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SUMMARY

Memory access violations are a leading source of unreliability in C programs. As evidence of this problem, a
variety of methods exist that retrofit C with software checks to detect memory errors at runtime. However,
these methods generally suffer from one or more drawbacks including the inability to detect all errors, the
use of incompatible metadata, the need for manual code modifications, and high runtime overheads. This
paper presents a compiler analysis and transformation for ensuring the memory safety of C called MemSafe.
MemSafe makes several novel contributions that improve upon previous work and lower the cost of safety.
These include (1) a method for modeling temporal errors as spatial errors, (2) a metadata representation
that combines features of both object- and pointer-based approaches, and (3) a data-flow representation that
simplifies optimizations for removing unneeded checks. MemSafe is capable of detecting real errors with
lower overheads than previous efforts. Experimental results show that MemSafe detects all memory errors in
six programs with known violations as well as two large and widely-used open source applications. Finally,
MemSafe ensures complete safety with an average overhead of 88% on 30 programs commonly used for
evaluating the performance of error detection tools. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Use of the C programing language remains common despite the well-known memory errors it allows.
The features that make C a desirable language for many system-level programing tasks—namely
its weak typing, low-level access to computer memory, and pointers—are the same features whose
misuse cause the variety of difficult-to-detect memory access violations common among C programs.
Although these violations often cause a program to crash immediately, their symptoms can frequently
go undetected long after they occur, resulting in data corruption and incorrect results while making
software testing and debugging a particularly onerous task.

A commonly cited memory error is the buffer overflow, where data is stored to a memory location
outside the bounds of the buffer allocated to hold it. Although buffer overflow errors have been
understood as early as 1972 [2], they and other memory access violations still plague modern software
and are a major source of recently reported security vulnerabilities. For example, according to the
United States Computer Emergency Readiness Team (US-CERT), 67 (29%) of the 228 vulnerability
notes released in 2008–2009 were due to buffer overflow errors alone [3].

†An earlier version [1] of this paper was presented at the 10th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), Timişoara, Romania, September 12–13, 2010.
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2 M. S. SIMPSON AND R. K. BARUA

Several safety methods [4–7] have characterized memory access violations as either spatial or
temporal errors. A spatial error is a violation caused by dereferencing a pointer that refers to an
address outside the bounds of its “referent.” Examples include indexing beyond the bounds of an
array; dereferencing pointers obtained from invalid pointer arithmetic; and dereferencing uninitialized,
NULL or “manufactured” pointers.2 A temporal error is a violation caused by using a pointer whose
referent has been deallocated (e.g. by calling the free standard library function) and is no longer a
valid memory object. The most well-known temporal violations include dereferencing “dangling”
pointers to dynamically allocated memory and attempting to deallocate a pointer more than once.
However, dereferencing pointers to automatically allocated memory (i.e., stack variables) is also a
concern if the address of the referent “escapes” and is made available outside the function in which it
was defined. A program is memory safe if it does not commit any spatial or temporal errors.

Safe languages, such as Java, ensure memory safety through a combination of syntax restrictions
and runtime checks, and are widely-used when security is a major concern. Others, like Cyclone [8]
and Deputy [9], preserve many of the low-level features of C, but require additional programmer
annotations to assist in ensuring safety. Although the use of these languages may be ideal for
safety-critical environments, the reality is that many of today’s applications—including operating
systems, web browsers, and database management systems—are still typically implemented in C or
C++ because of its efficiency, predictability, and access to low-level features. This trend will likely
continue into the future.

As an alternative to safe languages, sophisticated static analysis methods for C [10–14] can be
used alone, or in conjunction with other systems, to ensure the partial absence of spatial and temporal
errors statically. While these techniques are invaluable for software verification and debugging,
they can rarely prove the absence of all memory errors and often require a significant amount of
verification time due to the precision of their analyses.

A growing number of methods rely primarily on inserted runtime checks to detect memory access
violations dynamically. However, the methods capable of detecting both spatial and temporal memory
safety violations [4–6,15–23] generally suffer from one or more practical drawbacks that have thus far
limited their widespread adoption. These drawbacks can be summarized by the following qualities.

• Completeness. Methods that associate metadata (the base and bound information required for
runtime checks) with objects [15–21]—rather than the pointers to these objects—generally do
not detect two kinds of memory errors. First, because C supports the allocation of nested objects
(e.g., an array of structures), spatial errors involving sub-object overflows are not detected since
inner objects share metadata with the outer object. Second, if the system allocates an object to
a previously deallocated location, temporal errors are not detected since dangling pointers to
the deallocated object may still refer to a location within bounds of the newly allocated object.

• Compatibility. The use of alternate pointer representations, such as multi-word “fat-
pointers” [4, 22] to store metadata raises compatibility concerns. Inline metadata breaks
many legacy programs—and requires implicit language restrictions for new ones—because
it changes the memory layout of pointers. For example, since their data types are the same
size, programmers can cast pointers to integers to compute certain addresses. However, since
fat-pointers alter memory layout, casting a single-word integer to a multi-word pointer, or
casting a fat-pointer of one type to a pointer of another type, is no longer valid and can result in
data corruption. Inline metadata also breaks the calling convention of external libraries whose
parameters or return types involve pointers.

• Code Modifications. Some methods [22] require non-trivial source code modifications to
avoid the above compatibility issues or to prevent an explosion in runtime. A common example
is for a programmer to write “wrapper functions” that remove inline metadata in order to
interface with external libraries.

2A manufactured pointer is a pointer created by means other than explicit memory allocation (e.g., by calling the malloc
standard library function) or taking the address of a variable using the address-of operator (&). Type-casting an integral
type to a pointer type is a common example. The various memory safety violations are discussed in detail in Section 2.
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• Cost. Methods capable of detecting both spatial and temporal errors often suffer from high
performance overheads [4–6,23]. This is commonly due to the cost of maintaining the metadata
required for ensuring spatial safety and the use of conservative garbage collection for ensuring
temporal safety. High runtime overhead can make a method prohibitively expensive for
deployment and can slow the development process when it is used for testing, especially
if a program is to be executed many times to increase coverage.

This paper introduces MemSafe [1], a method for ensuring both the spatial and temporal memory
safety of C programs at runtime. MemSafe is a whole-program compiler analysis and transformation
that, like other runtime methods, utilizes a limited amount of static analysis to prove memory safety
whenever possible, and then inserts checks to ensure the safety of the remaining memory accesses
at runtime. MemSafe is complete, compatible, requires no code modifications, and generally has
lower runtime cost than other complete and automatic methods achieving the same level of safety.
MemSafe makes the following contributions for lowering the runtime cost of dynamically ensuring
memory safety:

• MemSafe uniformly handles all memory violations by modeling temporal errors as spatial
errors. Therefore, the use of separate mechanisms for detecting temporal errors (e.g. garbage
collection or explicit checks for temporal safety [4–6, 21]) is no longer required.

• MemSafe captures the most salient features of object and pointer metadata in a hybrid
spatial metadata representation. MemSafe’s handling of pointer metadata is similar to that
of SoftBound [7], a previous technique for detecting spatial errors, and ensures MemSafe’s
completeness and compatibility. However, MemSafe’s additional use of object metadata creates
a novel synergy with pointer metadata that allows the detection of temporal errors as well.

• MemSafe uniformly handles pointer data-flow in a representation that simplifies several
performance-enhancing optimizations. Unlike previous methods that require checks for all
dereferences and the expensive propagation of metadata at every pointer assignment [4–6, 23],
MemSafe eliminates redundant checks and the propagation of unused metadata. This capability
is further enhanced with whole-program analysis.

In order to achieve the above contributions, MemSafe exploits several key insights related to the
flow of pointer values in a program. The following program behavior models form the foundation of
MemSafe’s approach.

1. Memory deallocation can be modeled as an assignment. For example, the statement free(p)
can be represented by the statement p=invalid, where invalid is a special untyped pointer to
a temporally “invalid” range of memory.

This insight is useful because it enables spatial safety mechanisms to be reused to ensure
temporal safety. In order to detect spatial safety violations, existing methods insert before
pointer dereferences runtime checks that determine whether the pointers refer to a location
within the base and bound addresses of their referents. If a dereferenced pointer refers to a
location outside the region of memory occupied by its referent, a spatial safety violation is
signaled. By assigning pointers to deallocated memory to be equal to the invalid pointer, they
inherit the base and bound addresses of the “invalid” region of memory. If the base and bound
addresses of this region are defined such that they represent some impossible address range
(e.g., a block with a negative size), any legal pointer must refer to a location outside this range.
Thus, dereferences of dangling pointers and multiple deallocation attempts can then be detected
with the inserted checks for spatial safety.

2. Indirect pointer assignments can be modeled as explicit assignments. Statements of the form
ptr1=*p, where both ptr1 and p are pointers, make low-cost memory safety difficult to achieve
since ptr1’s set of potential referents is not known statically. Alias analysis can be used to
narrow this set, and MemSafe makes the results of this analysis explicit in the program’s Static
Single Assignment (SSA) [24] form by using a new φ-like construct called the %-function.
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Approach Complete Compatible No Code Whole Slowdown
Modifications Program

Purify [20] no yes yes yes 148.44∗

Patil, Fischer [5] yes yes yes no 6.38†

Safe C [4] yes no yes no 4.88†

Fail-Safe C [23] yes yes yes no 4.64†
MSCC [6] yes yes yes no 2.33
Yong, Horwitz [21] no yes yes no 1.37‡
CCured [22] yes no no yes 1.30

MemSafe yes yes yes yes 1.29
Table I. Related work. A comparison of methods providing both spatial and temporal memory safety is given.
Slowdown is computed as the ratio of the execution time of the instrumented program to that of the original

program. Slowdown is reported for the Olden benchmarks [28] unless otherwise noted.

∗Checks are only inserted for heap objects.
†Slowdown is the average of all results reported by the authors.
‡Checks are only inserted for store operations.

For example, assume the statement s0:*p=ptr0 is the only direct reaching definition of a
pointer defined as s1:ptr1=*p. The statement s2:*q=ptr2 may indirectly redefine ptr1 if p
and q may alias and control-flow may reach statement s1 from s2. Therefore, MemSafe models
the statement ptr1=*p as ptr1=%(ptr0,ptr2), meaning the value of ptr1 may equal that of
ptr0 or ptr2 but only these two values.

This insight is useful because it enables MemSafe to construct a convenient data-flow graph
that codifies both direct and indirect pointer assignments—in addition to memory deallocation
with the insight above—as simple definition and use relationships. Thus, this representation
greatly simplifies optimizations for reducing the cost of achieving memory safety.

A prototype implementation of MemSafe has been evaluated in terms of its completeness and runtime
cost. MemSafe was able to successfully detect known memory violations in multiple versions of the
Apache HTTP server [25] and the GNU Core Utilities [26] software package. Additionally, MemSafe
detected all previously reported memory errors in six programs from the BugBench [27] benchmark
suite. In terms of cost, MemSafe’s average overhead was 88% on 30 large programs widely-used in
evaluating error detection tools. Finally, as evidence of its compatibility, MemSafe compiled each of
the above programs without requiring any code modifications or programmer intervention.

Table I summarizes previous software approaches for ensuring both spatial and temporal safety.3

Each method is evaluated on its completeness, compatibility, lack of code modifications, use of
whole-program analysis, and runtime cost. For consistency, slowdown is reported for the Olden
benchmarks [28] where results are available. MemSafe compares favorably in each category and has
the lowest overhead among all existing complete and automatic methods. This result is primarily due
to MemSafe’s novel contributions based on the above insights.

Since MemSafe’s performance overheads cannot necessarily be considered “low,” MemSafe is
deployable in systems whose primary concern is memory safety. In practice, it has been observed that
many runtime checks can be avoided with MemSafe’s simple optimizations, and for safety-critical
applications, MemSafe’s moderate runtime overheads can be an acceptable trade-off compared to
redesigning systems in a safe language. However, for performance-critical applications, MemSafe is
primarily useful as a dynamic bug detection tool.

