
New Constructions for Forward and Backward Private
Symmetric Searchable Encryption

Javad Ghareh Chamani

jgc@cse.ust.hk

Hong Kong University of Science and Technology

& Sharif University of Technology

Dimitrios Papadopoulos

dipapado@cse.ust.hk

Hong Kong University of Science and Technology

Charalampos Papamanthou

cpap@umd.edu

University of Maryland

Rasool Jalili

jalili@sharif.edu

Sharif University of Technology

ABSTRACT

We study the problem of dynamic symmetric searchable encryption.

In that setting, it is crucial to minimize the information revealed to

the server as a result of update operations (insertions and deletions).

Two relevant privacy properties have been defined in that context:

forward and backward privacy. The first makes it hard for the server

to link an update operation with previous queries and has been

extensively studied in the literature. The second limits what the

server can learn about entries that were deleted from the database,

from queries that happen after the deletion. Backward privacy was

formally studied only recently (Bost et al., CCS 2017) in a work that

introduced a formal definition with three variable types of leakage

(Type-I to Type-III ordered from most to least secure), as well as the

only existing schemes that satisfy this property. In this work, we

introduce three novel constructions that improve previous results in

multiple ways. The first scheme achieves Type-II backward privacy

and our experimental evaluation shows it has 145 − 253× faster

search computation times than previous constructions with the

same leakage. Surprisingly, it is faster even than schemes with

Type-III leakage which makes it the most efficient implementation

of a forward and backward private scheme so far. The second one

has search time that is asymptotically within a polylogarithmic

multiplicative factor of the theoretical optimal (i.e., the result size

of a search), and it achieves the strongest level of backward privacy

(Type-I). All previous Type-I constructions require time that is

at least linear in the total number of updates for the requested

keywords, even the (arbitrarily many) previously deleted ones. Our

final scheme improves upon the second one by reducing the number

of roundtrips for a search at the cost of extra leakage (Type-III).

KEYWORDS

Searchable Encryption; Forward/Backward Privacy; CloudDatabases

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243833

ACM Reference Format:

Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papaman-

thou, and Rasool Jalili. 2018. New Constructions for Forward and Backward

Private Symmetric Searchable Encryption. In 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS ’18), October 15–19,

2018, Toronto, ON, Canada. ACM, New York, NY, USA, 19 pages. https:

//doi.org/10.1145/3243734.3243833

1 INTRODUCTION

Storing an encrypted database at a remote server, while retaining

the ability to access and dynamically maintaining it, is fundamental

for modern computing. Consider for example a client that owns

a database, outsources it to an untrusted server and subsequently

issues search queries of the form “retrieve all documents that contain

keywordw”. Ideally, the server should not only learn nothing about

the content of the documents (which can be achieved by traditional

encryption schemes), but also no additional meta-information, e.g.,

how many timesw was searched for, frequency of keywords in the

database, etc. This “perfect” level of privacy is theoretically achiev-

able by strong encryption techniques such as fully-homomorphic

encryption [20], whose large performance overhead however limits

adoption in practice.

Symmetric searchable encryption (SSE), originally proposed by

Song et al. [40], provides a way for accessing this encrypted data-

base efficiently by slightly relaxing the privacy requirements. Con-

cretely, SSE reveals some information to the server during query

execution, known as leakage. This leakage typically includes the

search pattern that reveals which search queries refer to the same

keywordw as well as the access pattern that reveals which files are

returned for a query.

Dynamic symmetric searchable encryption and its leakage.

The first works on SSE focused on static datasets and it was not

until 2009 when SSE schemes that support updates on the database

in a principled manner (also known as dynamic SSE schemes) were

first introduced [12, 26, 27]. Dynamic SSE, however, introduces

additional privacy concerns due to the added functionality. For

example, (a) adding a file f to the database might reveal that f
contains keywords that were searched before, or (b) searching for a

keywordw might reveal which files from the past (that have been

removed from the database now) containedw .

Forward and backward privacy. Schemes that avoid the leakage

associated with case (a) above are called forward private and were

first introduced by Chang and Mitzenmacher [12] and subsequently

https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1145/3243734.3243833

Table 1: Comparison of existing forward and backward private dynamic SSE schemes. N is the total number of (document,

keyword) pairs, |W | is the number of distinct keywords, and |D | is total number of documents. For keyword w , aw is the total

number of updates, nw is the number of files currently containingw , and dw is the number of deleted entries forw . RT is the

number of roundtrips for search. BP represents the achieved backward privacy type. Õ notation hides polylogarithmic factors.

Scheme

Computation Communication

Client Storage BP

Search Update Search Update Search RT

Moneta [6] Õ(aw logN + log3 N) Õ(log2 N) Õ(aw logN + log3 N) Õ(log3 N) 3 O(1) I

Fides [6] O(aw) O(1) O(aw) O(1) 2 O(|W |loд |D |) II

Dianadel [6] O(aw) O(logaw) O(nw + dw logaw) O(1) 2 O(|W |loд |D |) III

Janus [6] O(nwdw) O(1) O(nw) O(1) 1 O(|W |loд |D |) III

Mitra [Sec. 3] O(aw) O(1) O(aw) O(1) 2 O(|W |loд |D |) II

Orion [Sec. 4] O(nw log
2 N) O(log2 N) O(nw log

2 N) O(log2 N) O(logN) O(1) I

Horus [Sec. 4.3] O(nw logdw logN) O(log2 N) O(nw logdw logN) O(log2 N) O(logdw) O(|W |loд |D |) III

refined in [5, 18, 19, 29, 41, 42]. Forward privacy has become an

essential property for dynamic SSE schemes, especially in light of

recent file-injection attacks [46] that become particularly effective

when the SSE scheme is not forward-private. Schemes that try to

limit the leakage from case (b) are called backward private and have

been studied far less in the literature. Other than an informal men-

tion in [42] and the “folklore" construction from ORAM techniques,

no formal definition or construction that achieves this property

existed for a long time. Very recently, Bost et al. [6] introduced a

formal definition for backward privacy with three different types

of leakage ordered from most to least secure.

Type-I leakage (Backward Privacy with Insertion Pattern): Type-I

schemes reveal, during a search forw , the number and type of pre-

vious updates associated withw , the identifiers of files containing

w currently in the database, and when each such file was inserted.

Type-II leakage (Backward Privacy with Update Pattern): In addition

to the information contained in Type-I leakage, Type-II schemes

also reveal when all updates related tow took place.

Type-III leakage (Weak Backward Privacy): Finally, Type-III schemes

also reveal exactly which deletion update canceled which previous

addition (e.g., the deletion that took place during the tenth operation

canceled the addition from the fifth operation). Note that all three

types satisfy the basic property of hiding the actual identifiers of

files that containedw but were deleted prior tow’s search.

The schemes of Bost et al. [6]. Bost et al. [6] provided four

backward-private constructions that achieve different privacy/effi-

ciency trade-offs. The first one is Fides which is a Type-II construc-

tion. At a high level, it uses two deployments of the forward private

SSE scheme of [5] to store update entries of the form (w, id,op)
wherew is a keyword, id is a file identifier, and op = add/del . Addi-
tions are stored in the first deployment and deletions in the second

one. For searching, the user queries both deployments, retrieves all

entries, removes the deleted ones locally, and requests the files with

the remaining identifiers from the server. In that way, the server

cannot tell which identifiers were deleted.

Dianadel and Janus are Type-III schemes that rely on punc-

turable cryptographic primitives to achieve better results, by in-

creasing the amount of information leaked. Dianadel uses a punc-

turable pseudorandom function [4, 7, 28] to achieve better concrete

performance than Fides. Janus uses puncturable encryption [21]

which allows search queries to be executed with a single round of

interaction. Finally, Bost et al, presented Moneta, the only existing

Type-I scheme so far. However, its construction is based on the

recent ORAM scheme of [19] which uses garbled circuits to avoid

interaction. This somewhat limits its potential for adoption in prac-

tice, due to the concrete communication overhead, and it serves

mostly as a theoretical result for the feasibility of Type-I schemes.

1.1 Our Results

In this work, we present three SSE schemes with forward and

backward privacy. Our schemes improve the results of [6] in several

ways. A comparison can be seen in Table 1.

Fast Type-II backward privacy. Our first scheme, Mitra (Sec-

tion 3), offers backward-privacy Type-II. Asymptotically, it achieves

the same performance as Fides, however, due to the use of sym-

metric encryption our experimental evaluation indicates that it has

145 − 253× better computation time for searches and 86 − 232×

for updates. Surprisingly, Mitra has better overall performance

than Diana del and Janus which only achieve Type-III backward

privacy, which makes Mitra the most efficient existing forward

and backward private SSE. We believe the combination of its low

leakage level, practical performance, and simplicity of design, make

it a great candidate for adoption in practice.

Optimizing the search time. As can be seen in Table 1, all existing

schemes (including Mitra) impose search time of Ω(aw) where
aw is the total number of updates related tow (clearly nwdw > aw
where nw is the number of documents containingw currently and

dw is the number of previous deletions for w). This in practice

can be very far from the optimal cost which is O(nw). Inspired by

this, we explore whether backward-private SSE schemes that have

optimal (O(nw)) or quasi-optimal (O(nw · polylog(N))) search time

exist. Crucially, not even Moneta, the construction from [6] that

relies on ORAM achieves this property. Furthermore, even when

examining schemes that are only forward-private, the only known

quasi-optimal construction is from Stefanov et al. [42].

We answer the above question in the affirmative by providing

two schemes, Orion (Section 4) and Horus (Section 4.3), which

have quasi-optimal search time. Orion achieves the strongest level

of backward privacy, Type-I. Asymptotically, it requires O(logN)
rounds of interaction and the search process takes O(nw log

2 N)
steps. However, these asymptotics hold even when no deletions

have occurred (i.e., nw = aw) which motivated us to develop our

last scheme Horus, that improves the efficiency of Orion achiev-

ing better search performance and reduced rounds of interaction.

The number of roundtrips for a search of w is only O(logdw). In
particular, if no (or a constant number of) such deletions have taken

place Horus requiresO(1) roundtrips to retrieve the file identifiers.
On the other hand, Horus is only backward private Type-III which,

however, may still be sufficient in many applications.

Section 5 contains our experimental evaluation and a comparison

with the performance of the constructions of [6].

Overview of techniques. Our first scheme uses an approach for

maintaining an encrypted index that has been extensively used

in the literature of dynamic SSE (e.g., [18, 30, 41]). In particular,

Mitra has similarities with the recent construction of Etemad

et al. [18] that is only forward-private. Triplets of the form key-

word/document/operation (w, id,op) are stored encrypted in a map

dictionary, using pseudorandomly generated locations, based on

the counter of updates updcnt for w which is maintained locally.

Note that op = add/del , i.e., even deletions are “stored” in this

manner. Every update accesses locations that appear random, as far

as the server can tell. To retrieve the files forw , the client simply

regenerates the pseudorandom positions for the different counter

values 1, . . . ,updcnt for w . In this way, the server does not learn

the identifiers of deleted entries.

