x speedup for
a subset of the PolyBench and Steam benchmark suites [7], and
the insertion of security checks into untrusted binaries [3].

XI. CONCLUSION

The challenge for static binary rewriting is to differentiate
portions of the binary that are code from portions that are data.
Without supplemental information (unassisted), it is impossi-
ble to statically disambiguate code from data all of the time
(complete coverage) with guaranteed certainty (perfect accu-
racy). Because of this, current approaches to static rewriting
are limited to providing limited coverage, reduced accuracy, or

60

0.00 2.00 4.00 6.00 8.00 10.00

bzip2
gcc

gobmk
h264ref
hmmer

lbm
libquantum

mcf
milc

perlbench
sjeng

sphinx3
cactusADM

calculix
gromacs

wrf
astar

dealII
namd

omnetpp
povray
soplex

xalancbmk
bwaves
gamess

GemsFDTD
leslie3d

tonto
zeusmp
average

C

C
 /

 F
o

rt
ra

n

C
+

+

Fo

rt
ra

n

A
ll

original

new code

translation table

Fig. 4: Rewritten Binary Size (vs. input binary size)

requiring additional information. This paper introduces a new
approach which eliminates the need to differentiate between
code and data, while still maintaining correctness. We have
implemented this approach as the basis for SecondWrite, the
first static binary rewriter that guarantees 100% code coverage
without the need for relocation or symbolic information. Our
contributions are (i) handling portions of the code segment
with uncertain classification by using speculation; (ii) binary
characterization, a technique for limiting the number of spec-
ulative sequences; and (iii) call translation at the usage points
of code pointers (instead of address creation points) to avoid
the need for relocation information.

REFERENCES

[1] Application Security testing - Veracode, http://www.veracode.com/.
[2] U. Erlingsson, “The inlined reference monitor approach to security pol-

icy enforcement,” Ph.D. dissertation, 2004, adviser-Fred B. Schneider.
[3] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D.

Keromytis, “Retrofitting security in cots software with binary rewriting,”
in IFIP SEC, 2011, pp. 154–172.

[4] B. Schwarz, S. Debray, and G. Andrews, “Plto: A link-time optimizer
for the intel ia-32 architecture,” in Proc. 2001 Workshop on Binary
Translation (WBT-2001), Sept. 2001.

[5] R. Muth, S. K. Debray, S. A. Watterson, and K. D. Bosschere, “Alto:
A link-time optimizer for the compaq alpha,” Software - Practice and
Experience, vol. 31, no. 1, pp. 67–101, 2001.

[6] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and
A. Yoo, “Metric: tracking down inefficiencies in the memory hierarchy
via binary rewriting,” in CGO ’03: Proceedings of the international
symposium on Code generation and optimization. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 289–300.

[7] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua, “Au-
tomatic parallelization in a binary rewriter,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’43, Washington, DC, USA, 2010, pp. 547–557.

[8] C. M. Huneycutt, J. B. Fryman, and K. M. Mackenzie, “Software
caching using dynamic binary rewriting for embedded devices,” in ICPP
’02: Proceedings of the 2002 International Conference on Parallel
Processing (ICPP’02). IEEE Computer Society, 2002, p. 621.

[9] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad, “Design
and implementation of a distributed virtual machine for networked
computers,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 202–216, 1999.

[10] K. Anand, M. Smithson, K. ElWazeer, A. Kotha, J. Gruen, N. Giles,
and R. Barua, “A compiler-level intermediate representation based binary
analysis and rewriting system,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13, 2013, pp. 295–308.

[11] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable
variable and data type detection in a binary rewriter,” in Proceedings of
the 34th ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI), Seattle, WA, 2013.

[12] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and
implementation, vol. 40, no. 6.

[13] S. Nanda, W. Li, L.-C. Lam, and T. cker Chiueh, “Bird: Binary
interpretation using runtime disassembly,” in CGO ’06: Proceedings
of the International Symposium on Code Generation and Optimization.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 358–370.

[14] Dynamic Program Instrumentation for Scalable Performance Tools.
Scalable High Performance Computing Conference, May 1994.

[15] D. Bruening, “Efficient, Transparent, and Comprehensive Runtime Code
Manipulation,” Ph.D. dissertation, MIT, 2004.

[16] IDA Pro Disassembler, http://www.datarescue.com/idabase/, DataRes-
cue, Belgium, 2007.

[17] Documentation for binutils 2.21, http://sourceware.org/binutils/docs-2.
21/binutils, Free Software Foundation, Boston, MA, USA, 2010.

[18] A. Srivastava and D. W. Wall, “OM: A practical system for intermodule
code optimization at link-time,” Journal of Programming Languages,
vol. 1, no. 1, pp. 1–18, December 1992.

[19] A. Eustace and A. Srivastava, “Atom: a flexible interface for building
high performance program analysis tools,” in TCON’95: Proceedings
of the USENIX 1995 Technical Conference Proceedings on USENIX
1995 Technical Conference Proceedings. Berkeley, CA, USA: USENIX
Association, 1995, pp. 25–25.

[20] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Spike: an opti-
mizer for alpha/nt executables,” in NT’97: Proceedings of the USENIX
Windows NT Workshop on The USENIX Windows NT Workshop 1997.
Berkeley, CA, USA: USENIX Association, 1997, pp. 17–24.

[21] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Boss-
chere, “Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Proceedings of the 2005 IEEE International Symposium
On Signal Processing And Information Technology. Athens: IEEE,
December 2005, pp. 7–12.

[22] R. N. Horspool and N. Marovac, “An approach to the problem of
detranslation of computer programs,” The Computer Journal, vol. 23,
no. 3, pp. 223–229, 1980.

[23] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,”
SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68, 2005.

[24] Instrumentation and Optimization of Win32/Intel Executables Using
Etch. USENIX Windows NT Workshop, August 1997.

[25] “Quick unpack.” [Online]. Available: http://qunpack.ahteam.org/
[26] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and B. De-

moen, “On the static analysis of indirect control transfers in binaries,” in
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, H. Arabnia, Ed., vol. 2. Las
Vegas: CSREA Press, 6 2000, pp. 1013–1019.

[27] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary
code,” SIGARCH Comput. Archit. News, vol. 33, no. 5, pp. 63–68, Dec.
2005. [Online]. Available: http://doi.acm.org/10.1145/1127577.1127590

[28] L. O. Andersen, “Program analysis and specialization for the c program-
ming language,” Ph.D. dissertation, University of Cophenhagen, 1994.

[29] C. Cifuentes, M. Van, E. C. Science, and E. Engineering, “Emmerik.
recovery of jump table case statements from binary code,” in Science of
Computer Programming, 2001, pp. 2–3.

[30] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Still: Exploit code detection
via static taint and initialization analyses,” in ACSAC. IEEE, 2008.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (GCO).

61