3Other methods (e.g, CIT [29], DFI [30], WIT [31], SoftBound [7], SafeCode [32], “baggy” bounds checking [33], etc.)
are excluded from Table I since they either are (1) not software-only mechanisms for detecting memory errors or (2) do
not aim to ensure complete spatial and temporal safety. However, these methods are discussed in detail in Section 7.
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Memory Safety Violation Example

Spatial Safety Bounds
violation

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[101]);
5: ... *p ... B bounds violation

Uninitialized
pointer

1: int *p;
2: ...
3: ... *p ... B uninitialized pointer dereference

NULL pointer 1: int *p;
2: ...
3: p = NULL;
4: ... *p ... B null pointer dereference

Manufactured
pointer

1: int *p;
2: ...
3: p = (int*) 42;
4: ... *p ... B manufactured pointer dereference

Temporal Safety Dangling stack
pointer

1: int *p;
2: ...
3: void f() {
4: int x;
5: ...
6: p = &x;
7: }
8: ...
9: void g() {

10: f();
11: ... *p ... B dangling stack pointer dereference
12: }

Dangling heap
pointer

1: int *p, *q;
2: ...
3: p = (int*) malloc(10*sizeof(int));
4: q = p;
5: ...
6: free(p);
7: ... *q ... B dangling heap pointer dereference

Multiple
deallocations

1: int *p, *q;
2: ...
3: p = (int*) malloc(10*sizeof(int));
4: q = p;
5: ...
6: free(p);
7: free(q); B multiple deallocations

Table II. Memory safety violations. Example code fragments demonstrating memory safety violations are
presented grouped by whether they affect aspects of spatial or temporal safety.

2. BACKGROUND

Memory safety violations can be divided into two categories: violations of spatial safety and violations
of temporal safety. A spatial safety violation is an error in which a pointer is used to access the data
at a location in memory that is outside the bounds of an allocated object. The error is “spatial” in
the sense that the dereferenced pointer refers to an incorrect location in memory. A temporal safety
violation is an error in which a pointer is used in an attempt to access or deallocate an object that has
already been deallocated. The violation is “temporal” in the sense that the pointer use occurs at an
invalid instance during the execution of the program (i.e., after the object to which it refers has been
deallocated). Table II lists spatial and temporal memory safety violations that MemSafe detects and
gives examples of each.
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6 M. S. SIMPSON AND R. K. BARUA

As evidence of the significance of these memory safety violations, the instrumentation of C
programs to ensure memory safety remains an actively researched topic. The remainder of this
section reviews previous approaches for detecting some or all spatial and temporal safety violations,
primarily focusing on the prior works’ use of metadata. In the context of enforcing memory safety,
metadata refers to the creation of additional data for describing the spatial or temporal properties
of an object or pointer. For example, metadata often consists of the base and bound addresses that
indicate the valid address range to which a pointer may refer.

2.1. Spatial safety

The goal of spatial safety is to ensure that every memory access occurs within the bounds of a known
object. Spatial safety is typically enforced by inserting runtime checks before pointer dereferences.
Alternatively, checking for bounds violations after pointer arithmetic is also possible [15–17, 33], but
requires care since pointers in C are allowed to be out-of-bounds so long as they are not dereferenced.
The metadata required for spatial safety checks can be associated either with objects or pointers, and
there are strengths and weaknesses of each approach.

Object metadata Methods that utilize object metadata usually record the base and bound addresses
of objects, as they are allocated, in a global database that relates every address in an allocated region
to the metadata of its corresponding object. Advantages of this approach include efficiency, since
it avoids the propagation of metadata at every pointer assignment (see the discussion of pointer
metadata below), and compatibility, since it does not change the layout of objects in memory or
prohibit the use of pre-compiled libraries. Prominent methods employing this strategy include the
work by Jones and Kelly [15], Ruwase and Lam [16], Dhurjati and Adve [17], Akritidis et al. [33],
SafeCode [32] and SVA [19].

However, the use of object metadata as means of enforcing spatial safety results in several
drawbacks. First, this approach prevents complete spatial safety. Since nested objects (e.g., an array
of structures) are assigned a base and bound address that spans the entire allocated region, it is
impossible to detect sub-object overflows if an out-of-bounds pointer to an inner object remains
within bounds of the outer object. Second, this approach requires a runtime lookup operation for
retrieving metadata from the object database. Dhurjati and Adve [17] improve the runtime cost
associated with this lookup operation by partitioning the object database using Automatic Pool
Allocation [34], and Akritidis et al. [33] improve runtime by constraining the size and alignment of
allocated objects. However, these methods do not detect sub-object overflows or temporal errors.

Figure 1 depicts the utility of object metadata (shown in red) in enforcing memory safety. In order
to ensure memory safety, complete spatial and temporal safety must be enforced. Since all pointer
dereferences are either object-level references or sub-object references, it follows that all object and
sub-object references must be both spatially and temporally safe for a program to be memory safe.
However, object-level base and bound information is only useful in enforcing object-level spatial
safety, since sub-objects must share metadata with their corresponding outer objects.4 Figure 1 will
be referenced again when describing the remaining prior enforcement strategies.

Pointer metadata An alternative to using object metadata for enforcing spatial safety is to associate
metadata with individual pointers. When a new pointer is created (i.e., with malloc or the address-of
operator), its metadata is initialized to be the base and bound address of its referent, and when a
pointer definition uses the value of another pointer (e.g., pointer arithmetic), its metadata is inherited
from the original pointer. Advantages of this approach include avoiding costly database lookups and
the ability to ensure complete safety, since sub-object overflows can be detected by assigning each
pointer a unique base and bound address.

4Some methods [15–17, 19, 32, 33] are capable of using object metadata to detect some, but not all, temporal safety
violations. However, if an object is deallocated and its space is reallocated for use by another object, dangling pointer
dereferences to the original object will not be detected because they are within bounds of the new object. Thus, these
methods are incapable of enforcing either complete object-level or sub-object temporal safety.
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Memory
Safety

Spatial Safety

Sub-objects Objects

Temporal
Safety

Objects Sub-objects

Object metadata

Pointer metadata

Garbage collection & temporal capabilities

Figure 1. Prior enforcement methods. The use of spatial metadata, garbage
collection, and temporal capabilities is shown for previous methods of enforcing

memory safety.

Pointer metadata is commonly implemented using multi-word blocks of memory, called “fat-
pointers,” that record the required base and bound information inline with pointers. Each pointer in a
program essentially becomes a struct containing three fields: the original pointer value and the base
and bound address of its referent. Prominent methods employing this strategy include Safe C [4],
Fail-Safe C [23] and CCured [22]. However, the use of inline metadata is not always compatible
and breaks many programs. Since a pointer’s size is no longer equal to the word size of the target
architecture, many programming idioms no longer work as expected. Additionally, interfacing with
external libraries becomes difficult and requires wrapper functions to pack and unpack fat-pointers at
boundaries with uninstrumented code.

Several pointer-based methods have developed approaches that avoid some of the compatibility
issues of fat-pointers. CCured [22], MSCC [6], and Patil and Fischer [5] record metadata in disjoint
structures that mirror the shape of the underlying data, but maintaining this representation increases
runtime. Fail-Safe C [23] combines fat-pointers with fat-integers and virtual structure offsets, but this
too increases cost. Finally, Softbound [7] maintains metadata for in-memory pointers in an efficient
global lookup table, but this method only detects spatial violations.

Another disadvantage of the use of pointer metadata as a means of enforcing spatial safety is its
runtime cost. While it avoids the need for expensive database lookups operations, metadata must
instead be propagated at every pointer assignment. CCured [22] reduces metadata propagation by
using a type system to infer pointer usage. CCured classifies pointers as SAFE, SEQ and WILD and
optimizes the inserted checks and code for propagating metadata for each pointer kind. However,
CCured requires manual code modifications to avoid the expensive bookkeeping of WILD pointers
and to correct the compatibility issues of fat-pointers.

Figure 1 depicts the utility of pointer metadata (shown in blue) in enforcing memory safety. Since
individual pointers can be associated with a unique base and bound address, pointer metadata can be
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8 M. S. SIMPSON AND R. K. BARUA

used to enforce complete object-level and sub-object spatial safety. However, prior methods are not
capable of utilizing pointer metadata in enforcing temporal safety.

MemSafe’s approach MemSafe’s use of metadata as a means for ensuring spatial safety avoids the
drawbacks of the above approaches. MemSafe captures the most salient features of object and pointer
metadata in a hybrid representation. To ensure complete and compatible spatial safety, MemSafe
maintains disjoint pointer-based metadata in an approach similar to that of SoftBound. However,
to lower runtime cost, MemSafe models temporal errors as spatial errors and propagates pointer-
based metadata only when it is needed for performing runtime checks. Additionally, MemSafe
maintains some object-based metadata in a global database but performs lookup operations only
when MemSafe’s pointer-based metadata is insufficient for ensuring temporal safety.

2.2. Temporal safety

The goal of enforcing temporal safety is to ensure that every memory accesses refers to an object
that has not been deallocated. As summarized in Table II, temporal safety violations occur when
dereferencing pointers to stack objects, if the function in which they were defined has exited, and
when dereferencing pointers to heap objects, if the object to which they refer has been deallocated
with free. Temporal safety is typically enforced with garbage collection or by software checks. Like
the methods for ensuring spatial safety, there are strengths and weaknesses of each approach.

Garbage collection Methods using garbage collection to prevent dangling pointers to heap objects
commonly ignore calls to the free function and replace calls to malloc with the Boehm-Demers-
Weiser conservative garbage collector [35]. To prevent dangling pointers to stack objects, local
variables can be “heapified” and replaced with dynamically allocated objects that are managed by the
garbage collector. This is the approach taken by CCured [22] and Fail-Safe C [23].

However, garbage collection negates several of C’s primary benefits, including its predictability and
low-level access to memory. Garbage collection voids real-time guarantees [36], increases address
space requirements, reduces reference locality, and increases page fault and cache miss rates [37].
Moreover, since the collector must be conservative, some memory may never be reclaimed by the
system, resulting in memory leaks. Finally, heapifying stack objects increases the runtime overhead
of enforcing temporal safety since dynamic allocation is slower than automatic allocation.

Despite these drawbacks, conservative garbage collection is capable of enforcing complete
temporal safety. This capability is depicted in Figure 1, where the use of garbage collection is
shown in orange.

Temporal checks An alternative to using garbage collection for enforcing temporal safety is to insert
explicit software checks that test the temporal validity of referenced objects. To achieve this, a
“capability store” is commonly used to record the temporal capability of objects as they are created
and destroyed. Additional temporal metadata that is created and propagated with spatial metadata
links a pointer to the temporal capability of its referent. Methods employing this strategy include
Safe C [4], MSCC [6], and the work by Patil and Fischer [5] and Yong and Horwitz [21].

There are advantages and disadvantages of using explicit temporal checks for enforcing temporal
safety. The primary strength of this approach is that it retains C’s memory allocation model and avoids
the drawbacks associated with garbage collection. However, the inclusion of additional runtime
checks and metadata significantly increases the runtime overhead beyond that of enforcing spatial
safety alone. Figure 1 indicates that temporal capabilities (shown in orange), like garbage collection,
can be used to enforce complete temporal safety.

MemSafe’s approach One of MemSafe’s main contributions is the modeling of temporal errors
as spatial errors. Therefore, MemSafe does not require conservative garbage collection or explicit
temporal checks, and it avoids the drawbacks of both approaches. Instead, MemSafe relies on spatial
safety checks and the hybrid metadata representation mentioned above for ensuring temporal safety.
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Atomic Types α F int | τ*
Types τ F α | struct{d+} | τ[n]

Declarations d F τ x;
Functions f F func(x∗) {b∗}

Blocks b F p∗ d∗ s+

φ-Functions p F x = φ(x+);
LHS Expressions l F x | *l | l.y
RHS Expressions r F r+r | l | &l | (α)r | malloc(r) | n

Statements s F l=r; | l(r); | for(l=r; r<r; l=r) {b}
| if(r) {b} else {b} | return r; | free(r);

where x ∈ variables
y ∈ structure field identifiers
n ∈ N

Figure 2. Syntax for a simple SSA [24] language with procedures, pointers, control flow, and manual memory
management.