Orion again maintains a map data structure where each entry

(w, id) is looked up using as key the pair (w,updcnt). Every time

a new entry (w, id) is inserted updcnt is incremented. When an

entry (w, id) is deleted, the entry corresponding to the maximum

updcnt value for w is “swapped” to the position corresponding

to updcnt (see Figure 2). In this manner, at all times, the correct

result for a search for w can be retrieved by looking up certain

positions: (w, 1), . . . , (w,nw). Performing this swapping during up-

dates requires being able to lookup the position (w,updcnt) while
only knowing (w, id). This is the opposite direction than the one

offered by the map, therefore we need to use a second map that

supports this type of mapping. Orion achieves forward privacy

and backward privacy Type-I, by using two oblivious map (OMAP)

data structures [45] which hide the actual accessed memory loca-

tions from the server. Naively implemented, this approach would

require Ω(nw) rounds of interaction for search, one for retrieving

each entry (w, i), in order to maintain privacy. However, a close

observation of the OMAP instantiation of Wang et al. [45] reveals

that it can support “batch” query execution with the same number

of roundtrips as for the case of a single one, i.e., O(logN).
Horus reduces the obligatory amount of interaction by replac-

ing one of the oblivious maps of Orion (the one that is only used

during searches to retrieve results) with a non-recursive (one-level)

Path-ORAM structure [43]. Normally, this approach would require

O(N) storage at the client in order to maintain the position map

for the ORAM which invalidates outsourcing the database in the

first place. We replace the randomly generated ORAM positions

with ones generated with a pseudorandom function (PRF), thus the

client only needs to store the PRF key. In order to achieve forward

and backward privacy, we need to ensure that the same input is

never consumed by the PRF more than once throughout the execu-

tion of updates. This is done by introducing an additional access

counter for each updcnt that measures the number of times the

content of the location corresponding to (w,updcnt) was edited by

an update (acccnt). This solves the privacy issues, but it introduces

a new problem: The client needs to know the correct acccnt for each
updcnt = 1, . . . ,nw during a search for w . We solve this issue by

having the client perform nw binary searches executed “in parallel”

in order to identify the nw correct acccnt values. We show that

with Horus the maximum value of acccnt is O(dw) therefore the
number of necessary roundtrips is reduced to O(logdw). However,
this distribution of previously accessed positions reveals (during

search operations) to the server how many times acccnt was incre-
mented for differentupdcnt values, which in turn leaks information

about which previous addition was canceled by each deletion.

1.2 Related Work

SSE was first introduced by Song et al. [40] who proposed a linear-

time search construction. Curtmola et al. [14] proposed the modern

security definition of SSE that also introduced a sublinear-time

construction. Chase and Kamara [13] introduced the broader notion

of structured encryption to model encryption schemes that allow

for controlled disclosure of some predicate of the data; searchable

encryption is a specific type of structured encryption.

The first schemes to explicitly support efficient updates in the

database were by Kamara et al. [27] and Kamara and Papaman-

thou [26], with the latter reducing the amount of leakage of the

first one. However, neither of them had forward privacy, which

was first introduced as a notion in [12]. Since then, efficient dy-

namic SSE schemes with forward privacy have been studied ex-

tensively and there are numerous works that proposed improved

constructions [5, 8, 18, 19, 22, 29, 30, 34, 42]. Stefanov et al. [42]

were the first to introduce backward privacy to capture leakage

related to deleted entries without, however, providing a definition

or a construction. The first (and only, to the best of our knowl-

edge) work that focused on backward privacy and defined the

notion as well as offered backward private schemes was the recent

work of Bost et al [6]. Other work on SSE has focused on more

expressive queries [9, 13, 15, 24, 25, 31], multiuser settings [36, 37],

constructions that perform well for data on-disk [2, 10, 16, 32], and

combining SSE with ORAM [19, 34].

2 CRYPTOGRAPHIC BACKGROUND

We introduce here the necessary notations and definitions that will

be used in the paper. We denote by λ ∈ N a security parameter.

PPT stands for probabilistic polynomial-time. By v(λ) we denote
a negligible function in λ. In a two-party protocol P execution

between a client and a server, the notation P(x ;y) means that x is

the client’s input and y is the server’s input.

Assume a collection ofD documents with identifiers id1, . . . , idD ,
each of which contains textual keywords from a given alphabet Λ.
We consider the database DB that consists of pairs of file identifiers

and keywords, such that pair (idi ,w) ∈ DB if and only if the file

with identifier idi contains keywordw . LetW denote the set of all

keywords that appear in DB, |W | the number of distinct keywords,

N the number of document/keyword pairs (i.e., N = |DB|), and
DB(w) denote the set of documents that contain keywordw .

Pseudorandom functions. Let Gen(1λ) ∈ {0, 1}λ be a key gen-

eration function, and G : {0, 1}λ × {0, 1}ℓ → {0, 1}ℓ
′

be a pseu-

dorandom function (PRF) family. GK (x) denotes G(K ,x). G is a

secure PRF family if for all PPT adversaries Adv, | Pr[K ← Gen(1λ);

AdvGK (·)(1λ) = 1] − Pr[AdvR(·)(1λ) = 1]| ≤ v(λ), where R :

{0, 1}ℓ → {0, 1}ℓ
′

is a truly random function.

Searchable encryption. A dynamic symmetric searchable encryp-

tion scheme (SSE) Σ = (Setup, Search,Update) consists of algorithm
Setup, and protocols Search,Update between a client and a server:

• Setup(λ) is an algorithm that on input the security parameter

outputs (K ,σ ,EDB) whereK is a secret key for the client, σ is the

client’s local state, and EDB is an (empty) encrypted database

that is sent to the server. In the following we sometimes use

the notation Setup(λ,N) to refer to a setup process that takes a

parameter N for the maximum number of entries.

• Search(K ,q,σ ;EDB) is a protocol for searching the database. In

this paper, we only consider search queries for a single keyword

i.e., q = w ∈ Λ∗. The client’s output is DB(w) (empty ifw <W).
The protocol may also modify K ,σ and EDB.
• Update(K ,op, in,σ ;EDB) is a protocol for inserting an entry to

or removing an entry from the database. Operation op can be

add or del , input in consists of a file identifier id and a keyword

w . The protocol may modify K ,σ and EDB.

In the above, we followed the definition of [5, 6] with minor

modifications. Given the above API, on input the data collection the

client can run Setup, followed by N calls to Update to “populate”

EDB. Other works (e.g., [18]) follow a different but functionally

equivalent approach that offers a single build operation for this.

Similarly, some existing works [18, 29] have Update take as input
an entire file for addition, or the file identifier for deletion and

the protocol adds/removes all the relevant keywords to/from the

database. Again, this is functionally equivalent as this process can be

decomposed to multiple calls of the aboveUpdate protocol. Finally,
we implicitly assume that after receiving the indexes DB(w), the
client performs an additional operation to retrieve the actual files;

we omit this step from when describing our constructions.

Informally, an SSE is correct if the returned result is correct for

every query (for a formal definition, we refer readers to [8]). The

confidentiality of an SSE scheme is parametrized by a leakage func-

tion L = (LStp ,LSrch ,LUpdt) which captures the information

that is revealed to an adversarial server throughout the protocol

execution. LStp corresponds to leakage during setup, LSrch to

leakage during a search operation, and LUpdt
to leakage during

updates. Informally, a secure SSE scheme with leakage L should

reveal nothing about the database DB other than this leakage.

This is formally captured by a standard real/ideal experiment

with two games RealSSE, IdealSSE presented in Figure 6 in Appen-

dix A, following the definition of [42].

Definition 2.1 ([43]). An SSE scheme Σ is adaptively-secure

with respect to leakage function L, iff for any PPT adversary Adv
issuing polynomial number of queries q, there exists a stateful

PPT simulator Sim = (SimInit , SimSearch, SimUpdate) such that

| Pr[RealSSEAdv(λ,q) = 1] − Pr[IdealSSEAdv,Sim,L
(λ,q) = 1]| ≤ v(λ).

Forward and backward privacy. Forward and backward privacy

are two SSE properties that aim to control what information is

leaked by dynamic schemes in relation to updates that take place.

Informally, a scheme is forward private if it is not possible to relate

an update that takes place to previous operations, at the time during

which it takes place. This is particularly useful in practice, e.g., to

hide whether an addition is about a new keyword or a pre-existing

one (which may have been previously searched for).

Definition 2.2. An L − adaptively − secure SSE scheme that

supports addition/deletion of a single keyword is forward pri-

vate iff the update leakage function LUpdt
can be written as:

LUpdt (op,w, id) = L′Updt (op, id) where L′ is a stateless func-

tion, op is insertion or deletion, and id is a file identifier.

Backward privacy aims to limit the information that the server

can learn when executing a search for a keywordw for which some

entries have previously been deleted. Ideally, the SSE scheme should

reveal nothing to the adversary about these previously deleted

entries, and at least not the file identifiers of the deleted entries [42].

A formal definition was given in [6] for three different types of

backward privacywith varying leakage patterns, from Type-I which

reveals the least information to Type-III which reveals the most.

Before we give the final definition, we provide some additional

functions that will be necessary, following the notation of [6].

Consider a list Q that has one entry for each query executed.

The entry for a search is of the form (u,w) where u is the query

timestamp and w is the searched keyword. That of an update is

(u,op, (w, id)) where op = add/del and id is the modified file. For a

keywordw , let TimeDB(w) be a function that returns the list of all

timestamp/file-identifier pairs of keywordw that have been added

to DB and have not been subsequently deleted.

TimeDB(w) = {(u, id) | (u,add, (w, id)) ∈ Q

and ∀u ′, (u ′,del , (w, id)) < Q}
Updates(w) is a function that returns the timestamp of all inser-

tion and deletion operations forw in Q . Formally, Updates(w) =
{u |(u,add, (w, id)) ∈ Q or (u,del , (w, id)) ∈ Q}. Finally,DelHist(w)

is a function that returns the history of deleted entries by giving all

(insertion timestamp, deletion timestamp) pairs to the adversary.

Most importantly, it reveals explicitly which deletion corresponds

to which addition.

DelHist(w) = {(uadd ,udel) | ∃ id : (uadd ,add, (w, id)) ∈ Q

and (udel ,del , (w, id)) ∈ Q}

As can be seen, the above functions’ leakage is progressively in-

creasing. We are now ready to formally define backward privacy

with different types of leakage.

Definition 2.3 ([6]). An L-adaptively-secure SSE scheme has

backward privacy:

Type-I (BP-I): iff LUpdt (op,w, id) = L
′

(op), and

LSrch (w) = L
′′

(TimeDB(w),aw).
Type-II (BP-II): iff LUpdt (op,w, id) = L

′

(op,w), and

LSrch (w) = L
′′

(TimeDB(w),Updates(w)).

