
Improving Run-Time Scheduling for General-Purpose Parallel Code

Alexandros Tzannes

Dept. of Computer Science
U. of Maryland, College Park

tzannes@cs.umd.edu

Rajeev Barua

Dept. of Electrical & Computer Eng.
U. of Maryland, College Park

barua@umd.edu

Uzi Vishkin

Institute for Advanced Computer Studies
U. of Maryland, College Park

vishkin@umiacs.umd.edu

I. ABSTRACT

Today, almost all desktop and laptop computers are

shared-memory multicores, but the code they run is over-

whelmingly serial. High level language extensions and li-

braries (e.g., OpenMP, Cilk++, TBB) make it much easier for

programmers to write parallel code than previous approaches

(e.g., MPI), in large part thanks to the efficient work-stealing
scheduler that allows the programmer to expose more par-

allelism than the actual hardware parallelism. But when the

parallel tasks are too short or too many, the scheduling

overheads become significant and hurt performance. Because

this happens frequently (e.g, data-parallelism, PRAM algo-

rithms), programmers need to manually coarsen tasks for

performance by combining many of them into longer tasks.
The need for manual coarsening has three harmful effects

on the programmer’s productivity: (1) it is time-consuming,

(2) it requires programmer expertise, and (3) it damages

performance-portability, as it typically results in overfitting
to the specific target machine M , input data D [1], and

calling context C used to perform the coarsening.
Our first contribution is to distinguish between two types

of coarsening, and argue that distinct techniques should be

employed in the two cases. First, when tasks are too short,

the scheduling overhead per-task becomes a significant

fraction of the actual work, and tasks need to be coarsened

to amortize the scheduling costs by increasing the task
granularity. This coarsening depends only on the scheduling

cost per-task and the expected length of tasks, and should be

done statically, so that excessively short tasks are never ex-

posed to the run-time scheduler. Second, when there are too

many tasks for a platform, they are typically made available

for parallel execution then executed by their creator, which

constitutes wasted scheduling overheads. Coarsening is then

beneficial to reduce the amount of parallelism. But variables

D, M and C affect the amount parallelism and are not

always known at compile-time, in which case, coarsening

decisions to reduce parallelism should be done dynamically
(at run-time). Existing work-stealing schedulers do not per-

form such dynamic coarsening, making manual coarsening

a necessity that sacrifices performance-portability.
Reducing parallelism also increases granularity, but, if

there is not much parallelism, it may fail to amortize

scheduling overheads. Symmetrically, amortizing scheduling

overheads reduces parallelism, but may leave exposed an ex-

cessive amount of parallelism. For that reason we distinguish

between these two types of coarsening.
LBS[2] is a work-stealing scheduler that reduces paral-

lelism dynamically, by postponing task creation until needed,

based on load conditions. But, in [2] we evaluated LBS

on an experimental architecture with hardware support that

allowed it to scale well to 64 cores. Follow-up work [1]

noted the possibility of performance degradation on large

machines, due to the deviation of LBS from the work-

stealing mantra of breadth-first thefts, but was unable to

demonstrate it on a 16-core platform. The same work also

claimed that changing LBS to follow the mantra would

require a redesign of their programming language.
Our second contribution is that we demonstrate experi-

mentally the scaling issues of LBS on multicores (Fig.1) and

show an easy way to follow the work-stealing mantra and re-

store scalability, with minimal additional overheads per-task:

each worker (thread) keeps its postponed tasks in a linked list

and, whenever needed, places the oldest ones onto the shared

work-pool. We call the resulting scheduler Breadth-First
Lazy Scheduling (BF-LS). Fig.1 shows that BF-LS scales

well and greatly outperforms existing approaches on un-

coarsened code whilst maintaining performance-portability.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 6 8 12 16 18 22 24

S
pe

ed
up

 v
s.

 o
pt

im
iz

ed
 S

er
ia

l

Number of workers (threads)

BF-LS
LBS
AP

Figure 1. Scaling of BF-LS, LBS, and Auto-Partitioner (AP), the default
scheduler in TBB, on a 24-core (4x Xeon E7450). The benchmark finds
all solutions to placing 14 queens on an 14x14 chessboard, without them
attacking each other, and it is uncoarsened.

REFERENCES

[1] L. Bergstrom, M. Rainey, J. Reppy, A. Shaw, and M. Fluet,
“Lazy Tree Splitting,” in Proc. of ICFP, September 2010.

[2] A. Tzannes, G. Caragea, R. Barua, and U. Vishkin, “Lazy
Binary-Splitting: a Run-Time Adaptive Work-Stealing Sched-
uler,” in Proc. of PPoPP, January 2010.

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.49

215

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.49

216