3. MEMSAFE

This section describes MemSafe’s unoptimized approach for ensuring the memory safety of C
programs. MemSafe is a compiler analysis and transformation that inserts software checks before
memory accesses to detect spatial and temporal violations. It requires a limited amount of static
analysis (a flow- and context-insensitive alias analysis) to avoid unnecessary checks and metadata
propagation for memory accesses that it can statically verify to be safe.

3.1. Language Extensions and Assumptions

Because the C programming language, in its entirety, is both large and complex, the language defined
in Figure 2 will be used for describing MemSafe’s source code translations and the rules for runtime
check insertion and metadata propagation. Figure 2 defines a small SSA [24] intermediate language
that captures all the relevant pointer-related portions of C. Features of the language include, among
others, syntax for pointer types, manual memory management, type-casting of pointer values, pointer
arithmetic, and complex control-flow.

Without loss of generality, the following assumptions are made of the language presented in
Figure 2. First, it is assumed that memory is only accessed with explicit load (e.g., x=*ptr) and
store (e.g., *ptr=x) operations involving pointers. Second, it is assumed that pointer values are
only created with the address-of operator (&) or by calling the malloc function. Recall that in C, a
variable declared as an array of some particular type can act as a pointer to that type, and when used
by itself, is a pointer that points to the first element of the array. To enforce the notion that pointers
are only created through the two mechanisms above, all array accesses are represented as an indexing
operation applied to the address of the first element of the array. For example, for the allocation of an
array a of ten elements, an access of the fifth element a[4] is represented as (&a[0])[4]. That is, a
pointer is created to the first element of the array, and then this pointer is used to compute the address
of the fifth element. In this way, all new pointer values may only be created with the address-of
operator and by calling the malloc system function.

Furthermore, MemSafe assumes all global variable definitions define a symbol that provides the
address of an object instead of the actual object “contents.” Since assignments of global variables must
be conservatively accounted for in SSA, compiler intermediate representations (e.g., LLVM [38])
often represent global variables as pointers to statically allocated regions of memory. The advantage
of this approach is that within a procedure, a global variable can be loaded from memory, renamed
according to the SSA conversion algorithm, and then stored back to memory before control-flow
reaches another procedure. Therefore, MemSafe identifies statically allocated objects by their location
in memory. Note that MemSafe’s representation of global variables is analogous to the discussion of
arrays above in that the declaration of an object implicitly creates a pointer to that object.

MemSafe models both memory deallocation and pointer store operations as explicit assignments
using syntax extensions to this C-like SSA language. The advantage of this approach is that it enables
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10 M. S. SIMPSON AND R. K. BARUA

MemSafe to ensure complete memory safety by reasoning solely about pointer definitions, which
eliminates the need for separate mechanisms for detecting spatial and temporal errors and reveals
optimization opportunities. The remainder of this section describes these abstractions.

3.2. Memory deallocation

Memory deallocation can implicitly change the object to which a pointer refers. If the region of
memory that was occupied by a deallocated object is ever reallocated, the contents of the region may
change, and any remaining pointers to the original object implicitly become invalid. This implicit
redefinition of pointers can be made apparent by modeling both automatic and dynamic memory
deallocation as an explicit pointer assignment. For example, MemSafe models the statement free(p)
as p=invalid, where invalid is a special untyped pointer constant that points to an “invalid” region
of memory. The base and bound address associated with this abstract memory region are defined by
the impossible address range [1, 0]. Thus, if the spatial metadata of p is located at address addrp in
memory, then p could be associated with the base and bound of the invalid pointer by the statements
addr_p->base=1 and addr_p->bound=0. Since the size of this block is −1, spatial safety checks
involving the base and bound of the invalid pointer are guaranteed to always report a safety violation.
Therefore, temporal safety violations can be detected with runtime checks inserted for enforcing
spatial safety. The rules for inserting assignments of the invalid pointer are given below.

Automatic memory deallocation If the address of a stack-allocated object is taken with the address-of
operator (&), the pointer to this object may “escape” and be made available outside the function
in which the object is allocated. Such an occurrence is possible, for example, if a local variable’s
address is stored in a global or heap variable. While this is a legal operation in the C programming
language, a common consequence of escaping pointers is the program committing a temporal safety
violation. When a function exits, its local variables are automatically deallocated, and any escaping
pointers to these deallocated objects become dangling. To make the implicit redefinition of these
pointers explicit, MemSafe inserts assignments of the invalid pointer at the end of a procedure for
each of its local variables whose address is taken, as shown in the following example.

1: void f() {
2: struct { ... int array[100]; ... } s, *p;
3: ...
4: p = &s; B address of s is taken and may escape
5: ...

p = invalid; B MemSafe models deallocation as an explicit
6: } pointer assignment of ‘invalid’

In this example, the nested structure s is allocated automatically on the stack as a local variable of
function f. In line 4, the address of s is taken and stored in pointer p. It is assumed that p may escape
to another procedure and result in a dangling pointer when function f exits. Therefore, MemSafe
assigns p the value of the invalid pointer before the function exits, indicating that the pointer now
refers to a temporally “invalid” region of memory. After this assignment, the base and bound of p
would be updated to be equal to that of the invalid pointer, and any pointer derived from or aliased
with p would inherit this metadata as well (see Section 3.5).

Dynamic memory deallocation If a pointer’s referent is deallocated dynamically by a program calling
the free function, all pointers that refer to this object become dangling pointers. The subsequent
dereference of a dangling pointer results in a temporal safety violation. To make the redefinition of
these pointers explicit, MemSafe inserts assignments of the invalid pointer after calls to free for the
pointer used in deallocating the object, as shown in the following example.

1: int *p;
2: ...
3: p = malloc(size);
4: ...
5: free(p); B MemSafe models deallocation as an explicit
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p = invalid; pointer assignment of ‘invalid’

In this example, an object of size bytes is dynamically allocated by a program with the malloc
function, and the base address of object is assigned to pointer p. In line 5, the object to which p refers
is deallocated by the program with the free function. Therefore, MemSafe assigns p the value of
the invalid pointer to indicate that the pointer now refers to a temporally “invalid” region of memory.

3.3. Pointer stores

Having inserted assignments of the invalid pointer to make the redefinition of pointers to deallocated
memory explicit, MemSafe then transforms the program to make indirect pointer store operations
explicit assignments as well.

Indirect assignments are problematic in SSA form and make the representation of pointer stores
nonintuitive. A key property of SSA is that each assignment is given a unique name (hence, the
“single assignment” condition of Static Single Assignment). However, this property does not hold
for in-memory assignments of the form *p=x. In this case, *p is not given a unique name when it is
assigned the value of x, and it is unclear what values loaded from memory can be equal to x.

To address this problem for the indirect assignment of pointer values, MemSafe models in-memory
pointer assignments (including those induced for the invalid pointer) as explicit assignments using
alias analysis and a φ-like SSA extension called the %-function. In the same way that the φ-function
of SSA is used to resolve control-flow uncertainty, thereby giving a unique name to conditional
assignments at the point where control-flow paths merge, MemSafe uses the %-function to resolve the
data-flow uncertainty of pointer values, thereby giving a unique name to indirect pointer assignments
at the point where pointers are loaded from memory.

For example, assume the statement s0:*p=ptr0 is the only direct reaching definition of a pointer
defined as s1:ptr1=*p. The statement s2:*q=ptr2 may indirectly redefine ptr1 if p and q may
alias and control-flow may reach statement s1 from s2. Therefore, MemSafe models ptr1 = *p as
ptr1=%(ptr0,ptr2), meaning the value of ptr1 may equal that of ptr0 or ptr2 but only these two
values. In this way, all indirect pointer assignments and object deallocations are represented as direct
assignments of the pointers that are potentially modified.

The following code fragment provides a more concrete example of the %-function and demonstrates
how this syntax extension creates a synergy with MemSafe’s representation of memory deallocation
that results in the propagation of the data-flow associated with the invalid pointer.

1: int *a, *b, *c;
2: int **p, **q; B assume p and q may alias

...
3: *q = a;

...
4: if (condition) {
5: *p = b;
6: } else {
7: free(*p);

*p = invalid; B MemSafe models deallocation as an explicit
8: } pointer assignment of ‘invalid’

...
9: c0 = *q

c1 = %(a, b, invalid); B MemSafe models in-memory data-flow with the
%-function. All subsequent uses of c0 are
replaced with uses of c1.

In this example, all pointer values exist in memory, and pointer assignments are made possible
by pointer store and load operations. After the call to the free function in line 7, an in-memory
assignment of the invalid pointer is inserted to indicate that the referent of *p has been deallocated.
Since p and q are assumed to potentially alias, this store operation and the ones in lines 3 and 5 may
define the pointer loaded and assigned to the variable c0 in line 9. Therefore, MemSafe resolves
this uncertainty in pointer data-flow and gives a unique name to these assignments by inserting the
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Figure 3. Hybrid metadata representation. The use of object and pointer spatial
metadata is shown for MemSafe’s method of enforcing memory safety.

%-function after line 9 and assigning it to the variable c1. Pointers a, b and invalid are added to the
%-function assigned to pointer c1, meaning c1 may be equal to any of these three values, but only
these values. All subsequent uses of pointer c0 are replaced with uses of c1.

By default, MemSafe utilizes flow- and context-insensitive pointer alias information to determine
the arguments of %-functions. However, MemSafe is capable of using more precise alias analyses,
and in general, their use results in %-functions with smaller arity. In the case of the former, MemSafe
performs a simple reachability analysis to improve the results of alias analysis. For example, consider
the pointer store operation *ptr1=p0 and the pointer load operation p1=*ptr2. If alias analysis
indicates that the pointers ptr1 and ptr2 may alias, p0 would be added to the %-function inserted for
p1. However, if there is no control-flow path from the store operation to the load operation, this is
unnecessary since there is no program execution in which the stored value can modify the loaded
value. MemSafe does not include stored pointers in the %-functions inserted for loaded pointers
if the store cannot reach the load. Note that MemSafe’s reachability analysis does not result in a
flow-sensitive alias analysis.

3.4. The Required Checks and Metadata

After inserting code for modeling memory deallocation and pointer stores as explicit assignments,
MemSafe then inserts the runtime checks and metadata necessary for enforcing memory safety. This
section describes the pointer- and object-based checks and metadata that MemSafe requires.

Figure 3 depicts MemSafe’s unique combination of object- and pointer-based metadata. In contrast
to the enforcement methods shown in Figure 1, MemSafe utilizes this hybrid metadata representation
for ensuring both the spatial and temporal memory safety of C programs.
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The differences between Figures 1 and 3 can be explained as follows. First, because MemSafe
models temporal errors as spatial errors, MemSafe avoids the drawbacks associated with the use of
conservative garbage collection and the use of additional checks and metadata for enforcing temporal
safety (shown in orange in Figure 1). Second, since MemSafe’s hybrid metadata representation
captures the most salient features of object and pointer metadata, MemSafe avoids the drawbacks
associated with the use of each in enforcing spatial safety, and gains the ability to reuse this
metadata for enforcing temporal safety as well. As shown in Figure 3, MemSafe utilizes pointer-
based metadata for enforcing complete spatial and partial temporal safety, and MemSafe utilizes
object-based metadata for enforcing complete temporal and partial spatial safety. PBC and OBC are
MemSafe’s runtime checks that utilize this metadata. These checks, in addition to MemSafe’s object-
and pointer-based metadata, are discussed below.

Pointer Metadata For the definition of a new pointer p (i.e., a pointer created with malloc or the
address-of operator), MemSafe creates pointer metadata in the form of a 3-tuple 〈base, bound, id〉p
of intermediate values. Together, basep and boundp indicate the range [base, bound) of memory p
is permitted to access. idp is a unique key that is assigned to p’s referent object, and it is used to
associate p with the metadata of its referent (discussed in Section 3.4). MemSafe maintains pointer
metadata in memory and allocates at runtime an address addrp from a set of unused addresses A for
storing 〈base, bound, id〉p. These values are stored to memory with an explicit dereference operation,
represented by M[addrp]← 〈base, bound, id〉p, where M[addrp] holds the value at address addrp
in memory.