Type-III (BP-III): iff LUpdt (op,w, id) = L
′

(op,w), and

LSrch (w) = L
′′

(TimeDB(w),DelHist(w)).

where L
′

and L
′′

are stateless functions.

Note that the above definition assumes schemes leak the documents

that currently containw in order to account for the leakage from

actually retrieving the files. Namely,TimeDB(w) function explicitly

reveals the indexes of returned documents.

Oblivious Maps. A data structure D is a collection of data sup-

porting certain types of operations such as insertions, deletions, or

lookups. Each type of operation receives corresponding arguments

(e.g., the key of the value to lookup). An oblivious data structure is

a privacy-preserving version of D that aims to hide the type and

content of a sequence of operations performed on the data structure.

Intuitively, for any two possible sequences of k operations, their

resulting access patterns (i.e., the sequence of memory addresses

accessed will executing the operations) must be indistinguishable.

(See [45] for a formal definition).

Our Orion and Horus constructions use as a building block an

oblivious map (OMAP) that is a key/value oblivious data structure,

implemented with an AVL tree as per the instantiation of [45]. To

make the map oblivious, it uses a non-recursive Path-ORAM [43]

structure that stores the set of nodes. (We provide a more detailed

description of Path-ORAM in Appendix B for the non-expert read-

ers.) Each tree node contains the following information node =
((id,data),pos, childrenPos) where data is a value for the map, id
is a key for the map, pos indicates the node’s leaf number in Path-

ORAM, and childrenPos is an array which stores the Path-ORAM

leaf numbers for the node’s children.

OMAP offers three protocols Setup, Find, and Insert for initializ-
ing the structure, retrieving the value for a given key, and inserting

a key/value pair. We describe them in detail in Appendix C. At a

high level, Setup initializes a Path-ORAM T and stores an empty

node for the root of the AVL tree at a randomly chosen position

rootID. Subsequent Find, Insert calls, traverse the AVL tree from

the root in order to find/insert a matching node. Each node traver-

sal requires a separate ORAM access. The ORAM position for a

child node is stored at the parent. Finally, all accessed nodes are

re-encrypted and mapped to fresh random positions before being

stored again at T . For insertions, an AVL tree rebalancing process

is executed, again via ORAM read/write accesses.

From the analysis of the AVL tree, each access retrievesO(logN)
nodes for a tree of N nodes, each of which requires retrieving

a logN path from T , thus the overall performance is O(log2 N).
Unlike standard non-recursive Path-ORAM, the client performing

the accesses only needs to remember the leaf position of the root of

the AVL tree (the ORAM stash of sizeO(log2 N) can be downloaded

with every access without affecting the asymptotic behavior) i.e.,

he needs O(1) storage. An example operation of this OMAP is

presented in Figure 1. In order to access node 7, first the root node

6 is retrieved (since the client remembers its ORAM position). Then

by comparison with the children values 4, 9 the client decides to

retrieve the latter, whose position he read from the root node. Then

he repeats this process and picks the left child of node 9. Finally, the

content of the accessed nodes 6, 9, 7 is updated from bottom-up with

new ORAM positions randomly chosen, the nodes are re-encrypted,

permuted and stored in the ORAM.

Since the searched key may be found at any layer, an operation

can terminate early which may reveal information to the server. To

avoid this, [45] pads the number of ORAM accesses with “dummy”

9

6

4 9

2 7

6

7 12

…
..

AVL Tree ORAM Tree

4 12

2ID: …
Key: 2
Pos: …

Children IDs: …
Children Pos: …

Figure 1: Sample AVL Tree and its Path-ORAM [45].

operations that do not alter the tree structure but are indistinguish-

able from the server’s point of view.

3 MITRA: A SIMPLE FORWARD AND

BACKWARD PRIVATE SCHEME

In this section, we propose Mitra, our first backward and forward

private scheme. Mitra follows a simple approach for storing en-

crypted records in a manner that leaks nothing to the server during

updates (insertions and deletions), and only the time at which up-

dates took place during searches. The construction uses a key-value

dictionary that stores encrypted values of the form (id,op) where
op is insertion or deletion, and id is the identifier of a specific file

related to this operation. The keys (locations at which values are

stored in the dictionary) are generated via a pseudorandom func-

tion in a way that guarantees the client can efficiently generate the

set of all locations related to the specific keyword w for a given

search operation. Compared to [18] which introduced a similar

construction that is only forward private, the main difference of

Mitra that makes it backward private is that, instead of sending

to the server the key that allows him to generate the location and

decrypt the entries forw , we send him the locations directly and

the decryption happens locally at the client.

Setup. The setup algorithm (Algorithm 1) generates a secret key K
on input the security parameter λ. The client initiates two empty

maps (DictW,FileCnt). The first is sent to the server in order to

store encrypted entries whereas FileCnt is stored locally.

Update. In the update procedure (Algorithm 2) the client receives

keyword w , file identifier id , and corresponding operation op =
add/del . For example input (add,w, id) means “add an entry for

keywordw in file id”. The client also has access to the keyK and local

state FileCnt that stores for each distinct keywordw a counter that

denotes how many updates have taken place in relation tow . First,

the client checks whether FileCnt[w] has been initialized or not.

In the latter case he sets the counter value ofw to 0. In both cases,

he increments the counter by 1 (lines 1-4). Next, the client runs

the PRF G with key K twice, and computes GK (w, FileCnt[w]| |0)
and GK (w, FileCnt[w]| |1). The first PRF output is used as the key

addr in which the encrypted value for (id | |op) will be stored at the

server, whereas the second PRF output is XORed with the entry

(id | |op) and the result becomes the encrypted value val which will

be stored by the server (lines 5-6). The pair (addr ,val) is sent to
the server who stores them as DictW[addr] = val (line 7).

Search. Finally, we describe the search process (Algorithm 3).While

searching for all files containing keywordw , the client first looks

up the counter FileCnt[w] which is the total number of updates

Algorithm 1Mitra Setup(λ)

1: K ← Gen(1λ)
2: FileCnt,DictW← empty map

3: σ ← FileCnt

4: EDB ← DictW

5: Send EDB to the server

Algorithm 2MitraUpdate(K ,op, (w, id),σ ;EDB)

Client:

1: if FileCnt[w] is NULL then

2: FileCnt[w] = 0

3: end if

4: FileCnt[w]++
5: addr = GK (w, FileCnt[w]| |0)
6: val = (id | |op) ⊕ GK (w, FileCnt[w]| |1)
7: Send (addr ,val) to the server

Server:

8: Set DictW[addr] = val

Algorithm 3Mitra Search(K ,w,σ ;EDB)

Client:

1: TList = { }

2: for i = 1 to FileCnt[w] do
3: Ti = GK (w, i | |0)
4: TList = TList ∪ {Ti }
5: end for

6: Send TList to the server

Server:

7: Fw = {}
8: for i = 1 to TList.size do

9: Fw = Fw ∪ DictW[TList[i]]
10: end for

11: Send Fw to the client

Client:

12: Rw = {}
13: for i = 1 to Fw .size do
14: (id | |op) = Fw [i] ⊕ GK (w, i | |1)
15: Rw = Rw ∪ (id | |op)
16: end for

17: Remove ids that have been deleted from Rw
18: return Rw

related to w . He then generates a list TList of all the locations

at which the corresponding entries are stored in DictW at the

server. This is done by evaluating the PRF G on input GK (w, i | |0)
for i = 1, . . . , FileCnt[w]. Note that these are the same locations

that were computed during the previous updates forw , since G is

a deterministic function. The list TList of locations is then sent to

the server (lines 1-6). The server retrieves from DictW the values

of all keys from TList and sends them back to the client (lines 7-11).

Upon receiving these encrypted values, the client decrypts them by

computing the PRF outputs GK (w, i | |1) for i = 1, . . . , FileCnt[w]
and XORing the i-th of them with the i-th encrypted value.

Security analysis. Our scheme achieves forward privacy and back-

ward privacy Type-II. Forward privacy follows immediately since

the two values (addr ,val) that the server observes during an update
are indistinguishable from random, due to the pseudorandomness

of G and the fact that during each update a different input is con-

sumed by the PRF. Indeed, the server does not even learn the type

of operation that is executed (addition/deletion), i.e., the update

leakage is empty. For backward privacy, note that during a search

for w the server will receive a number of PRF evaluations which

he has seen previously during updates. This immediately reveals

when each update operation forw took place. Beyond this, nothing

else is revealed to the server; in particular the server does not learn

which deletion cancels which addition. By the backward privacy

definitions of Section 2, this leakage corresponds to BP-II.

We are now ready to state the following theorem regarding the

security of Mitra (full proof is provided in Appendix D).

Theorem 3.1. AssumingG is a secure PRF, Mitra is an adaptively-

secure SSE scheme with LUpdt (op,w, id) = ⊥ and LSrch (w) =
(TimeDB(w),Updates(w)).

Efficiency of Mitra. The asymptotic performance of updates is

clearly O(1) for both client and server as they entail a constant

number of operations. The same is true for the communication

size as a single pair of values is transmitted. For search operations,

Mitra requires 2 · FileCnt[w] PRF evaluations and FileCnt[w]
XOR operations from the client, and FileCnt[w] look-ups from the

server. Recall that FileCnt[w] counts the total number of updates

for w which, using our notation from Section 2, is denoted by

aw . Therefore, the overall asymptotic complexity of the search

operation is O(aw) and the same is true for the communication (as

the size of the communicated lists is aw). The storage at the server

after N updates have taken place is O(N) since one entry is added

to DictW for each of them. The permanent storage at the client is

O(|W |loд |D |), where |W | is the total number of keywords and |D |
is the total number of documents, since one counter is stored for

each keyword. Finally, Mitra requires a single roundtrip to retrieve

the file identifiers forw . If the actual files need to be retrieved, this

would take one more round of interaction.

In terms of concrete performance, Mitra is extremely fast both

for updates and searches. As we experimentally demonstrate in

Section 5, it significantly outperforms Fides from [6] that achieves

the same level of leakage (BP-II), both in terms of speed and com-

munication bandwidth. In fact it is comparable, and often more

performant than schemes that only achieve BP-III. Note that Mitra

may be especially attractive for the server as no cryptographic oper-

ations take place there. This not only improves server performance

(which may be very important in practice, e.g., in the case of a cloud

server where resources are shared across tenants) but also makes

the deployment of Mitra very easy.

Removing Deleted Entries. With Mitra the size of EDB grows

with every update, including deletions. This is a common approach

for building dynamic SSE schemes and has been extensively used

in the literature as an easy method for handling deletions, e.g., [5,

6, 8, 18, 42]. If one wants to avoid this, one technique adopted by

previous schemes is a periodic “clean-up” operation, executed dur-

ing searches. Mitra can also be modified in a similar way. This

is done by having the client remove deleted entries after a search,

re-encrypting the remaining ones, and sending them back to the

server. Using the encryption of Mitra, which is deterministic, this

would produce the same ciphertexts, violating privacy. To avoid this,

we maintain an extra counter map SrcCnt that is incremented after

every search and is also given as input to the PRF. We call the result-

ing scheme Mitra
∗
. Asymptotically it has the same performance

as Mitra and the same backward privacy type. For completeness,

its construction is described and proven secure in the extended

version of our paper.