In addition to the pointer metadata described above, MemSafe also creates a tuple 〈addr, id〉p of
intermediate values. These values are created for the definition of each pointer p in a program (i.e.,
not just those pointers created with malloc or the address-of operator), and are statically named
such that there is a known compile-time association with p. Unlike the metadata described above, no
dereference is required at runtime for retrieving these values. As previously described, addrp is the
location in memory containing the base and bound addresses that indicate the range of memory p is
permitted to access. Finally, in order to allow the reuse of location addrp (discussed later), a copy of
the id associated with p’s referent is also maintained with this statically associated tuple.

Pointer bounds check MemSafe utilizes pointer metadata for performing a Pointer Bounds Check
(PBC). MemSafe inserts a PBC before each pointer dereference that cannot be verified to be safe
statically (see Section 4.2 for optimizations that reason about dereferences that must be safe). PBC is
the forcibly inlined procedure defined by:

1: inline void PBC(ptr, size, addr, id) {
2: 〈base, bound, id〉ptr ← M[addr]
3: if ((id != idptr) || (ptr < baseptr) || (ptr + size > boundptr)) {
4: signal_safety_violation();
5: }
6: }

In the above check, ptr, baseptr, and boundptr are all pointers to the type unsigned char and size
is the size in bytes (as indicated by the sizeof operator) of ptr’s referent.5 MemSafe utilizes the
pointer metadata of a pointer ptr to ensure the safety of its dereference at runtime:

PBC(ptr, sizeof(*ptr), addrptr, idptr);
1: ... *ptr ...
2: B some load or store operation involving ptr

5These pointers are implicitly type-cast to be pointers to type unsigned char because sizeof(unsigned char) is
defined to always equal one byte [39]. This is required for the pointer arithmetic performed in the body of the bounds
check to be valid.
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In this example, MemSafe will abort the program and report a violation of memory safety (by
calling signal_safety_violation) if the dereference *ptr will access a location outside the
range specified by [baseptr, boundptr). Because the PBC only utilizes pointer metadata, no costly
database lookup is required to retrieve baseptr and boundptr, as 〈addr, id〉ptr are uniquely named
symbols in the inserted code.

As depicted in Figure 3, the PBC and MemSafe’s pointer-based metadata are capable of not
only ensuring complete spatial safety, but also temporal safety with a single check. Whenever
a pointer p is assigned the value of the invalid pointer, its pointer metadata is updated as
M[addrp]← 〈base, bound, id〉invalid, which will always cause the PBC to signal a safety violation
since the invalid pointer refers to an impossible address range.

As mentioned above, since addresses in A can be reused, a copy of the id associated with a pointer
p must be included with p’s pointer metadata. Whenever the metadata associated with the invalid
pointer is stored to a particular address, this address is marked for potential reuse. Thus, addrp may
be reused for storing the pointer metadata of another pointer if p’s referent is deallocated. To ensure
that addrp has not been reused, the PBC checks whether the id associated with the dereferenced
pointer p, is equal to the id located at addrp. If it is not, addrp has been reused for the pointer
metadata of another pointer and p’s referent is temporally invalid.

However, the PBC is insufficient for ensuring complete temporal safety. Since a nested object (e.g.,
an array of structures or a structure containing and array field) is deallocated using a pointer to its
base address, only pointers that refer to the outer object are assigned the value of the invalid pointer
upon the object’s deallocation. The pointer metadata of any potential sub-object references are not
updated in this way (see the rules for metadata propagation in Section 3.5). Thus, object metadata is
required to associate pointers to inner objects with the base and bound address of their corresponding
outer object. Object metadata is introduced below.

Object metadata For every object allocation, MemSafe creates and assigns a unique id to the
object and records a tuple 〈base, bound〉 for the allocated region in a global object metadata facility.
MemSafe removes entries for objects from the metadata facility when they are deallocated. The
object metadata facility maps an object’s id to its base and bound address and is formally defined by
the partial function:

omd : I → O
id 7→ 〈base, bound〉id

where I is the set of ids and O is the set of object metadata. For notational convenience, the function
omd can also be represented more generally as the relation RO, where (id, 〈base, bound〉id) ∈ RO if
the object associated with id is a valid memory object that has yet to be deallocated. A discussion of
the implementation of the object metadata facility is deferred until Section 5.2 in order to separate
the presentation of MemSafe’s method from its prototype implementation.

Object bounds check MemSafe utilizes object metadata for performing an Object Bounds Check
(OBC). MemSafe inserts an OBC, in addition to the PBC described above, before each pointer
dereference that may access a sub-object if the pointer cannot be statically verified to be temporally
safe.6 OBC is the forcibly inlined procedure defined by:

1: inline void OBC(ptr, size, id) {
2: 〈base, bound〉id = omd(id)
3: if ((ptr < baseid) || (ptr + size > boundid)) {
4: signal_safety_violation();
5: }
6: }

6MemSafe determines the set of potential sub-object references by traversing its data-flow graph, which is described in
Section 4.1.
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In the above check, ptr is a pointer to type unsigned char, id is a component of ptr’s pointer
metadata, and size is the size in bytes of ptr’s referent. MemSafe utilizes the object metadata of
pointer ptr’s referent, denoted 〈base, bound〉id, to ensure the safety of its dereference at runtime:

1: PBC(ptr, sizeof(*ptr), addrptr, idptr);
OBC(ptr, sizeof(*ptr), idptr);

2: ... *ptr ...
3: B some load or store operation involving ptr

In this example, MemSafe will abort the program and report a violation of memory safety if the
dereference *ptr will access a location outside the range specified by [baseid, boundid). The OBC
uses the id field of ptr’s pointer metadata to retrieve the object metadata of its referent from the
object metadata facility. Assuming pointer ptr refers to a sub-object, the temporal safety of ptr’s
dereference is ensured because, had ptr’s referent been previously deallocated, its entry would have
been unmapped in the object metadata facility RO, causing omd(id) to fail and MemSafe to signal a
safety violation.

As depicted in Figure 3, the OBC and MemSafe’s object-based metadata are capable of not only
ensuring complete temporal safety, but also partial spatial safety with a single check. Thus, if the
detection of sub-object overflows is not a requirement, the PBC in the above example can be eliminated
since the OBC also verifies ptr is within bounds of its outer object.

3.5. Propagation of the Required Metadata

Having presented the runtime checks that MemSafe requires for ensuring memory safety, this section
describes MemSafe’s translations for creating and propagating the required metadata. In doing so, it
is assumed that the program has already been transformed such that it includes the syntax extensions
for modeling memory deallocation and pointer stores as explicit pointer assignments (see Section
3.1). In the discussion below, the rules for propagating the required metadata are addressed according
to the way in which pointers are defined.

Memory Allocation As described previously, MemSafe creates entries in the global object metadata
facility as objects are allocated. For automatic memory allocation (i.e., the allocation of stack
variables), MemSafe generates a new id for the allocated object and maps it to the object’s base and
bound address in RO, as shown below.

1: struct { ... int array[100]; ... } s;

RO = RO ∪ {(id ∈ I, 〈&s, &s+sizeof(s)〉)} (1)

In this example, a structure containing an array field is allocated on the procedure stack. Therefore,
MemSafe obtains a new id for the allocated object and maps it to the base and bound address of the
allocated region in RO (1).

For dynamic memory allocation (i.e., the allocation of objects on the heap), MemSafe updates
RO as it does for automatic memory allocation, but it also creates pointer metadata for the pointer
returned by malloc, since the malloc function is responsible for creating a new object as well as a
new pointer to the allocated object. If the pointer returned by malloc is equal to the NULL pointer,
the pointer inherits the metadata of the invalid pointer. MemSafe creates the required object and
pointer metadata for heap-allocated objects as shown below.

1: int *p;
2: ...
3: p = (int*) malloc(size);

〈addr, id〉p = 〈addr ∈ A, id ∈ I〉 (2)

〈base, bound〉idp =

〈base, bound〉idinvalid if p = null,
〈p, p+size 〉 otherwise

(3)
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RO = RO ∪
{(

idp, 〈base, bound〉idp

)}
(4)

M[addrp]← 〈baseidp , boundidp , idp〉 (5)

In this example, an object of size bytes is allocated dynamically by calling malloc, and the address
returned by malloc is assigned to the pointer p. After the program allocates the object, MemSafe
obtains an address for holding the pointer metadata of p and obtains a new unique id for the allocated
object (2). If the value returned by malloc is equal to NULL, the object metadata associated with
idp is set to the base and bound address of the “invalid” region of memory. Otherwise, the metadata
associated with the object is defined such that it refers to the space occupied by the allocated region
of memory (3). Finally, MemSafe associates the object’s metadata with idp in RO (4) and stores the
metadata of p at its associated address (5).

For static memory allocation (i.e., the allocation of global variables), MemSafe initializes the
object metadata facility to include entries for the base and bound address of each allocated region,
since the number and size of global variables in known at compile-time.

Memory Deallocation Whenever an object is deallocated, MemSafe removes its entry from RO and
sets the pointer metadata of the pointer that refers to the object to be equal to that of the invalid
pointer. Stack-allocated objects are deallocated when the function in which they are defined exits.
Therefore, MemSafe removes their entries from RO before the end of the procedure, as shown below.

1: void f() {
2: struct { ... int array[100]; ... } s;
3: int *p;
4: ...
5: p = &(s.array[42]);
6: ...

RO = RO \ {(ids, omd (ids))} (6)
M[addrp]← 〈base, bound, id〉invalid (7)

7: p = invalid; B MemSafe models deallocation as an explicit
8: } pointer assignment of ‘invalid’

In this example, structure s is an automatic variable of function f and contains an array sub-object
that is nested within it. In line 5, pointer p is assigned the address of an element of the structure’s
array field, and it is assumed that p may escape to another procedure. Before the procedure exits,
MemSafe removes the entry for s from RO (6) using the unique id associated with s (“\” denotes
set difference). Since p may escape, it is assigned the value of the invalid pointer in line 7, and its
pointer metadata is updated to refer to the metadata associated with invalid (7).

Heap-allocated objects are deallocated dynamically with the free function. Similar to the above
rule for automatic memory deallocation, MemSafe updates object and pointer metadata for dynamic
memory deallocation, as shown below.

1: int *p;
2: ...

RO = RO \
{(

idp, omd
(
idp

))}
(8)

M[addrp]← 〈base, bound, id〉invalid (9)
3: free(p);
4: p = invalid; B MemSafe models deallocation as an explicit

pointer assignment of ‘invalid’

In this example, a pointer p to a heap-allocated object is used to deallocate its referent dynamically
by the program calling the free function. Before the call to free in line 3, MemSafe removes the
entry for the deallocated object from RO with idp (8) and sets the pointer metadata of p to be equal
to that of the invalid pointer (9). Pointer p is assigned the value of invalid in line 4.
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If idp had been previously unmapped in the object metadata facility (indicating that p’s referent
was already deallocated before the call to free), the lookup operation represented by omd

(
idp

)
would fail. In this case, MemSafe would signal a temporal safety violation to indicate the multiple
deallocation attempt.

Address-of Operator Like dynamic memory allocation, the address-of operator (&) creates a pointer
to a new location. Therefore, having already updated RO for an object’s allocation, MemSafe creates
pointer metadata for pointers to the object, as shown below.

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[42]);
〈addr, id〉p = 〈addr ∈ A, ids〉 (10)
M[addrp]← 〈&s.array[0], sizeof(s.array), idp〉 (11)

In this example, as in previous examples, a pointer p is assigned the address of an element of the
array field of structure s. Because the program creates a new pointer, MemSafe obtains a new address
for storing the pointer metadata of p (10). MemSafe then creates and stores pointer metadata for p to
indicate that it refers to the base and bound address of the array field of s (11).

This example also demonstrates MemSafe’s ability to detect sub-object overflows. Although p
refers to a location within object s (indeed, p inherits the id of s), p’s base and bound address are
associated with the array field of s.