4 ORION: BACKWARD AND FORWARD

PRIVATE SSE WITH QUASI-OPTIMAL

SEARCH TIME

We now present Orion and Horus, two SSE schemes that are

backward-private and whose search complexity is only propor-

tional to the number of files nw containing the searched keyword

w , currently in the database. The first one achieves very strong

backward privacy Type-I, i.e., it only reveals the number and type

of updates related to a specific keyword. The second one achieves

backward-privacy Type-III but it has reduced interaction, computa-

tion, and communication during search. We first describe a “straw-

man” solution to highlight the difficulties in achieving schemes with

(quasi-)optimal search time and non-trivial interaction. Consider

the following definition.

Definition 4.1. We say that a dynamic symmetric searchable en-

cryption scheme Σ has optimal (resp. quasi-optimal) search time,

if the asymptotic complexity of Search is O(nw) (resp. O(nw · poly-
log(N))). We say that Σ has non-trivial interaction, if it requires

o(nw) rounds of interaction during Search (else we say Σ has trivial

interaction).

We note here that none of the existing backward and forward

private schemes achieves this property, not even the Moneta con-

struction from [6] which utilizes ORAM to achieve strong backward

privacy, as it has a search time of Õ(aw logN + log
3 N). Even if

we restrict our attention to schemes that are only forward private,

the only known construction with quasi-optimal search time is the

work of Stefanov et al. [42] that achieves O(nw log
3 N) via the use

of an elaborate multi-layered data structure.

4.1 A Warm-up Solution

Inspired by the dictionary data structure of Mitra, consider a sim-

ilar scheme where the location of each entry in the dictionary is

now computed based on (w, id) (whereas in Mitra, it was com-

puted from (w, FileCnt[w])). The value of this entry will then be

a “pointer” to the previous and next file identifiers related to w .

The first time a file id forw is inserted, the previous and next file

identifier values are null, and the client stores locally id as the latest

file identifier forw . Then, when another file id ′ that containsw is

inserted, the client adds to the dictionary a corresponding entry

with id as the previous identifier and null as the next identifier. He

also replaces id with id ′ in his local storage. Finally, he updates the

previous entry for id , setting its next identifier to id ′.
This allows the client to traverse the dictionary like a list. During

search, he needs to remember only the latest file identifier forw . He

accesses the corresponding dictionary entry, retrieves the previous

identifier, and repeats the process until the previous identifier is

null. Deletions can be handled in the standard manner for doubly-

linked lists. The client first looks up the dictionary position for

(w, id) (assuming he wants to remove the entry for keywordw in

file id), retrieves the previous and next file identifiers id ′, id ′′, and
then looks up the dictionary for (w, id ′), (w, id ′′). He then sets the

next identifier at the entry for id ′ to id ′′ and the previous entry for

id ′′ to id ′, “eliminating” the in-between entry for id .

Using an oblivious map. As described, the above approach re-

veals the accessed locations during updates and searches. E.g., if

an entry is added for w , the location of the previous latest entry

forw is revealed, trivially violating forward privacy. Locations ac-

cessed during a search can also be related to previously accessed

ones during updates, e.g., leaking in this manner information re-

lated to deleted entries, which violates backward privacy. To avoid

this leakage, the entire dictionary data structure can be instanti-

ated with an oblivious map as defined in Section 2. In this manner,

the sequence of locations accessed throughout the protocol is in-

distinguishable from random ones. Assuming the oblivious map

implementation of [45], the resulting search time is O(nw log
2 N).

On the other hand, these accesses need to take place sequentially,

as the next location is only revealed after accessing the previous

one. This requires the assistance of the client, in order to decrypt

each entry and compute the next location to be accessed, therefore

it would take at least nw rounds of interaction (O(nw logN) using
the scheme of [45]), resulting in a scheme with trivial interaction.

Challenge: Reducing interaction. Using the insights gained from

our straw-man solution, oblivious data structures can readily lead

to schemes with quasi-optimal search times. The remaining prob-

lem is how to reduce the interaction during search, as it may not

be reasonable to accept in practice a number of roundtrips that

grows with nw . Looking under the hood of the oblivious map con-

struction of [45], it builds a map using an AVL tree. The nodes of

the tree are then stored in a non-recursive (one-level) Path-ORAM

construction (see Appendix B). Each tree node contains not only

its children’s values but also their positions in the Path-ORAM,

thus a map lookup is reduced to O(logN) ORAM accesses, one

for every level of the AVL tree. Garg et al. [19] recently showed

how to make Path-ORAM accesses non-interactive. With their ap-

proach, each AVL node would be fetched with a single interaction.

However, they rely on garbled circuits [3] to avoid interaction, and

each access consumes O(logN) garbled circuits that need to be

replaced by freshly encrypted ones by the client before the next

map access. Thus, even with that approach, performing the nw
map lookups necessary for our straw-man scheme would require

nw logN roundtrips, i.e., again resulting in a scheme with trivial

communication.

4.2 Orion Construction

The basic idea behind Orion is to spend a little more time re-

arranging the entries during a delete operation, in order to facilitate

subsequent searches. Similar to our straw-man solution, we will rely

on oblivious maps to hide the accessed locations. We will use two

of them: OMAPupd that is only accessed during update operations

and OMAPsrc that is accessed during both updates and searches.

High-level overview. The client maintains a counter updtcnt for
each keyword w that shows the number of files containing that

….

1st 2nd UpdtCnt[w] UpdtCnt[w]-1 UpdtCnt[w]-2

F1 DB(w) IDs F2 F7 F6

LastInd[w]

….

1st 2nd UpdtCnt[w] UpdtCnt[w]-1 UpdtCnt[w]-2

F1 DB(w) IDs F3 F2 F7 F6 Before
Deletion

LastInd[w]

During
Deletion

After
Deletion ….

1st 2nd UpdtCnt[w]-1 UpdtCnt[w]-2

F1 DB(w) IDs F6 F2 F7

UpdtCnt[w]

LastInd[w]

Figure 2: Sample deletion process for Orion.

Algorithm 4 Orion Setup(λ,N)

1: UpdtCnt, LastInd← empty map

2: (T , rootID) ← OMAPsrc .Setup(1
λ ,N)

3: (T ′, rootID ′) ← OMAPupd .Setup(1
λ ,N)

4: σ ← (rootID, rootID ′,UpdtCnt,LastInd)
5: EDB ← (T ,T ′)
6: Send EDB to the server

keyword currently in the database (initialized to 0, incremented

after insertions, decremented after deletions). For an insertion, the

client stores inOMAPupd a mapping from (w, id) to the correspond-
ing updtcnt and a mapping from (w,updtcnt) to id in the search

OMAPsrc . That is, the first oblivious map is accessed by file iden-

tifier (necessary for deleting specific entries) whereas the second

one is accessed by updtcnt . What allows Orion to handle searches

more efficiently, is the way it handles deletions. For deleting the

entry (w, id), the client first performs a look-up in OMAPupd to

receive the corresponding update counter u. Then, he inserts to
OMAPsrc an entry for (w,u) with value id ′, where id ′ is the iden-
tifier of the most recently inserted file for keywordw , i.e., the one

retrieved by looking up (w,updcnt) fromOMAPsrc . Simply put, he

swaps the deleted item with the right-most one in Figure 2. Finally,

he looks up (w,updcnt − 1) from OMAPsrc to retrieve the correct

id in preparation for the next update query. What is particularly

useful about this way of handling deletions is that it guarantees

that, any given time, the nw file identifiers corresponding to current

documents containingw can be retrieved by looking up the entries

(w, 1) . . . , (w,nw).
The final missing piece to reduce the rounds of interaction is

the observation that the oblivious map construction of [45] can

handle “batch” queries without breaking the obliviousness prop-

erty. A single query takes O(log2 N) time and O(logN) rounds of
interaction. Executing nw queries in batch take O(nw log

2 N) time,

which yields quasi-optimal search time, and O(logN) rounds of
interaction, which gives Orion non-trivial communication.

The procedures of Orion are presented in detail in Algorithms 4-

6. Update and search are presented from the view of the client and

blue lines correspond to oblivious map queries. Each such line

corresponds to an interactive protocol, as described in Section 2.

Algorithm 5 OrionUpdate(K ,op, (w, id),σ ;EDB)

1: mapKey = (w, id)
2: (rootID ′,updtcnt) ← OMAPupd .Find(mapKey, rootID ′)
3: if op = add then

4: if updtcnt = NULL or updtcnt = −1 then
5: if UpdtCnt[w] is NULL then

6: UpdtCnt[w] = 0

7: end if

8: UpdtCnt[w]++
9: data = ((w, id),UpdtCnt[w])
10: rootID ′ ← OMAPupd .Insert(data, rootID

′)

11: data = ((w,UpdtCnt[w]), id)
12: rootID ← OMAPsrc .Insert(data, rootID)
13: LastInd[w] = id
14: end if

15: else if op = del then
16: if updtcnt > 0 then

17: data = (mapKey,−1)
18: rootID ′ ← OMAPupd .Insert(data, rootID

′)

19: UpdtCnt[w]--
20: if UpdtCnt[w] > 0 then ▷ There are entries forw
21: if UpdtCnt[w] + 1 , updtcnt then
22: data = ((w,LastInd[w]),updtcnt)
23: rootID ′ ← OMAPupd .Insert(data, rootID

′)

24: data = ((w,updtcnt),LastInd[w])
25: rootID ← OMAPsrc .Insert(data, rootID)
26: end if

27: key = (w,UpdtCnt[w])
28: (rootID, lastID) ← OMAPsrc .Find(key, rootID)
29: LastInd[w] = lastID
30: else

31: LastInd[w] = 0

32: end if

33: end if

34: end if

35: Execute necessary dummy oblivious map accesses

Algorithm 6 Orion Search(K ,w,σ ;EDB)

1: R = {}
2: for i = 1 to UpdtCnt[w] do ▷ Execute in batch

3: (rootID, id) ← OMAPsrc .Find((w, i), rootID)
4: R = R ∪ {id}
5: end for

6: return R

Setup. During setup, the client initializes two empty maps Up-

dtCnt, LastInd. The first stores the last updtcnt value of each key-

word (corresponding to the number of files currently in the database

containing the keyword) and the second stores the most recent file

identifier inserted for each keyword. The client also sets up two

oblivious maps.OMAPsrc maintains a mapping (w,updtcnt) → id ,
i.e., on input a keyword and an update counter it returns the corre-

sponding file identifier. OMAPupd stores a mapping of (w, id) →
updtcnt , i.e., on input a keyword and a file identifier it outputs

the update counter of the corresponding entry (negative if the

entry has been previously deleted). The encrypted database EDB

consists of the two oblivious maps, and the local state σ contains

UpdtCnt,LastInd. The secret key K is (implicitly) set to the secret

encryption keys of the oblivious maps.