Pointer Copies and Arithmetic Pointers defined as simple pointer copies or in terms of pointer
arithmetic (e.g., array and structure indexing) inherit the pointer metadata of the original pointer, as
shown below.7

1: int x, *p0, *p1;
2: ...
3: p1 = p0 + x;
〈addr, id〉p1 = 〈addr, id〉p0 (12)

In this example, since pointer p1 is defined in terms of pointer arithmetic, it simply inherits the
pointer metadata associated with pointer p0 (12).

%-functions Since the value produced by a %-function is not known statically, MemSafe must
“disambiguate” it for the returned pointer to inherit the correct metadata. Thus, MemSafe requires an
additional metadata facility. Like the object metadata facility, the pointer metadata facility maps the
address of an in-memory pointer to its pointer metadata and is defined by the partial function:

pmd : A→ P
ptr 7→ 〈addr, id〉*ptr

where A is the set of addresses, and P is the set of pointer metadata. For convenience, the function
pmd can also be represented more generally as the relation RP, where (ptr, 〈addr, id〉*ptr) ∈ RP.

For pointer loads, MemSafe creates a new definition for the loaded value and assigns it the result of
a %-function, which indicates the set of values to which the loaded value may potentially be equal. For
a pointer ptr whose pointed-to location is loaded in defining another pointer p, MemSafe retrieves
from the pointer metadata facility the required pointer metadata for p with the lookup operation
pmd(ptr), as shown below.

7SSA φ-functions that involve pointer values are no different than ordinary pointer copies. For example, p2=φ(p0,p1)
copies p0 to p2 at the end of the basic block defining p0 and copies p1 to p2 at the end of the basic block defining p1.
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1: int **ptr1, *p0, *p1, ...;
2: ...
3: p0 = *ptr1; B MemSafe models in-memory data-flow with
4: p1 = %(a0, b0, ...); the %-function
〈addr, id〉p1 = pmd(ptr1) (13)

In this example, an in-memory pointer is loaded and assigned to pointer p0. MemSafe then creates a
new pointer p1 and assigns it the result of a %-function indicating the values the in-memory pointer
may potentially equal. The pointer metadata for p1 is retrieved from the pointer metadata facility
with the pmd(ptr1) lookup operation (13), and all uses of p0 are replaced with uses of p1.

For each argument of the %-function (including the invalid pointer), MemSafe saves their pointer
metadata in RP at the locations each pointer is stored to memory, as shown below.

1: int **ptr2, *a0;
2: ...
3: *ptr2 = a0; B ptr2 may alias ptr1 from above
RP = (RP \ {(ptr2, pmd(ptr2))}) ∪ {(

ptr2, 〈addr, id〉a0

)}
(14)

In this example, pointer ptr2 is assumed to potentially alias with pointer ptr1 from the previous
example. Thus, pointer a0 appears in the %-function defined above for pointer p1 because of the
pointer store in line 3. Here, MemSafe maps pointer ptr2 to the pointer metadata of a0 in RP (14). If
ptr1 equals ptr2, the pointer metadata of a0 would be retrieved in the previous example.

NULL and Manufactured Pointers Pointer type-casts and unions do not require any additional
metadata propagation. The new pointer simply inherits the pointer metadata of the original pointer,
as in the rule for pointer copies and arithmetic. However, pointers defined as NULL or as a cast from a
non-pointer type must inherit the base and bound of the invalid pointer, as shown below.8

1: int *p;
2: ...
3: p = (int*) 42;
〈addr, id〉p = 〈addr, id〉invalid (15)

In this example, pointer p is defined as a type-cast from the integer 42. Thus, MemSafe defines the
pointer metadata for p to be equal to that of the invalid pointer (15). The result would have been the
same if p had been assigned the value of NULL.

Function Arguments and Return Values MemSafe requires an additional metadata facility in order to
propagate pointer metadata for pointers passed as arguments to functions or returned from functions.
Let callee values refer to formal pointer arguments and pointer values that are returned from functions.
Similarly, let caller values refer to actual pointer arguments and local pointer values to be returned
from functions. The function metadata facility maps a callee value to the pointer metadata of its
corresponding caller value and is defined by the partial function:

fmd : C → P
callee 7→ 〈addr, id〉caller

where C is the set of caller values, P is the set of pointer metadata, and callee is a tuple 〈&f, i〉
indicating the ith pointer associated with function f. Pointers are statically assigned an index i based
on their usage: the return value of a function is assigned index zero, and the pointer arguments of a
function are assigned an index equal to their offset in the function’s argument list, beginning at one.

8Although this may result in false positives, they have been observed to be rare occurrences in practice. For reading and
writing to memory-mapped I/O locations, MemSafe requires a target’s backend to specify the base and bound address of
all valid address ranges.
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For notational convenience, the function fmd can also be represented more generally as the relation
RF , where (callee, 〈addr, id〉caller) ∈ RF .

For function calls, MemSafe creates an entry in the function metadata facility for pointer arguments
passed to the function. Similarly, MemSafe defines the pointer metadata of a pointer returned from
the function call by performing a lookup operation of RF . MemSafe updates and defines pointer
metadata for function calls as shown below.

1: int *p0, *p1;
2: ...

RF = (RF \ {(〈&f, 1〉, fmd(〈&f, 1〉))}) ∪
{(
〈&f, 1〉, 〈addr, id〉p0

)}
(16)

3: p1 = f(p0);
〈addr, id〉p1 = fmd(〈&f, 0〉) (17)

In this example, a pointer p0 is passed as an argument to function f and pointer p1 is assigned the
returned value. The return value of f is statically associated with the index “0,” and its single pointer
argument is given an index of “1.” Thus, before the function call, the pointer metadata of p0 is
associated with the tuple 〈&f, 1〉 in RF (16). That is, a key represented by the address of f and the
integer “1” is mapped to the pointer metadata of p0. Similarly, after the call returns, the pointer
metadata for p1 is retrieved from RF with the tuple 〈&f, 0〉 (17).

For the declaration of a function with pointer arguments, MemSafe retrieves the pointer metadata
for each incoming pointer by performing a lookup operation of RF . Similarly, if a function returns
a pointer value, MemSafe creates an entry in RF for its pointer metadata just before the function
returns. MemSafe updates and defines pointer metadata for function declarations as shown below.

1: int* f(int *q) {
2: int *r;
3: ...

〈addr, id〉q = fmd(〈&f, 1〉) (18)
2: . . .

RF = (RF \ {(〈&f, 0〉, fmd(〈&f, 0〉))}) ∪ {(〈&f, 0〉, 〈addr, id〉r)} (19)
3: return r;
4: }

In this example, pointer q is a formal argument of function f, and pointer r is returned at the end of the
procedure. Since q is declared to be the first pointer in the function’s argument list, MemSafe retrieves
the pointer metadata for q from RF with the tuple 〈&f, 1〉 at the beginning of the procedure (18).
Similarly, since MemSafe statically assigns pointer return values the index “0,” the pointer metadata
of r is associated with the tuple 〈&f, 0〉 in RF before the procedure exits (19).

MemSafe’s approach for propagating metadata for pointer arguments and return values is quite
robust. It is sufficient for interfacing with pre-compiled libraries, handling variable-argument
functions, and passing metadata through poorly-typed function pointers. For complete safety, pre-
compiled libraries must have been compiled with MemSafe’s safety checks, but a safe application is
capable of interfacing with unsafe libraries as well.

Memory Copying Functions The memory copying functions (e.g. memcpy and memmove) defined in
the string.h standard library generally copy a specified number of bytes from a location indicated
by a source pointer src to the location referred to by a destination pointer dest. Although these
procedures result in multiple read and write operations, MemSafe only needs to perform bounds
checks for the source and destination buffers once before the operation begins.

However, any in-memory pointer values that are located in the source buffer and copied to the
destination buffer must also have their associated pointer metadata copied. Recall that pointer
metadata that is associated with in-memory pointers is maintained in the pointer metadata facility RP.
Thus, any mapped address in RP that is within the range [base, bound) of the source buffer must have
its metadata copied and associated with a new address that is located at a distance of dest − src bytes
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from the original address. MemSafe updates and defines pointer metadata for the memory copying
functions of string.h as shown below.

1: memcpy(v, u, size);

S =
{
(ptr, 〈addr, id〉*ptr) ∈ RP : basesrc ≤ ptr < boundsrc

}
(20)

D =
{
(ptr + (dest − src), 〈addr, id〉*ptr) : (ptr, 〈addr, id〉*ptr) ∈ S

}
(21)

RP = RP ∪ D (22)

In this example, the definition of S selects the pointer metadata associated with the source buffer
that must be copied (20), and the definition of D associates the metadata with a new address within
bounds of the destination buffer (21). Finally, RP is updated to contain the copied metadata (22).
To avoid the runtime overhead of performing the metadata copy, MemSafe attempts to infer if the
source buffer contains any in-memory pointer values by reasoning about its type and usage. Although
this may lead to the pointer metadata facility not being properly updated, instances of in-memory
pointers being copied with the string.h functions have been observed to be rare in practice.

4. REDUCING THE RUNTIME COST OF ENFORCING MEMORY SAFETY

Because the runtime overhead of MemSafe’s basic approach can be prohibitively expensive for use
in real systems, this section develops several tools and optimizations for reducing the cost associated
with the inserted checks for memory safety and the code required for propagating metadata. First, a
novel pointer data-flow representation is presented that is made possible by the modeling of both
memory deallocation and pointer store operations as explicit pointer assignments. Then, this data-flow
representation is used as the foundation of several optimizations that identify and eliminate unneeded
runtime checks and code for propagating unused metadata.

4.1. A Data-flow Graph for Pointers

By utilizing the abstractions developed in Section 3.1 for memory deallocation and pointer stores,
MemSafe creates a whole-program Data-Flow of Pointers Graph (DFPG). The DFPG is a definition-
use graph for the flow of all pointer metadata in a program. Since the invalid pointer creates a direct
pointer assignment for each deallocated object, and since the %-function creates a pointer assignment
for indirect pointer stores, every pointer assignment, whether it is an explicit or implicit assignment,
is given a unique name in the SSA representation of the program. Therefore, if the pointer metadata
associated with a pointer p is copied to that of another pointer q, there is a directed edge from p to q
in the DFPG.9 Similarly, if the pointer metadata of q is loaded from memory, a %-function is inserted
that indicates the pointers whose metadata may equal that of q, and these pointers are represented
in the DFPG as predecessors of q. In general, since the data-flow of pointers may flow recursively,
cycles are possible in the DFPG. Recall that since the data-flow associated with pointer loads and
stores is represented by the %-function, the definitions and uses associated with these operations are
not included in the DFPG.

Figure 4 shows (a) an example code fragment and (b) its associated DFPG. In this code fragment,
which was introduced during the discussion of the invalid pointer and %-function (see Section 3.3),
the only pointer definition that is not a pointer load or store operation is that of c1, which occurs after
line 9. Since the definition of c1 uses the value of three other pointers (a, b, and invalid), there is an
edge in the DFPG from each of these pointers to c1.

9For simplicity, nodes in the DFPG are identified by named pointer values. However, in actuality, DFPG nodes represent
the pointer metadata associated with these pointers, and not the pointers themselves.
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1: int *a, *b, *c;
2: int **p, **q;
⊲ assume p and q may alias
...

3: *q = a;
...

4: if (condition) {
5: *p = b;
6: } else {
7: free(*p);

*p = invalid;
8: }

...
9: c0 = *q

c1 = ̺(a, b, invalid);

(a) Syntax Extensions

a

c1

b

invalid

(b) DFPG

Figure 4. DFPG construction. A code fragment with MemSafe’s syntax extensions (a) and its corresponding
DFPG (b). Numbered lines indicate original code.

4.2. Optimizations of the Basic Approach

MemSafe utilizes the DFPG to perform several optimizations that reduce the cost of memory safety.
Since the DFPG blurs the distinction between spatial and temporal errors, MemSafe’s optimizations
(described below) affect aspects of both.

Dominated Dereferences Multiple dereferences of the same pointer require safety checks only for
the dereference that dominates the others. Dominated dereferences do not require checking.