Update. The client first makes an oblivious access to OMAPupd to

retrieve the update counter for the pair (w, id) corresponding to the
update. We then distinguish the case of addition and deletion. For

addition, the client first sets the new value of UpdtCnt[w] (lines
5-8) and then makes two oblivious accesses: (i) to OMAPupd to

insert a mapping from (w, id) to the UpdtCnt[w], (ii) to OMAPsrc
to insert a mapping from (w,UpdtCnt[w]) to id (lines 9-12). Finally,

he sets LastInd[w] to the newly added id .
For deletion operations, the client first updates the entry for

(w, id) in OMAPupd to indicate the entry has been deleted (lines

17,18). He then decreasesUpdtCnt[w] by one to indicate that fewer
files containw now. If there are more files containingw (line 20), the

client has to update the mappings which is done by two oblivious

map accesses. The first (lines 22,23) is to OMAPupd in order to

indicate that the previous latest entry forw is moved to the position

that was vacated after the deletion. The second (lines 24,25) is

matching modification for OMAPsrc . Finally, the client fetches

from OMAPsrc the identifier of the current latest insertion for w
to update the entry LastInd[w] (in preparation for future updates).

In case there were no more entries forw , the client does not make

these accesses and simply sets LastInd[w] = 0.

Eventually, the client performs a number of dummy OMAP

accesses, if necessary, to hide data-dependent paths of the code.

That is, for additions he guarantees to always make two calls to

OMAPupd and one to OMAPsrc whereas for deletions the corre-

sponding numbers are three and two.

Search. Due to the extra effort made during updates, the search

operation is very simple for the client. He first retrieves the number

of files currently containing w , that is, UpdtCnt[w] = nw . Then
he needs to issue nw oblivious accesses to OMAPupd . Importantly,

these accesses can be executed in batch, without having to wait for

the first in order to begin the next one. For example, with reference

to Figure 1, to search for nodes 2, 7 the client could fetch root node

6, compare the children values to deduce he needs both left 4, and

right child 9, retrieve them and repeat this process to get nodes 2, 7.

After this process terminates, the entire accessed subtree needs to

be remapped, re-encrypted, and stored in the ORAM.

To see how this is achieved, recall our description of the oblivious

map from [45] instantiated with an AVL tree T , from Section 2. All

accesses perform a tree traversal beginning from the root and entail

O(logN) node retrievals from T each of which is performed via a

non-recursive Path-ORAM structure. Assuming nw such accesses,

they all have the same first step: retrieving the root node ofT . Then,
the client can decrypt the root and retrieve the ORAM positions of

the two children. In case of multiple queries, it is likely that he needs

both of them. Therefore, for that level of the tree he makes two calls

to ORAM. In general, for the i-th layer of T , the client may need to

perform up tonw ORAMaccesses. Since the ORAM is non-recursive,

these nw ORAM accesses can be performed in batch. Following this

process, since T has O(logN) levels, the total number of ORAM

accesses are O(nw logN) and they are performed in batch for each

layer. Thus, the total rounds of interaction is O(logN). After this
step, the client performs the remapping process for allO(nw logN)

retrieved nodes, and updates the ORAM structure, in the same way

as described in Section 2 for the case of a single access. To ensure no

leakage beyond the number nw , we take two additional measures.

For the i-th layer of T the client performs min{nw , 2
i } accesses,

independently of how many nodes from the next layer he actually

needs (the remaining are dummy queries). Also, this process is

always extended to the maximal possible height of an AVL tree of

N elements (≈ 1.45 logN).

Efficiency of Orion. The asymptotic performance of Orion is

affected by that of the oblivious map of [45]. OMAP accesses take

O(log2 N) steps for a tree of N entries (here N is the total number

of updates executed in the database) and require O(logN) rounds.
For updates, since a constant number of such accesses is made,

the above quantities give us the complexity of Orion. Regarding

searches, recall that they entail nw accesses executed in parallel

and from our above analysis of the algorithm this can be done in

O(nw log
2 N) time and withO(logN) interactions. The communica-

tion complexity of updates algorithms isO(log2 N) since each obliv-
ious map access requires retrieving O(logN) Path-ORAM paths,

each of length logN . Likewise, the communication complexity of

the search algorithm is O(nw log
2 N).

Client storage. For simplicity of presentation, we assumed that the

client stores UpdtCnt and LastInd locally. This implies a local

storage of O(|W | log |D |) since each entry can be at most log |D |
bits. This will typically be a few MB but in case this is unwanted,

we can exploit the already existing oblivious maps to delegate

this storage to the server. For example, we can store in OMAPupd
special mappings (w, 0) → (UpdtCnt[w],LastInd[w]). Whenever

the client needs to access these two maps, he can instead do it via an

oblivious access to OMAPupd . This would increase the number of

roundtrips entailed and communication size, but it does not affect

the asymptotic complexity of the scheme. Also, the oblivious map

requires a stash ofO(log2 N) which is normally stored at the client.

Instead, we can outsource it to the server and download it with

every operation. With this two modifications the client storage of

Orion becomes O(1).

Server storage. On the server side, we stress that while the size of

the two trees T ,T ′ grows with each update operation (after N of

them), their size becomesO(N), the size of the corresponding Path-
ORAM structures must already be bound to an upper bound of total

updates. E.g., if the client wants the SSE to support up to 1 billion

updates, he initializes each Path-ORAM with a tree structure of 32

levels. This means that the server will have to commit this much

space initially. We do not believe this to be a serious limiting factor

of our scheme due to the relative low cost and high availability of

storage mediums. However, in settings where this may be an issue,

there is an alternative that can be achieved via a simple amortization

trick. The client initializes the Path-ORAM structures with trees of

1 layer. Afterwards, every 2
i
updates for i = 1, 2, . . . he retrieves

both oblivious map from the server and sets them up from scratch

using Path-ORAM structures of i + 1 layers, i.e., with capacity 2
i+1

,

and fresh encryption keys. Since setting up an oblivious map with

capacity 2
i+1

takes O(2i+1) time and this re-build operation takes

place once every 2
i
updates, the amortized cost per update is O(1).

Thus, the asymptotic behavior of Orion is not affected in this way;

the same asymptotics hold but in an amortized manner.

Security analysis. The security analysis of Orion is rather straight-

forward due to the black-box use of oblivious maps. Throughout the

execution of the protocol, the server only observes a sequence of

Path-ORAM positions each chosen uniformly at random. Due to the

padding with dummy queries discussed above, during updates the

server sees a fixed number of such positions (depending on the type

of update) which implies forward-privacy. During searches, the

number of such locations that the server observes only reveals nw .

In particular, since after every update the accessed ORAM entries

are remapped to freshly chosen random locations, it is impossible

for the server to match the positions accessed during a search with

specific update operations. This implies that Orion has minimal

leakage, i.e., backward-privacy Type-I. We now state the following

(full proof is provided in Appendix E).

Theorem 4.2. Assuming OMAPsrc , OMAPupd are instantiated

with the secure oblivious map of [45], Orion is an adaptively-secure

SSE schemewithLUpdt (op,w, id) = op andLSrch (w) = TimeDB(w).

4.3 Horus: More Efficient Searches

According to Definition 4.1, Orion has quasi-optimal search time

O(nw log
2 N) and non-trivial interaction. One downside, however,

is that the search cost remains the same even when no deletions

take place, i.e., it is actually Θ(nw log
2 N). Here, we present Horus,

a modified version of Orion, that achieves better asymptotic and

concrete search time. Searches with Horus takeO(nw logN logdw)
in the worst case. Moreover, if no deletions related tow have taken

place the search time becomes O(nw logN). We describe here Ho-

rus at a high-level (detailed description in Appendix F).

The main modification we make to Orion is that we replace

OMAPsrc with simple non-recursive Path-ORAM structure which

is again accessed byw and updcnt . In order to avoid having to store

a position map of size N at the client, we instead generate it using

a secure PRF, using a similar trick to [19]. However, this introduces

a security issue. Since the PRF is a deterministic function, it will

generate the same output when accessing the same (w,updcnt).
This situation may arise multiple times through the protocol ex-

ecution. E.g., assume the pairs (w, 5), (w, 11), (w, 4) have been in-

serted in that chronological order. In this case, (w, 5) corresponds
to updcnt = 1, (w, 11) to updcnt = 2, and (w, 4) to updcnt = 3. To

remove (w, 11) afterwards, the client first retrieves its updcnt = 2

from OMAPupd and then evaluates the PRF on (w, 2) to retrieve

that ORAM path. This last operation violates forward-privacy as it

trivially reveals this is the same ORAM location that was accessed

during the addition process for (w, 11).
Horus avoids this by introducing a counter acccnt associated

with each updcnt mapping to specific previous update location

and it counts how many times this location has been accessed.

In continuation of our previous example, the ORAM position for

the three initial additions (w, 5), (w, 11), (w, 4) forw would be com-

puted as PRFK (w, 1, 1), PRFK (w, 2, 1), PRFK (w, 3, 1) where the first
counter is updcnt and it indicates these are the three first updates

for w , and the second counter is acccnt , indicating each of these

updcnt values is used for the first time. These updcnt ,acccnt are
then stored in OMAPupd (whereas in Orion, OMAPupd stored

only updcnt). When (w, 11) is to be deleted, the client first retrieves

the (updcnt ,acccnt) pair for (w, 11) from OMAPupd . Then, he per-

forms the same “swapping” trick as in Orion, inserting the entry

corresponding to the previous latest update (w, 4) to the OMAP

position that corresponds to the updcnt of the removed entry but

with acccnt incremented by one, i.e., PRFK (w, 2, 2). This ensures
that, throughout the protocol execution, during update operations

the same input is never consumed by the PRF more than once,

which makes the distribution of ORAM positions observed by the

server during updates indistinguishable from random.

However, this introduces an interesting challenge during search

operations: How can the client know the correct acccnt value for all
the nw different values of updcnt counters of keywordw? One idea

would be to retrieve them from OMAPupd , by performing nw ac-

cesses in batch, same as before. Clearly, this would requireΘ(logN)
roundtrips, which is what we are trying to improve. Instead, the

client engages into nw binary searches executed in batch, where

his goal is to identify the largest acccnt value that has been used

for each updcnt , since these are the locations where the correct file
identifiers forw are stored.

Concretely, to search for the nw file identifiers associated with

w , the client first evaluates PRFK (w, 1, 1), . . . , PRFK (w,nw , 1) and
sends the outputs indicating ORAM positions to the server, in batch.