Temporally Safe Dereferences If a pointer p is not reachable from invalid in the DFPG, then it must
refer to a temporally valid object. Therefore, a dereference of p does not require an OBC. Recall that
since MemSafe models temporal errors as spatial errors, the PBC ensures spatial and temporal safety
for object-level references. However, if p may refer to a sub-object, its dereference requires the OBC
in addition to the PBC to ensure temporal safety. p’s potential referents are represented by the set
of nodes in DFPGT that are reachable from p and have no children. DFPGT is the transpose of the
DFPG (i.e., the DFPG with its edges reversed).

Non-incremental Dereferences If a pointer p must refer to a temporally valid object and is not
reachable from a path in the DFPG representing pointer arithmetic, then p must refer to the base of a
valid object or sub-object. If p is physically sub-typed [40] with each of its potential referents (i.e.,
their types are compatible for assignment), p’s dereference does not require a PBC. If p is reachable
from only constant increments (e.g., structure field accesses), MemSafe performs compile-time
checks to eliminate the PBC.

Monotonically Addressed Ranges A pointer whose value is a monotonic function of a loop induction
variable refers to a monotonically addressed range of memory. For the dereference of such a
pointer, MemSafe removes the pointer’s PBC from within the loop body, and inserts a Monotonically
Addressed Range Check (MARC) in the loop pre-header. If the pointer’s dereference also requires an
OBC, this check is placed in the pre-header as well. MARC is the forcibly inlined procedure defined by:

1: inline void MARC(ptr, size, addr, id, trip_count) {
2: 〈base, bound, id〉ptr ← M[addr]
3: ptr_max = ptr + trip_count;
4: if ((id != idptr) || (ptr < baseptr) || (ptr_max + size > boundptr)) {
5: signal_safety_violation();
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6: }
7: }

In the above check, ptr, baseptr, and boundptr are all pointers to type unsigned char, and size is
the size on byptes of ptr’s referent. MemSafe inserts the following code to ensure the safety of a
pointer dereference within a loop:

1: MARC(ptr, sizeof(*ptr), addrptr, idptr, N);
for (i = 0; i < N; i++) {

... *(ptr + i) ... ;
B some store or load operation involving ptr

}

In this example, MemSafe signals a safety violation if the dereference *(ptr+i) will access a
location outside the range specified by 〈base, bound, id〉ptr on any iteration of the loop and eliminates
ptr’s PBC within the loop. If ptr may refer to a sub-object, MemSafe hoists the OBC within the loop to
the location before the MARC in the loop preheader.10

Unused Metadata Connected components in the DFPG represent disjoint alias sets. Therefore, if
MemSafe eliminates checks for all pointers in a particular connected component, then their metadata
is unused, and MemSafe eliminates it as well. This is more aggressive than dead code elimination
since MemSafe not only removes unused metadata, but also code that updates the metadata facilities.

5. IMPLEMENTATION

Having described MemSafe’s approach for inserting and optimizing the runtime checks needed for
ensuring memory safety, this section describes the implementation of the MemSafe compiler and
the global data structures it requires for maintaining metadata. Additionally, implementation issues
related to the C language and the typical C programming development process are also considered.

5.1. MemSafe’s Analysis and Transformation

MemSafe is implemented within the Low Level Virtual Machine (LLVM) [38] compiler infrastructure.
LLVM’s intermediate representation is a low-level, typed SSA [24] form that is language-independent
and also independent of any instruction set architecture. Thus, the implementation of MemSafe’s
transformation for ensuring memory safety is not specific to a particular computer architecture, and
in theory, could also be used to enforce safety for languages other than C. However, MemSafe has not
been tested for this purpose. By default, MemSafe uses Andersen’s analysis [42] for interprocedural
flow- and context-insensitive points-to information, but MemSafe is compatible with any alias
analysis implementation that operates within the LLVM infrastructure.

MemSafe consists of a collection of analyses and transformations that each contribute a portion
of the overall approach described in Section 3. These include compilation passes for (1) inserting
assignments of the invalid pointer at deallocation sites, (2) inserting %-functions with the aid of alias
analysis, (3) constructing the DFPG, (4) inserting optimized safety checks and code for metadata
propagation, and (5) aggressively removing all previously inserted assignments of invalid (but not
its associated metadata) and all %-functions since these are only used for MemSafe’s analysis. We
run the above passes after the program has been linked and optimized with LLVM’s standard set
of optimizations. Applying MemSafe’s transformation after LLVM’s optimizations improves the
results of alias analysis and ensures that MemSafe avoids inserting unnecessary checks. We run
LLVM’s standard optimizations once more after MemSafe has completed its transformation to further

10Although MemSafe uses the MARC to essentially hoist checks out of loops, array bounds check elimination [41] can be
used with MemSafe to completely eliminate some of these checks.
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optimize the inserted checks and to eliminate any dead code MemSafe may have introduced during
its analysis.

5.2. Metadata Facilities

The global facilities (RO, RP and RF ) MemSafe requires for maintaining object and pointer metadata
can be implemented using any data structure that supports efficient insertion, deletion, and retrieval
operations. For simplicity and ease of implementation, MemSafe uses dynamically resized hash
tables for all three metadata facilities. Collisions are resolved using separate chaining. Hash functions
are a modulo of the key with the size of the table, which becomes an efficient bitwise and operation
by restricting table sizes to powers of two.

The prototype implementation of MemSafe makes two simplifications in the process described
for creating pointer and object metadata. Fist, MemSafe acquires addresses addr ∈ A for storing a
pointer’s pointer metadata using malloc, and this storage is released back to the system using free
when a pointer’s metadata is updated to be that of the invalid pointer. Second, MemSafe acquires a
unique id ∈ I, which is used as a key for the object metadata facility by incrementing a global counter.
While this ensures that each generated id is unique, this places a finite limitation on the number of
objects that can be allocated by a program. However, note that a 4GHz computer would take 136
years to overflow a 64-bit counter allocating a new object on every clock cycle.

5.3. Limitations

Although MemSafe’s method of ensuring the memory safety of C is complete and compatible with
most programs, given C’s weak typing guarantees and the typical application development process,
in practice, MemSafe is not free from limitations. For example, the implementation of MemSafe
currently does not support inline assembly instructions and does not allow self-modifying code. For
programs requiring assembly, MemSafe could be extended with the appropriate rules for handling
these instructions, but this would likely limit the effectiveness of MemSafe’s optimizations.

MemSafe’s most significant limitation is its use of whole-program analysis to limit the number
of required checks and to avoid unnecessary metadata propagation. Although analyzing the entire
program is essential for reducing the cost of software-provided memory safety, it negates the
advantages of separate compilation, and can be problematic for use in common build environments.
However, MemSafe’s whole-program analysis, which is based the construction of the DFPG, is not
required for enforcing safety. The checks and metadata propagation described in Sections 3.4–3.5
are fully compatible with separate compilation, and MemSafe’s optimizations can be turned off for
programs where whole-program analysis is infeasible. Section 6 presents performance overheads
with and without using whole-program analysis.

Another limitation is the requirement that external libraries be compiled with MemSafe in order to
achieve complete safety. This limitation is necessary not only for ensuring the safety of the libraries
but also for correctly propagating metadata to the applications. However, for various compatibility
issues, it is not uncommon for systems to maintain multiple versions of pre-compiled libraries,
and in such cases, it may be reasonable to accommodate safe and unsafe library versions as well.
As mentioned in Section 3.5, the design of MemSafe’s metadata facilities enables both safe and
unsafe libraries to link with a safe application. When linking a safe application with unsafe libraries,
MemSafe ensures that externally defined pointers inherit the metadata of the invalid pointer. Although
this may result in some false positives, we have observed this to be uncommon in practice.

6. RESULTS

Having discussed the prototype implementation of the MemSafe compiler, this section presents
a thorough evaluation of MemSafe’s approach for ensuring the memory safety of C programs at
runtime. Specifically, this section evaluates (1) MemSafe’s completeness by demonstrating that it
is capable of detecting known memory safety violations in several large programs, (2) MemSafe’s
cost by measuring its runtime overhead on a variety of programs and comparing this slowdown with
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Benchmark Size Detected All

Suite Program LOC Derefs

BugBench 099.go 29246 16632 yes
129.compress 1934 232 yes
bc-1.06 14288 2474 yes
gzip-1.2.4 9076 1722 yes
ncompress-4.2.4 1922 838 yes
polymorph-0.4.0 716 65 yes

Table III. MemSafe’s ability to detect all memory violations in the BugBench [27] programs. Program size is
measured in lines of code (LOC) and the number of static dereferences.

that of prior methods, and (3) the effectiveness of MemSafe’s static analysis by measuring quantities
related to MemSafe’s data-flow representation and the number of required checks and performed
optimizations.

In performing the above evaluation, it will be demonstrated that MemSafe is compatible with a
variety of C programs and that it does not require any source code modifications or programmer
intervention. Additionally, it will be shown that MemSafe’s key contributions—namely, the modeling
of temporal violations as spatial violations, the use of a hybrid metadata representation, and
MemSafe’s data-flow representation—are effective tools for reducing the runtime cost of dynamically
ensuring memory safety.

6.1. Effectiveness in Detecting Errors

To provide evidence of its completeness and ability to detect real errors, MemSafe was evaluated on
programs containing known memory errors from the BugBench [27] suite of programs. BugBench is
a collection of programs containing various documented software bugs that was expressly created
to evaluate the effectiveness of error detection tools. Table III shows that MemSafe is capable of
detecting all known memory errors in six programs from BugBench. BugBench programs that were
excluded from Table III include programs that only contain errors that are not related to spatial
or temporal safety (e.g., memory leaks and race conditions). Thus, the programs in Table III are
representative of all memory safety violations in BugBench. The size of each program is given in
lines of code (LOC) and the number of static dereferences.

MemSafe’s ability to detect real-world memory violations was further validated by it compiling
two large applications and successfully detecting the known memory errors. Table IV summarizes the
memory safety violations detected by MemSafe in various versions of the Apache HTTP server [25]
and the GNU Core Utilities [26] software package. The Apache HTTP server is a widely-used
open source web server, and the GNU Core Utilities is a GNU software package that provides the
basic text, shell, and file utilities (e.g., cat, expr, and cp) common among virtually all Unix-like
operating systems. To reproduce the known errors in these programs, the online development archive
and bug database of each was consulted in order to identify particular versions of the software that
contain memory safety violations and the runtime conditions necessary for producing them. Having
discovered the known violations, MemSafe was then used to compile each version of the software,
and the programs were executed to verify that the inserted runtime checks successfully detected the
violations. The size of each program in Table IV is given in lines of code.

6.2. Runtime Performance

MemSafe’s increase in runtime and memory consumption was measured on a total of 30 programs
from the Olden [28], PtrDist [4] and SPEC [43] benchmark suites. Programs from Olden and PtrDist
suites are known for being memory allocation intensive, while those from SPEC are larger and
generally more computationally intensive. The programs were executed on a system running the
Ubuntu 8.04 LTS Desktop operating system with Linux kernel version 2.6.24. The system contains
a single 3GHz Pentium 4 processor and 2GB of main memory. Program execution times were
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Application Version LOC Component Detected Violation

Apache HTTP Server∗ 2.0.39 262487 mod_ext_filter null dereference
2.0.40 266741 mod_env null dereference
2.0.46 282682 mod_ssl dangling pointer
2.0.48 284627 mod_ssl null dereference
2.0.50 262266 mod_rewrite buffer overflow
2.0.52 263513 mod_auth_ldap null dereference
2.0.54 265243 mod_auth_ldap null dereference
2.0.59 267783 mod_rewrite uninitialized pointer
2.2.0 310283 mod_proxy double free
2.2.2 311235 mod_dbd double free
2.2.6 314531 mod_proxy_balancer buffer overflow
2.2.8 316713 mod_log_config null dereference
2.2.9 332867 mod_ldap null dereference
2.3.4 206590 mod_proxy null dereference

GNU Core Utilities† 5.2.1 103659 fts double free
5.2.1 103659 copy buffer overflow
5.2.1 103659 who buffer overflow
5.3.0 107147 cut double free
5.9.0 112781 regexec buffer overflow
6.10 69491 mkfifo null dereference
6.10 69491 mknod null dereference
6.10 69491 ptx buffer overflow

Table IV. Known real-world memory violations from the Apache HTTP Server [25] and GNU Core
Utilities [26] that MemSafe sucessfuly detects. Program size is measured in lines of code (LOC).

∗Source of violations: https://issues.apache.org/bugzilla/
†Source of violations: http://lists.gnu.org/archive/html/bug-coreutils/

determined by taking the lowest of three times obtained using the GNU/Linux time command,
and memory usage was measured by instrumenting all allocation and deallocation instructions to
record the number of allocated objects and their sizes. Due in part to LLVM’s research-quality
implementation of Andersen’s analysis, the current implementation of MemSafe is not yet robust
enough to compile the entire set of SPEC benchmarks. The results presented in this section pertain to
the subset that MemSafe correctly compiles.

Increase in Runtime Table V summarizes the runtime and memory consumption overheads of
MemSafe’s fully optimized approach. While this section discusses the increase in runtime of programs
compiled with MemSafe’s safety checks, the discussion of their increase in memory consumption is
deferred until Section 6.2.

The “Runtime” and “Slowdown” columns of Table V show that MemSafe ensured complete spatial
and temporal safety for all 30 programs with an average overhead of 88%. In general, MemSafe’s
overhead was observed to be comparable to that of CCured [22]: on the allocation intensive Olden
benchmarks, MemSafe’s overhead was 29% versus CCured’s 30%, and on CCured’s entire set of
reported benchmarks, MemSafe overhead was 69% versus CCured’s 80%. Not including bc (on
which CCured’s overhead was particularly high) reduces these to 65% and 30%, respectively. While
the runtime cost of MemSafe is similar to that of CCured, MemSafe does not incur the drawbacks
associated with the use of CCured—the need for manual modifications and the compatibility issues
arising from the use of “fat pointer.” Due to CCured’s need for manual code modifications, results
for CCured on additional programs were not obtained.

Additionally, MemSafe demonstrated a significant and consistent improvement over the reported
performance of MSCC [6], the tool with the lowest overhead among all existing complete and
automatic methods that detect both spatial and temporal errors. On the Olden benchmarks, MemSafe’s
average overhead (29%) was roughly 1/4 that of MSCC (133%), and on the entire set of MSCC’s
reported benchmarks, MemSafe’s overhead (44%) was roughly 1/3 that of MSCC (137%).
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Benchmark Size Runtime (s) Memory (MB) Slowdown

Suite Program LOC Derefs Base MemSafe Base MemSafe MemSafe CCured MSCC

Olden bh 2073 284 4.64 5.34 14.67 17.70 1.15 1.44 2.82
bisort 350 76 1.31 1.59 214.73 275.12 1.21 1.45 1.76
em3d 688 187 5.11 6.95 54.84 55.15 1.36 1.87 1.79
health 502 236 0.47 0.70 36.63 53.61 1.48 1.29 2.72
mst 428 57 0.31 0.36 24.90 24.92 1.17 1.06 1.76
perimeter 484 258 0.36 0.48 37.33 80.12 1.34 1.09 3.37
power 622 285 4.09 4.70 2.91 5.14 1.15 1.07 1.22
treeadd 245 26 0.38 0.59 48.00 182.92 1.55 1.10 3.23
tsp 582 194 3.83 4.44 144.00 278.65 1.16 1.15 2.28

average 716 178 2.28 2.79 64.22 108.15 1.29 1.30 2.33

PtrDist anagram 650 113 1.56 2.96 0.24 0.25 1.90 1.43 –
bc 7297 3927 1.34 3.15 0.72 0.72 2.35 9.91 –
ft 1766 246 2.04 3.61 3.24 9.20 1.77 1.03 –
ks 782 239 1.54 2.97 0.02 0.09 1.93 1.11 –
yacr2 3986 1000 1.96 5.98 29.88 30.17 3.05 1.56 –

average 2896 1105 1.69 3.73 6.82 8.09 2.20 3.01 –

SPEC’95 099.go 29246 16632 0.62 1.26 0.00 0.01 2.03 1.22 2.60
129.compress 1934 232 0.01 0.02 0.00 0.00 2.20 1.17 1.85
130.li 7597 4905 0.06 0.12 19.91 19.91 1.93 1.70 –
147.vortex 67202 25135 0.00 0.00 96.41 96.41 – – –

average 26495 11726 0.17 0.35 29.08 29.08 2.05 1.36 –

SPEC’00 164.gzip 8605 1499 20.72 43.10 187.93 187.94 2.08 – 1.46
175.vpr 17729 5386 8.34 16.26 44.35 44.37 1.95 – 3.53
181.mcf 2412 534 11.34 21.89 99.86 99.46 1.93 – 2.85
186.crafty 24975 7579 14.93 34.94 7.09 7.14 2.34 – –
255.vortex 67213 25134 3.96 8.28 96.46 96.46 2.09 – –
256.bzip2 4649 1254 22.33 45.55 191.95 191.96 2.04 – –
300.twolf 20459 11741 7.52 15.34 6.39 12.74 2.04 – –

average 20863 7590 12.73 26.48 90.58 91.49 2.07 – –

SPEC’06 401.bzip2 8293 4013 6.20 17.55 855.79 855.79 2.83 – –
445.gobmk 197215 27614 0.29 0.66 28.50 28.66 2.27 – –
456.hmmr 35992 7582 7.82 17.52 59.82 59.89 2.24 – –
458.sjeng 13847 5832 10.12 22.26 179.63 179.64 2.20 – –
473.astar 5842 1873 0.00 0.00 313.15 313.15 – – –

average 52238 9383 4.89 11.60 287.38 287.43 2.39 – –

Average 18394 5136 4.77 9.62 93.31 106.92 1.88 – –
Table V. Dynamic results with whole-program analysis. Program size is measured in lines of code and the
number of static dereferences, runtime is measured in seconds, and memory consumption is measured in
megabytes. Slowdown is computed as the ratio of the execution time of the instrumented program to that of the
original program. Slowdown for MemSafe with all optimizations is shown in comparison with CCured [22]

and MSCC [6] where results are available.

In order to provide a direct comparison with MSCC (instead of relying on published results) on
the same computer hardware, an attempt was made to compile our entire set of benchmarks with
MSCC. However, perhaps due to MSCC having not been actively maintained since its publication, it
was found to be difficult to compile MemSafe’s entire set of 30 benchmarks with MSCC. Figure 5
compares the slowdown of MemSafe’s fully optimized approach for spatial and temporal safety with
that of MSCC on the set of benchmarks MSCC compiled correctly. MemSafe’s average overhead
for these benchmarks (74%) was roughly 1/6 that of MSCC (486%). While these results show a
dramatic increase in runtime overhead for MSCC, the overall trend is similar to the reported results
for MSCC shown in Table V. Comparisons with additional methods on the Olden benchmarks is
presented in Section 1.
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Figure 5. Runtime Comparison With MSCC. Slowdown for MemSafe and MSCC [6] is shown for spatial and
temporal and spatial-only safety.

MemSafe’s optimized approach improves the runtime cost required for memory safety in
comparison to that of prior work for the following reasons: (1) MemSafe’s data-flow representation
enables performance-enhancing optimizations that reduce overhead from 253% to 88% (explained
later). (2) MemSafe’s modeling of temporal errors as spatial errors, combined with a hybrid metadata
representation, enables MemSafe to ensure temporal safety with only a 10% increase in the overhead
of spatial safety alone (also explained later). In particular, MemSafe’s large improvement versus
MSCC on the Olden benchmarks is due to the fact that these programs deallocate all dynamically
allocated memory at once before terminating. Thus, by determining that there is no control-flow path
from the deallocation to other points in the program, MemSafe is able to eliminate the propagation
of the metadata associated with the invalid pointer and remove all object bounds checks. Deallocated
memory at the end of a program is a common programming style when objects are required to have
an unlimited lifespan or when memory reallocation is not needed.

Increase in Memory Consumption The “Memory” column of Table V reports the memory
consumption of each program when compiled with LLVM MemSafe. MemSafe ensured complete
spatial and temporal safety for all 30 programs with an average increase in memory of 13.61MB,
which is equal to 48.60% of the programs’ original memory requirements. MemSafe’s average
memory consumption overhead is significantly higher for the Olden (73.52%) and PtrDist (130.32%)
benchmark suites compared to the three SPEC (8.46%) benchmark suites. Since MemSafe requires
the metadata of each allocated object to be mapped in the object metadata facility, allocation
intensive programs, like those in the Olden and PtrDist suites, require more memory for maintaining
metadata than computationally intensive programs. The memory required for MemSafe’s metadata is
determined by the number of allocated objects rather than their total size.

Effectiveness of Optimizations Figure 6(a) shows that MemSafe’s optimizations and whole-program
analysis are effective tools for reducing the runtime overhead required for ensuring memory safety.
Shown in the “Average” histogram, MemSafe’s optimizations reduced its average runtime overhead
from 253% to 88%. Since the optimization for dominated dereferences (DDO) is minimally effective,
it is presented in Figure 6(a) as the baseline. The optimization for temporally-safe dereferences
(TDO) reduced overhead by 102%, and the optimization for non-incremental dereferences (NDO)
reduced overhead by 37%. Combined with the optimization for unused metadata, which is included
with both, NDO and TDO accounted for the greatest reduction in overhead. The optimization for
monotonically addressed ranges (MRO) was marginally effective and reduced overhead by only 1%.

Figure 6(b) shows the effectiveness of MemSafe’s optimizations without utilizing whole-program
analysis. When restricted to not use interprocedural information, MemSafe’s optimizations reduced
the overhead from 253% to 209%. TDO reduced overhead by 11%, NDO reduced overhead by 7%,
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Figure 7. Effect of aliasing. The average number of %-nodes modifyable by each pointer store is shown with
Andersen’s alias analysis versus no alias analysis.

and MRO reduced overhead by an additional 2%. Hence, MemSafe’s average overhead with separate
compilation was 209% versus 88% with whole-program analysis. MemSafe’s seemingly large
improvement in runtime overhead when given the ability to perform interprocedural optimizations
is not by chance: By representing memory deallocation and pointer stores as direct assignments,
MemSafe makes whole-program optimizations much more effective. Thus, MemSafe’s overheads
are lower than those of existing methods that cannot benefit in this way.

Additional Cost of Temporal Safety Figure 6(a) also quantifies the additional cost required for
MemSafe to ensure temporal safety. The “Average” histogram shows that MemSafe’s overhead for
both spatial and temporal safety (88%) is comparable to the runtime overhead MemSafe requires
for ensuring spatial safety (80%). Thus, for the 30 programs tested, MemSafe ensured complete
temporal safety with a modest 10% increase in the average overhead for achieving spatial safety.

Finally, the additional cost of ensuring temporal safety with MemSafe is a significant reduction
in the cost of achieving temporal safety with MSCC. On MSCC’s set of reported benchmarks, the
additional cost of ensuring temporal safety with MemSafe (1%) is a reduction in the additional
runtime cost required for MSCC to ensure tempral safety (62%) by a factor of 62. For the set of
programs that were successfully compiled with MSCC on the same platform as MemSafe (shown in
Figure 5), the additional cost of ensuring temporal safety with MemSafe (13%) is a reduction in the
additional runtime cost required for MSCC to ensure temporal safety (114%) by a factor of nearly
9. Thus, the difference in the additional overhead required for MemSafe achieve temporal safety is
further evidence that by modeling temporal errors as spatial errors, MemSafe’s optimizations are
effective tools for reducing the cost of temporal safety.

6.3. Static analysis

The “Checks,” “Opts.,” and “DFPG” columns of Table VI describe results related to MemSafe’s
whole-program analysis. First, the “Checks” column shows the static number of required checks,
organized by check type, as a percentage of the static number of total pointer dereferences. Second,
the “Opts.” column shows the static number of checks (i.e., PBC and OBC) that were eliminated by
MemSafe’s optimizations, organized by optimization type. Finally, the “DFPG” column summarizes
the DFPG with the percentage of nodes reachable from the node representing the invalid pointer and
with the %/store quantity. The former indicates the portion of pointers that may refer to temporally
invalid objects, and the latter indicates the average number of loaded memory locations that each
pointer store may potentially modify. Thus, these two quantities are a static estimate of the uncertainty
in pointer data-flow. Figure 7 demonstrates that Andersen’s alias analysis [42] is often capable of
reducing %/store by several orders of magnitude.