This step corresponds to “guessing” that the acccnt associated with
each entry is equal to 1. After receiving the responses, he proceeds

for the next binary search step by settingacccnt =maxacc/2, where
maxacc is the maximum observed value of acccnt for keyword

w , as established through the sequence of previous updates. For

each updcnt , if the result is empty, (i.e., this acccnt has not been
previously used) he tries again by moving “left” in the binary search,

else by moving “right”. The process ends when the largest used

acccnt value has been found for all updcnt . The detailed procedure

is somewhat more complicated to account for remapping the entries

after each search, and it is described in Appendix F.

As we prove, the valuemaxacc isO(dw), i.e., it grows proportion-
ally with the number of deletions forw , thus this process terminates

after O(logdw) rounds and entails O(nw logdw) ORAM accesses.

Each such access returns a path of size O(logN) hence the search
time and communication complexity is O(nw logdw logN). In par-

ticular, note that if no deletions forw took place, acccnt = 1 for all

entries and the process terminates after a single round. Retrieved en-

tries are then re-mapped using a search counter that is incremented

after every search, to hide future accesses.

On the downside, some of the ORAM positions accessed during

searches were the same ones previously accessed during updates

which introduces some leakage. In particular, simulating this tran-

script requires explicit knowledge of which addition is negated by

each deletion (as this affects the acccnt of a particular location),

which makes Horus backward-private Type-III.

5 EXPERIMENTAL EVALUATION

We report on the performance of our proposed schemes and com-

pare them with existing ones from [6]. We implemented Mitra,

Orion, andHorus in C++ using theCrypto++ [1] andOpenSSL [35]
libraries for cryptographic operations. Specifically, we used AES-

128/256 as the PRF. For the schemes of [6], we used the code released

by the authors [?]. This includes Diana, a scheme from [6] that

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
1

10
2

10
3

10
4

10
5

T
im

e
(m

ill
is

e
c
o
n
d
s
)

Result Size

Mitra
Dianadel

Fides

(a)

 0

 500

 1000

 1500

 2000

10
3

10
4

10
5

10
6

10
7

T
im

e
(m

ill
is

e
c
o
n
d
)

|DB|

Mitra
Dianadel

Fides

(b)

 0

 0.5

 1

 1.5

 2

10
3

10
4

10
5

10
6

10
7

T
im

e
(m

ill
is

e
c
o
n
d
)

|DB|

Mitra
Dianadel

Fides

(c)

Figure 3: Computation time for: (a) search vs. variable result size for |DB| = 1M, (b) search vs. variable |DB| for result size 1K,

(c) update vs. variable |DB|.

does not support deletions which we modified to implement Di-

anadel . The repository also includes Janus and the forward private

scheme of [5] which we used as the back-end for building Fides, as

described in [6]. All our implementations are publicly available [11].

For our experiments we used t2.xlarge AWS machines with four-

core Intel Xeon E5-2676 v3 2.4GHz processor, running Ubuntu

14.04 LTS, with 16GB RAM, 100GB SSD (GP2) hard disk, and AES-

NI enabled. All schemes were executed on a single machine while

storing the database on RAM except for theWAN experiment which

was run on two machines with 21ms roundtrip time (located in

Germany and Ireland). We are interested in measuring executions

time and communication size for search and update operations,

as well as permanent client storage for the different schemes. We

tested for variable database size |DB| = 10
3
–10

7
using synthetic

records. For each database size, we set |W | to one-hundredth of

the database, and randomly generated the entries. Throughout

the experiments, we considered variable result between 10–10
5

documents. Unless otherwise specified, after records were inserted

we deleted at random 10% of the entries of the queried keyword to

emulate the impact of deletions on performance. All experiments

were repeated ×10 and the average is reported.

5.1 Performance comparison for Mitra

Our first set of experiments focuses on the performance of Mitra,

and how it compares with Fides and Dianadel from [6]. All three

schemes, were implemented with the “cleanup” process enabled

(that removes deleted entries after a search), as described in section 3

for Mitra and in [6] for the others.

Search. Figure 3 shows the search time when the result size (a)

and the database size (b) change. As is clear from the graphs, the

time growth is strongly linear for all schemes when the result size

grows, whereas it remains visibly unaffected by changes in the

database size. Throughout all the executions, Mitra is 145–253×

faster than Fides, the only scheme with the same leakage type. This

should come as no surprise as Fides relies on one-way trapdoor

permutations (implemented with RSA) to achieve forward and

backward privacy while Mitra relies on symmetric encryption. We

believe the huge improvement in the search time is strong evidence

for the practical performance of Mitra which has concretely very

low overheads, e.g., for a database of 1M records and result size 100,

it takes roughly 0.8ms for computation (most of which is spent at

the client, with the server performing only lookups). To emphasize

the performance of Mitra, observe that Dianadel has worse search

times, despite achieving only Type-III privacy!

Figure 4 shows the communication size when the result size (a)

and the database size (b) change. Again, this grows linearly with

result size and is unaffected by the database size. Comparing Fides

and Mitra, we see that they have very similar communication

sizes (the ratio of the former over the latter is 0.7–1.1). Despite the

fact that with Fides the client only needs to initially send a single

“token” (whereas with Mitra, he sends the entire TList), the search

communication gap becomes smaller due to the server sending the

encrypted indexes and the final cleanup process. In practice, both

have low costs, e.g., Mitra transmits in total approximately 7KB
for a database of 1M records and result size 100. Regarding the

communication size for Dianadel , for the given configurations it

is virtually the same as Mitra; for larger deletion percentages (not

included above), its communication size becomes smaller (down to

3× smaller than that of Mitra).

Update. Figure 3(c) and Figure 4(c) show the update time and

communication size respectively, for variable database sizes. The

obvious conclusions from the figures are that: (i) the update time of

the three schemes is almost unaffected by the size of the database,

(ii) Fides is concretely much slower than the other two, due to

performing an RSA private-key operation (instead of symmetric-

key crypto), and (iii) all of them have excellent performance (<

1.5ms for Fides, ≤ 32µs for the rest, and all of them ≤ 56bytes).

Client storage. All three schemes impose |W |loд |D | permanent

storage at the client, in order to maintain the necessary update

counter(s) for each keyword. The difference is that Mitra and

Fides only requires one such counter per keyword, whereas Di-

anadel requires two, as it stores insertions and deletions separately.

Concretely, local storage for Mitra and Fides was roughly 156KB

for 10K keywords (and twice that for Dianadel).

Comparison with Janus. In the above, we did not compare with

Janus, the non-interactive scheme of [6], for two reasons. Firstly,

it is only Type-III backward private. Secondly, its concrete perfor-

mance is several times worse than these three schemes. For example,

searching for a keyword with result size 1K in a database of 100K

entries took 51 seconds assuming no previous deletions—this in-

creases by roughly 7× with 10% deleted entries.

Experiments over WAN. In the above experiments, we executed

the code for both the server and the client on the same machine

and we reported computation times for searches and updates. To

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
1

10
2

10
3

10
4

10
5

S
iz

e
(B

y
te

)

Result Size

Mitra
Dianadel

Fides

(a)

5×10
4

6×10
4

7×10
4

8×10
4

9×10
4

1×10
5

10
3

10
4

10
5

10
6

10
7

S
iz

e
(B

y
te

)

|DB|

Mitra
Dianadel

Fides

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
3

10
4

10
5

10
6

10
7

S
iz

e
(B

y
te

)

|DB|

Mitra
Dianadel

Fides

(c)

Figure 4: Communication size for: (a) search vs. variable result size for |DB| = 1M, (b) search vs. variable |DB| for result size

1K, (c) update vs. variable |DB|.

measure the end-to-end time for performing searches in a real-

world setting, we ran Mitra and Fides in a WAN setting over two

machines (server and client) with 21ms latency. Figure 5(a) shows

the time breakdown for variable result sizes and |DB| = 1M. Note

that, in Fides the dominant overhead is due to computation whereas

in Mitra due to communication (since TList has to be transferred

to the server). Despite this, in terms of total end-to-end time Mitra

still outperforms Fides! According to our experiments, Mitra is

1.3 − 51× faster than Fides depending on the result size.

As an insight for the practical performance of Mitra, consider

the popular Enron email dataset which contains roughly 0.5M (key-

word, email) pairs and 77K keywords. In this case, the performance

of Mitra would be very similar to what we reported for |DB| = 1M

and 10K keywords. OverWANwith 21ms latency and result size 100,

this would take 45ms for communication, 1.3ms for computation,

and the client storage would be 156KB.

5.2 Performance of Orion & Horus

In order to measure the performance of Orion and Horus, we

instantiated the oblivious map of [45] (using Path-ORAM with

AES-256) and used it to implement the two schemes.

The search computation time for both of them is higher than

that of Mitra while better than Fides. For example, for a database

of size 100K and result size of 100, Orion took 38ms and Horus

17ms. For comparison, Fides (which has backward privacy Type-II)

needs 131ms. Let us explain this in more detail. The search time

of Fides grows strictly linearly with the result size, by performing

a corresponding number of public key operations. On the other

hand, the Orion client requests a number of ORAM paths from

the server in order to “parse” the AVL tree. The number of paths

grows with the result size but not necessarily linearly. E.g., assume

the first two paths requested (corresponding to random positions)

only differ at the last bit. In that case, the total number of ORAM

buckets sent from the server would be just logN + 1, instead of

2 logN . In general, the ORAM accesses requested from the client

create a “subtree” of the Path-ORAM and only distinct buckets in

this subtree need to be handled (and re-mapped).

Where Orion and Horus lack in performance is communication

size. The sheer overhead of transmitting all the necessary ORAM

blocks is concretely large. For a database of 1M and result size 100,

Orion transmits 1.7MB and Horus 0.3MB—the same measurement

for Fides is just 5.3KB. At the core of this issue is the “large number

of buckets” problem when using ORAM for SSE. Given the very

small size of the response to an SSE query (excluding actual files,

in case they need to be retrieved) implies a very large overhead

when encrypting them with ORAM due to the retrieval of multiple

buckets per query. A very insightful discussion of the issue can be

found in [33]. Simply put, in certain cases the client would be better

off just encrypting the entire DB index with regular encryption

and downloading it for every query. Still, recent research propos-

als [23, 38] explore the combination of oblivious structures with

trusted hardware (which in our case would eliminate the need to

transmit over the network), which opens the possibility of testing

our schemes in that setting.

The effect of deletions. Despite the limitation identified above,

one interesting result that we can deduce from our implementation

is the effect of large volumes of deletions on the performance of

different schemes. Recall that, schemes such as Orion and Horus

that have quasi-optimal time should be essentially unaffected by the

number of past deletions for a given result size—indeed that was our

main motivation for exploring this direction. Figures 5(b)(c) show

the required search computation time for all schemes for a database

of size 100K and two cases: (left) “small” result size 100, and (right)

“large” result size 20K . In both cases, we vary the percentage of

previous deletions between 0–50% while the result size remains

fixed. (E.g., for 10% deletions with result size 100, we insert 111

records and delete 11 of them.) As shown in the figures, the overhead

of Fides grows as the deletion percentage increases (the same is

true for Mitra and Dianadel but the effect is not readily visible

due to scale). With Orion and Horus on the other hand, as long as

the result size is fixed the number of previous deletions does not

affect search times, which remain roughly constant.