Finally, Figure 8 shows MemSafe’s compile-time slowdown for each program. Slowdown is
computed as the ratio of the compilation time required by MemSafe to that of the base LLVM
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Benchmark Size Checks (%) Opts. (%) DFPG

Suite Program LOC Derefs PBC OBC MARC DDO TDO NDO Invalid (%) %/Store

Olden bh 2073 284 19.01 0.00 1.76 27.11 70.07 52.11 0.00 7.19
bisort 350 76 9.21 0.00 0.00 35.53 64.47 55.26 0.00 9.93
em3d 688 187 31.55 0.00 3.21 7.49 82.35 57.75 0.00 1.84
health 502 236 22.46 0.00 0.00 15.25 84.32 62.29 0.00 3.42
mst 428 57 19.30 0.00 5.26 12.28 77.19 63.16 0.00 0.24
perimeter 484 258 19.77 0.00 0.00 0.00 100.00 80.23 0.00 142.61
power 622 285 37.89 0.00 0.00 22.46 75.79 39.65 0.00 0.00
treeadd 245 26 39.47 0.00 0.00 0.00 100.00 60.53 0.00 5.33
tsp 582 194 15.98 0.00 0.00 31.96 68.04 52.06 0.00 31.07

average 716 178 23.85 0.00 1.14 16.90 80.25 58.12 0.00 22.40

PtrDist anagram 650 113 33.63 0.00 0.00 21.24 52.21 45.13 0.00 0.29
bc 7297 3927 15.76 3.79 1.12 32.85 57.70 50.27 8.99 43.62
ft 1766 246 30.49 0.00 0.00 24.80 70.33 44.72 3.92 155.43
ks 782 239 28.03 0.00 0.00 27.62 49.37 44.35 0.00 13.71
yacr2 3986 1000 34.70 5.00 3.90 34.60 51.20 26.80 4.85 6.15

average 2896 1105 28.52 1.76 1.00 28.22 56.16 42.25 3.55 43.84

SPEC’95 099.go 29246 16632 57.54 0.00 5.96 25.44 11.06 11.06 0.00 –
129.compress 1934 232 16.38 0.00 4.74 40.95 37.93 37.93 0.00 4.13
130.li 7597 4905 14.92 0.00 0.06 27.26 70.89 57.76 0.00 694.18
147.vortex 67202 25135 7.35 0.25 0.04 34.36 64.25 58.25 13.18 1511.59

average 26495 11726 24.05 0.06 2.70 32.00 46.03 41.25 3.30 736.63

SPEC’00 164.gzip 8605 1499 21.35 0.47 4.34 44.70 30.02 29.62 0.96 3.79
175.vpr 17729 5386 21.59 0.32 2.32 22.08 71.67 54.01 7.07 14.52
181.mcf 2412 534 7.30 0.19 1.31 23.60 69.10 67.79 9.61 25.74
186.crafty 24975 7579 38.49 11.11 0.01 15.64 46.15 45.86 23.77 29.08
255.vortex 67213 25134 7.35 0.25 0.04 34.37 64.24 58.24 13.18 1511.61
256.bzip2 4649 1254 43.46 0.40 3.03 41.23 14.83 12.28 1.12 316.95
300.twolf 20459 11741 16.73 0.88 0.25 20.82 72.24 62.21 9.39 3.71

average 20863 7590 22.32 1.95 1.61 28.92 52.61 47.14 9.30 54.72

SPEC’06 401.bzip2 8293 4013 17.29 8.07 1.20 12.09 75.18 69.42 27.83 440.48
445.gobmk 197215 27614 38.51 8.52 1.96 19.49 41.80 40.05 12.70 209.98
456.hmmr 35992 7582 27.13 8.76 1.58 18.40 65.63 52.89 14.21 108.66
458.sjeng 13847 5832 26.29 2.54 0.22 28.21 48.47 45.28 18.37 80.29
473.astar 5842 1873 7.90 2.62 0.32 19.38 75.71 72.40 18.91 39.38

average 52238 9383 23.42 6.10 1.06 19.51 61.36 56.01 18.40 133.89

Average 18394 5136 24.23 1.77 1.42 24.04 62.07 50.31 6.48 177.68
Table VI. Static Results with Whole-program Analysis. Program size is measured in lines of code and the
number of static dereferences. The static number of required checks and optimizations are measured as a
percentage of dereferences. The DFPG is measured by the percentage of nodes reachable from invalid and

the average number of %-nodes modifiable by each pointer store.

compiler using default optimizations. In general, the compile-time requirements of MemSafe are
modest. For 28 of the benchmarked programs, MemSafe was able to ensure memory safety with
an increase in compile-time by less than a factor of two. The compilation time required by ft and
130.li surpassed this threshold due to the time required for inserting %-functions. Despite these two
programs, MemSafe’s average increase in compile-time over all 30 benchmarks was 62%.

7. RELATED WORK

Most prior techniques related to the enforcement of memory safety were presented in Section 2 after
having described the various types of spatial and temporal memory errors. Therefore, this section
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Figure 8. Compile-time slowdown. For each program, slowdown is computed as the ratio of the compilation
time required by MemSafe to that of the base LLVM compiler using the default set of optimizations.

will not repeat that content, but it will discuss additional details for methods capable of detecting
both spatial and temporal violations as well as techniques that can only detect one type of error. This
section also presents a discussion of previous work related to MemSafe’s data-flow analysis.

7.1. Spatial and Temporal Safety

While generally not enforcing complete memory safety, several methods are capable of detecting
both spatial and temporal errors. Purify [20] operates on binaries, but only ensures the safety of
heap-allocated objects. Yong and Horwitz [21] present a similar approach and improve its cost
with static analysis, but this method only checks store operations. Safe C [4] ensures complete
safety but is incompatible due to its use of fat-pointers. Patil and Fischer [5] address these issues
by maintaining disjoint metadata and performing checks in a separate “shadow process,” but this
requires an additional CPU. CCured [22] utilizes a type system to eliminate checks for safe pointers
and reduce metadata bookkeeping. However, CCured’s use of fat-pointers causes compatibility issues,
and some programs require code modifications to lower cost. MSCC [6] is highly compatible and
complete but is unable to handle some downcasts. Fail-Safe C [23] maintains complete compatibility
with ANSI C but incurs significant runtime overhead. Finally, Clause et al. [44] describe an efficient
technique for detecting memory errors, but it requires custom hardware.

7.2. Spatial Safety

Methods that primarily detect bounds violations are numerous. Notable is the work by Jones and
Kelly [15] since it maintains compatibility with pre-compiled libraries. However, this method has
high overhead and results in false positives. Ruwase and Lam [16] extend this method to track out-of-
bounds pointers to avoid false positives. Additionally, Dhurjati and Adve [17] utilize Automatic Pool
Allocation [34] to improve cost, and Akritidis et al. [33] constrain the size and alignment of allocated
regions to further improve cost. However, these methods do not detect temporal violations and are
unable to detect sub-object overflows.

HardBound [45] is a hardware-assisted approach for ensuring spatial safety with low overhead.
This method encodes fat-pointers in a special “shadow space” and provides architectural support
for checking and propagating metadata. SoftBound [7] is a related technique that records pointer
metadata in disjoint data structures similar to MemSafe’s representation. However, while these
methods ensure complete spatial safety, they do not ensure temporal safety, and HardBound requires
custom hardware to achieve low overhead.

7.3. Temporal Safety

Few methods are designed primarily for detecting temporal violations. Dhurjati and Adve [46]
describe a technique based on the Electric Fence [47] malloc debugger: Their system assigns a
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unique virtual page to every dynamically allocated object and relies on hardware page protection to
detect dangling pointer dereferences. This approach is improved with Automatic Pool Allocation [34]
and a customized address mapping. However, this method does not detect spatial violations and only
detects temporal violations of heap objects. CETS [48] inserts temporal safety checks before pointer
dereferences and utilizes an efficient lock-and-key mechanism, instead of hash tables, for accessing
the required temporal metadata. However, this method also does not detect spatial violations and
must be combined with an existing spatial safety mechanism to guarantee complete temporal safety.

7.4. Software Debugging Tools

While not intended for deployment in production-quality applications, automated debugging tools
can be used to detect memory errors during software development and testing. Valgrind [49] is a
heavyweight dynamic binary instrumentation framework providing the Memcheck [50] tool for
debugging memory accesses and leaks, and Mudflap [18] is a compiler approach for debugging
memory accesses implemented in the GCC [51] compiler infrastructure. However, these tools are
incapable of ensuring complete spatial and temporal memory safety and incur significant runtime
overheads. For example, both Memcheck and Mudflap are unable to detect spatial safety errors where
an out-of-bounds pointer to one object happens to fall within bounds of another object. They are also
unable to detect temporal safety errors when the runtime system reallocates memory to a previously
deallocated location. Moreover, Memcheck does not aim to ensure spatial or temporal safety for
stack-allocated objects and increases runtime by a factor of 10–30.

7.5. Other Methods of Memory Protection

Several methods utilize software checks to enforce various security-related policies. Abadi et al. [29]
describe a technique to prevent software attacks by enforcing control-flow integrity. Similarly, Castro
et al. [30] enforce data-flow integrity with an analysis based on reaching definitions, and WIT [31]
enforces write-integrity by ensuring each write operation accesses an object from a static set of
legally modifiable objects. Although these techniques are capable of preventing many memory access
violations, they do not ensure complete spatial and temporal safety.

DieHard [52] is a dynamic memory allocator capable of preventing many heap-related errors. It
uses random object placement within a larger-than-normal heap to prevent invalid deallocations
and probabilistically avoid heap buffer overflows. However, this method is incapable of ensuring
complete spatial and temporal memory safety.

Other methods seek to provide minimal memory protection guarantees to programs executed on
systems lacking hardware virtual memory. Simpson et al. [53] developed a low-overhead method for
achieving memory segmentation using compiler-inserted runtime checks. Like paging, segmented
virtual memory is a common approach for providing coarse-grained memory protection. In another
method, Biswas et al. [54] developed a technique for avoiding out-of-memory errors with compiler-
inserted runtime checks, memory reuse, and the compression of unused data. Finally, Middha et
al. [55] developed a similar method for avoiding out-of-memory errors in embedded systems by
sharing stack space among the executing tasks of multitasking workloads.

7.6. SSA Extensions

Various methods have extended SSA [24] to incorporate alias information. IPSSA [56] is an
interprocedural, Gated SSA [57] that uses alias analysis to replace indirect stores with φ-like functions
whose semantics are similar to the %-function. However, IPSSA represents all indirect stores as
direct assignments, whereas MemSafe’s %-function is only used for pointer stores. Other extensions
include the χ- and µ-extensions [58], which model may-def and may-use information, but unlike the
%-function, do not keep track of the defining values. Finally, Cytron and Gershbein [59] describe a
demand-driven algorithm for incrementally incorporating alias information with SSA to avoid a large
increase in program size.
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8. CONCLUSION

MemSafe is a compiler analysis and transformation for ensuring the spatial and temporal memory
safety of C at runtime. MemSafe builds upon previous work to enable its completeness and
compatibility, capturing the most salient features of object and pointer metadata in a new hybrid
representation. To improve cost, MemSafe exploits a novel mechanism for modeling temporal errors
as spatial errors, and a new data-flow representation that simplifies optimizations for removing
unneeded checks and metadata.

We verified MemSafe’s ability to detect real errors with lower overhead than previous methods.
MemSafe detected all documented memory errors in 6 programs with known bugs as well as 2 large
open source applications. Additionally, it ensured complete safety with an average overhead of 88%
on 30 programs commonly used for evaluating error detection tools. Finally, MemSafe’s average
runtime overhead on the Olden benchmarks was 1/4 that of the tool with the lowest overhead among
all existing complete and automatic methods that detect both spatial and temporal errors.
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