6 CONCLUSION AND OPEN PROBLEMS

In this work, we introduced three new backward and forward pri-

vate SSE schemes. Our constructions improve the state-of-the art

ones in several aspects. Mitra is concretely the fastest existing

such scheme, greatly outperforming existing ones, even those with

higher leakage. Our two other constructions, Orion and Horus, are

the first ones to have search time quasi-linear tonw , i.e., the number

of documents that contain keywordw currently in the database. All

previous works that achieve backward-privacy have search time

that is Ω(aw), that is, at least linear in the total number of updates

(including deletions) related tow ; in practice aw can be arbitrarily

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Mitra Fides Mitra Fides Mitra Fides Mitra Fides

100 1000 10000 100000
Result Size

T
im

e
(m

ili
s
e

c
o

n
d

s
)

Computation
Communication

Total

(a)

 0

 50

 100

 150

 200

 0 10 20 30 40 50

T
im

e
(m

ill
is

e
c
o

n
d

)

Delete Percentage

Mitra
Dianadel

Fides
Orion
Horus

(b)

0

1×10
4

2×10
4

3×10
4

4×10
4

 0 10 20 30 40 50

T
im

e
(m

ill
is

e
c
o

n
d

)

Delete Percentage

Mitra
Dianadel

Fides
Orion
Horus

(c)

Figure 5: (a) Computation, communication, and end-to-end time of WAN with 21ms latency for |DB| =1M and variable result

size. Computation time for search vs.% of deletions for |DB| =100K and result size 100 (b) and 20K (c).

larger than nw . Orion and Horus both achieve this property but

they offer different trade-offs between leakage and search perfor-

mance. Our work leaves many open problems, such as investigating

whether we can develop a scheme with quasi-linear search time

and non-trivial communication without relying on ORAM (known

to be possible for schemes that are only forward private). Another

direction would be to devise a scheme with optimal search time

(which seems hard for deletion-supporting constructions), or a non-

interactive one with quasi-optimal search time. Finally, it would be

interesting to revisit the backward privacy definitions of [6] and

“evaluate” their leakage for real-world applications, e.g., in the light

of possible deletion-specific attacks.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their feed-

back. Research supported in part by HKUST award IGN16EG06, the

National Science Foundation (NSF) through awards #1514261 and

#1652259, and the National Institute for Standards and Technology.

REFERENCES

[1] Crypto++ Library 7.0. 2018. https://www.cryptopp.com/.

[2] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. 2016. Searchable symmet-

ric encryption: optimal locality in linear space via two-dimensional balanced

allocations. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 1101–1114.

https://doi.org/10.1145/2897518.2897562

[3] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In the ACMConference on Computer and Communications Security,

CCS’12, Raleigh, NC, USA, October 16-18, 2012. 784–796. https://doi.org/10.1145/

2382196.2382279

[4] Dan Boneh and Brent Waters. 2013. Constrained Pseudorandom Functions

and Their Applications. In Advances in Cryptology - ASIACRYPT 2013 - 19th

International Conference on the Theory and Application of Cryptology and Informa-

tion Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II. 280–300.

https://doi.org/10.1007/978-3-642-42045-0_15

[5] Raphael Bost. 2016. Σoφoς : Forward Secure Searchable Encryption. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 1143–1154.

[6] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 1465–1482.

[7] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. 2014. Functional Signatures and

Pseudorandom Functions. In Public-Key Cryptography - PKC 2014 - 17th Inter-

national Conference on Practice and Theory in Public-Key Cryptography, Buenos

Aires, Argentina, March 26-28, 2014. Proceedings. 501–519. https://doi.org/10.

1007/978-3-642-54631-0_29

[8] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation.. In NDSS, Vol. 14.

23–26.

[9] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In Advances in cryptology–CRYPTO 2013.

Springer, Berlin, Heidelberg, 353–373.

[10] David Cash and Stefano Tessaro. 2014. The locality of searchable symmetric

encryption. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, Berlin, Heidelberg, 351–368.

[11] Javad Ghareh Chamani. 2018. Implementation of Mitra, Orion, Horus, Fides, and

DianaDel. https://github.com/jgharehchamani/SSE.

[12] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword

Searches on Remote Encrypted Data. In Applied Cryptography and Network

Security, Third International Conference, ACNS 2005, New York, NY, USA, June 7-10,

2005, Proceedings. 442–455. https://doi.org/10.1007/11496137_30

[13] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology - ASIACRYPT 2010 - 16th International

Conference on the Theory and Application of Cryptology and Information Security,

Singapore, December 5-9, 2010. Proceedings. 577–594. https://doi.org/10.1007/

978-3-642-17373-8_33

[14] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions. In

Proceedings of the 13th ACM conference on Computer and communications security.

ACM, 79–88.

[15] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, and Minos N. Garofalakis. 2016. Practical Private Range Search Revis-

ited. In Proceedings of the 2016 International Conference on Management of Data,

SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 185–198.

https://doi.org/10.1145/2882903.2882911

[16] Ioannis Demertzis and Charalampos Papamanthou. 2017. Fast Searchable En-

cryption With Tunable Locality. In Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,

May 14-19, 2017. 1053–1067. https://doi.org/10.1145/3035918.3064057

[17] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine

Shi, and Daniel Wichs. 2016. Onion ORAM: A Constant Bandwidth Blowup

Oblivious RAM. In Theory of Cryptography - 13th International Conference, TCC

2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II. 145–174. https:

//doi.org/10.1007/978-3-662-49099-0_6

[18] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David

Evans. 2018. Efficient Dynamic Searchable Encryption with Forward Privacy.

PoPETs 2018, 1 (2018), 5–20. https://doi.org/10.1515/popets-2018-0002

[19] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: efficient oblivious RAM in two rounds with applications to search-

able encryption. In Annual Cryptology Conference. Springer, Berlin, Heidelberg,

563–592.

[20] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Pro-

ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,

Bethesda, MD, USA, May 31 - June 2, 2009. 169–178. https://doi.org/10.1145/

1536414.1536440

[21] MatthewD. Green and IanMiers. 2015. Forward Secure Asynchronous Messaging

from Puncturable Encryption. In 2015 IEEE Symposium on Security and Privacy,

SP 2015, San Jose, CA, USA, May 17-21, 2015. 305–320. https://doi.org/10.1109/SP.

2015.26

[22] Florian Hahn and Florian Kerschbaum. 2014. Searchable encryption with secure

and efficient updates. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 310–320.

https://www.cryptopp.com/
https://doi.org/10.1145/2897518.2897562
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://github.com/jgharehchamani/SSE
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1109/SP.2015.26

[23] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A. Yavuz. 2018.

Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update

on Very Large Dataset. IACR Cryptology ePrint Archive 2018 (2018), 247. http:

//eprint.iacr.org/2018/247

[24] Seny Kamara and Tarik Moataz. 2016. SQL on Structurally-Encrypted Databases.

IACR Cryptology ePrint Archive 2016 (2016), 453. http://eprint.iacr.org/2016/453

[25] Seny Kamara and Tarik Moataz. 2017. Boolean Searchable Symmetric Encryption

with Worst-Case Sub-linear Complexity. In Advances in Cryptology - EUROCRYPT

2017 - 36th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part

III. 94–124. https://doi.org/10.1007/978-3-319-56617-7_4

[26] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and Dynamic

Searchable Symmetric Encryption. In Financial Cryptography and Data Security -

17th International Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised

Selected Papers. 258–274. https://doi.org/10.1007/978-3-642-39884-1_22

[27] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 965–976.

[28] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas

Zacharias. 2013. Delegatable pseudorandom functions and applications. In 2013

ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

Berlin, Germany, November 4-8, 2013. 669–684. https://doi.org/10.1145/2508859.

2516668

[29] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim.

2017. Forward Secure Dynamic Searchable Symmetric Encryption with Efficient

Updates. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 1449–1463.

[30] Zheli Liu, Siyi Lv, Yu Wei, Jin Li, Joseph K. Liu, and Yang Xiang. 2017. FFSSE:

Flexible Forward Secure Searchable Encryption with Efficient Performance. IACR

Cryptology ePrint Archive 2017 (2017), 1105. http://eprint.iacr.org/2017/1105

[31] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. GRECS:

Graph Encryption for Approximate Shortest Distance Queries. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security,

Denver, CO, USA, October 12-16, 2015. 504–517. https://doi.org/10.1145/2810103.

2813672

[32] Ian Miers and Payman Mohassel. 2016. IO-DSSE: Scaling Dynamic Searchable

Encryption to Millions of Indexes By Improving Locality. IACR Cryptology ePrint

Archive 2016 (2016), 830.

[33] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. IACR Cryptology ePrint Archive 2015 (2015), 668. http:

//eprint.iacr.org/2015/668

[34] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. 2014. Dynamic

searchable encryption via blind storage. In Security and Privacy (SP), 2014 IEEE

Symposium on. IEEE, 639–654.

[35] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. 2003.

https://www.openssl.org/.

[36] Cédric Van Rompay, Refik Molva, and Melek Önen. 2015. Multi-user Searchable

Encryption in the Cloud. In Information Security - 18th International Conference,

ISC 2015, Trondheim, Norway, September 9-11, 2015, Proceedings. 299–316. https:

//doi.org/10.1007/978-3-319-23318-5_17

[37] Cédric Van Rompay, Refik Molva, and Melek Önen. 2017. A Leakage-Abuse

Attack Against Multi-User Searchable Encryption. PoPETs 2017, 3 (2017), 168.

https://doi.org/10.1515/popets-2017-0034

[38] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2017. ZeroTrace :

Oblivious Memory Primitives from Intel SGX. IACR Cryptology ePrint Archive

2017 (2017), 549. http://eprint.iacr.org/2017/549

[39] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology - ASIACRYPT

2011 - 17th International Conference on the Theory and Application of Cryptology

and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings.

197–214. https://doi.org/10.1007/978-3-642-25385-0_11

[40] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Security and Privacy, 2000. S&P 2000.

Proceedings. 2000 IEEE Symposium on. IEEE, 44–55.

[41] Xiangfu Song, Changyu Dong, Dandan Yuan, Qiuliang Xu, and Minghao Zhao.

2018. Forward Private Searchable Symmetric Encryption with Optimized I/O

Efficiency. IEEE Transactions on Dependable and Secure Computing (2018).

[42] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 14. 23–26.

[43] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security. ACM, 299–310.

[44] XiaoWang, T.-H. Hubert Chan, and Elaine Shi. 2015. Circuit ORAM: On Tightness

of the Goldreich-Ostrovsky Lower Bound. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, Denver, CO, USA, October

12-16, 2015. 850–861. https://doi.org/10.1145/2810103.2813634

[45] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov,

and Yan Huang. 2014. Oblivious data structures. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 215–226.

[46] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption. In 25th USENIX Security Symposium (USENIX Security 16). USENIX

Association, 707–720.

A GAME DEFINITIONS FOR SSE SECURITY

Figure 6 shows the execution of the RealSSE and IdealSSE games for

the SSE security definition 2.1.

B TREE-BASED ORAM

Path-ORAM is an oblivious RAM introduced by Stefanov et al. [43].

It falls within the tree-based framework [39], and has since signifi-

cantly improved [17, 44]. We describe here the construction as it is

a building block for our schemes. We offer a high-level abstraction

and refer interested readers to [43] for a more detailed description.

In particular, we describe the non-recursive Path-ORAM for the

case where the client stores the position map M . The tree-based

ORAM’s API can be abstracted as follows:

• (σ ;B) ← Initialize(1λ ,N): Given a security parameter λ and

memory size N as input, it initializes a binary tree B with N
leafs. Every node of B stores encryption of a dummy memory

block with a null indicator to show that it has not been yet

written. A position mapM of size N is initialized. All nodes of

the tree are encrypted using a semantically-secure encryption

scheme, under key sk chosen by the client. Finally, a stash data

structure S is initialized. The encrypted tree B is sent to the

server, while σ = (M, S, sk) are stored locally. In the following,

B(i) denotes the contents of the entire path from the i-th leaf of

B to the root.

• (σ ,B(M[y]);B) ← Access(read,y,null ,M, S, sk ;B): To retrieve

value with index y, the client searches stash S and if it is not

found there it sends to the server the entry M[y]. The latter

retrieves the path B(M[y]) and sends back all the encrypted

nodes to the client who then decrypts them and extracts the

entry that matches index y. He chooses a new random leaf from

B for y and stores it atM[y], He then repositions the retrieved

nodes from along the path (freshly re-encrypted), together with

the entries in S , in a way that “pushes” entries as deep as possible
from root to leaf depending on their mapped positions inM . Any

overflowing entries are stored in S . The new encrypted path is

stored at the server who updates B.
• (σ ,B(M[y]);B) ← Access(write,y,val ,M, S, sk ;B): This is the
process executed to set the entry for index y to val . It generally
follows the same steps as Read but once the entry is identified it

is updated to (y,val) before it is re-encrypted.

A note on our notation. Throughout the paper, we adopt the

simplified notationval ← Read(y,M[y]) to abstract away the inter-
nals of the read operation. Let r denote the freshly chosen random

position for y that will be stored to M[y]. Likewise, we adopt the
notation B(r) ← Write(y,val , r), to abstract away the internals

of write operation. As described in Section 2, when using a non-

recursive Path-ORAM to instantiate the oblivious map [45], there

is no need to storeM at the client. Also, the stash S can be dynami-

cally downloaded with every access to reduce local storage. On the

http://eprint.iacr.org/2018/247
http://eprint.iacr.org/2018/247
http://eprint.iacr.org/2016/453
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
http://eprint.iacr.org/2017/1105
https://doi.org/10.1145/2810103.2813672
https://doi.org/10.1145/2810103.2813672
http://eprint.iacr.org/2015/668
http://eprint.iacr.org/2015/668
https://www.openssl.org/
https://doi.org/10.1007/978-3-319-23318-5_17
https://doi.org/10.1007/978-3-319-23318-5_17
https://doi.org/10.1515/popets-2017-0034
http://eprint.iacr.org/2017/549
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1145/2810103.2813634

b ← RealSSE
Adv
(λ,q):

1: N ← Adv(1λ); (K ,σ0,EDB0) ← Initialize(1λ ,N);
2: for k = 1 to q do

3: (typek , idk ,wk) ← Adv(1λ ,EDB0, t1, . . . , tk−1);
4: if typek = search then

5: (σk ,DB(wk);EDBk) ← Search(K ,wk ,σk−1;EDBk−1)
6: else if typek = update then
7: (σk ;EDBk) ← Update(K ,add/del , (idk ,wk),σk−1;

EDBk−1)
8: end if

9: Let tk be the messages from client to server in theAccess
protocol above;

10: end for

11: b ← Adv(1λ ,EDB0, t1, t2, . . . , tq);
12: return b;

b ← IdealSSE
Adv,Sim,L

(λ,q):

1: N ← Adv(1λ); (stS ,EDB0) ← SimInit(1λ ,N);
2: for k = 1 to q do

3: (typek , idk ,wk) ← Adv(1λ ,EDB0, t1, . . . , tk−1);
4: if typek = search then

5: (stS ; tk ,EDBk) ← SimSearch(stS ,L
Srch (wk);EDBk−1)

6: else if typek = update then

7: (stS ; tk ,EDBk) ← SimUpdate(stS ,L
Updt (wk);EDBk−1)

8: end if

9: end for

10: b ← Adv(1λ ,EDB0, t1, t2, . . . , tq);
11: return b;

Figure 6: Real and ideal experiments for the SSE scheme.

other hand, when using the above ORAM in Horus, we generate

the values of M using a PRF function therefore again there is no

need to storeM .

Simulation of Path-ORAM accesses. As analyzed in [43], the

transcript produced during the execution of a sequence of Path-

ORAM accesses has a very simple structure. The messages for i-th
access constitute ti = (M[yi],B(M[yi])), whereM[yi] is chosen uni-
formly at random, and B(M[yi]) contains contents of path, freshly
re-encrypted with a semantically-secure scheme. This is indistin-

guishable from a transcript where the encrypted path is replaced

with encryptions of all 0’s. This, in turn, implies that the entire

sequence of transcripts t1, . . . , tq can be generated in a stateless

manner, i.e., ti can be simulated independently of ti−1. Moreover,

the simulation can run adaptively, without need to know q ahead

of time. These two properties of Path-ORAM simulation are very

important for proving the security of Orion and Horus.

C OBLIVIOUS MAP ROUTINES

OMAP offers the following API (see [45] for a detailed description).

• (T , rootID) ← Setup(1λ ,N): Given a security parameter λ, and
an upper bound N on the number of elements, it runs T ←

ORAM .Initialize(1λ ,N). It then creates an empty node as root

of the AVL tree, stores it in T at randomly selected position

rootID. The client sends T to the server and maintains locally

the state output from the ORAM and rootID.

• (rootID,data) ← Find(key, rootID): Given the search key key
and the rootID, returns the corresponding value data. This is
done by an interactive protocol that first fetches the tree root,

compares the id with the retrieved one from the root, and subse-

quently retrieves either the left or the right child. This process

repeats iteratively until the node for key has been found (or it is

deduced it does not exist). Each node retrieval is done by run-

ningORAM .Access , using the appropriate leaf position extracted
from the parent node. At the end of this process, all the accessed

nodes are re-encrypted and re-mapped to new random positions

in T , the information is updated in the corresponding nodes and

the entire accessed path is sent to the server. The client updates

rootID to the newly chosen position.

• rootID ← Insert(key,val , rootID): Given a key-value pair key,
val and rootID, it inserts this entry in the map. The process is

similar to Find with the important difference that a new node

will be created for the entry. To maintain the schematics of the

AVL tree, the process executes a Balance sub-protocol that re-
balances the AVL tree by a sequence of ORAM read/writes. The

server receives the updated treeT and the client the new position

for the root rootID.

D PROOF OF THEOREM 3.1

Recall that in Mitra, the transcript the server observes consists

of (initially empty) EDB, pairs (addr ,val) of entries to be added

during updates, and address lists TList for entries to be retrieved

during searches. The total length of the transcript is q. We now

describe our simulator Sim. For setup, Sim simply outputs an empty

map EDB and initializes an empty list I . During an update query,

Sim computes addr ,val by sampling uniformly at random from the

range of G. Let i be the timestamp of the update. Sim stores entry

I (j) = (addr ,val). For all timestamps j that do not correspond to

an update the entry I (j) are null. During a search, Sim receives

leakage functions TimeDB(w) and Updates(w). He then infers

from Updates(w) the timestamps of previous updates related to

the searched keyword, denoted by J = (j1, . . . , jaw) and sends to

server the addresses stored in I (ji) for j = 1, . . . ,aw . After receiving

a result, it infers from TimeDB(w) the sets of documents that

currently contain the searched keyword and sends it to the server.

We now prove the security of Mitra using Sim as follows.

Game−0 This is the RealSSE game as defined in Appendix A.

Game−1 This is the same as Game−0, except that the values

GK (w, FileCnt[w]| |b) for b = 0, 1 computed during an up-

date are replaced by random values sampled uniformly at

random from the range of G. A list I with q entries is main-

tained. If the i−th operation is an update the entry I (j) =
(addr ,val ,w, id) for j = 1, . . . ,q is storing the random val-

ues sampled together with the operation input (w, id), oth-
erwise it stores null. During a search for keyword w , the

game performs a scan of I to identify the entries that match

w , sends to the server the corresponding addr values, and
receives a result. It then scans I again to deduce Rw the set

of documents that currently hold w and sends Rw to the

server. Since in Game−0 the PRF is never evaluated on the

same input during updates, Game−1 is indistinguishable

from Game−0 due to the security of the PRF.

Game−2 This is IdealSSE game as defined in Appendix A using

simulator Sim described above. Clearly, the produced tran-

script follows the same distribution as the one produced

during Game−1 since the leakage functions correspond to

the same values that would be computed in that game, and

the result of id | |op⊕r , where r is chosen uniformly at random

is also distributed uniformly at random.

Regarding the correctness of Mitra, we note that unlessG is a pseu-

dorandom permutation (as is the case with our implementation),

collisions may occur when computing addr ,val for differentw, id
pairs. This probability can be made arbitrarily small by increasing

the range of G (see [18] for a simple trick to avoid this in practice).

E PROOF OF THEOREM 4.2

The transcript (t1, . . . , tq) observed by the server during theRealSSE

game for Orion consists entirely of Path-ORAM positions and

encrypted paths. Specifically, for the i-th operation, if this is an

addition ti consists of the necessary ORAM positions to retrieve

one node from the AVL tree and two more to insert the new en-

tries (and re-balance the tree). Due to padding, this always re-

sults in ⌈3 · 3 · 1.45 logN ⌉ ORAM positions and corresponding

encrypted paths, assuming N updates. For a deletion, this number

is ⌈5 · 3 · 1.45 logN ⌉ locations and paths.

If the i-th operation is a search with result size nw , and as-

suming N updates have taken place, ti consists of sets ti, j for
j = 1, . . . , ⌈1.45 logN ⌉ each of which consists of a number of ORAM

positions and encrypted paths. In particular, |ti, j | =min{2j ,nw },
that is, the number of ORAM positions and encrypted paths that

consist each such set, and in turn, the structure of ti can be deter-

mined just by knowing nw . We now describe our simulator Sim:

• SimInit(1λ ,N). It creates two trees T ,T ′ with N leafs and pop-

ulates each node with an encryptions of all 0’s. It then sets

EDB0 ← (T ,T
′), sends it to the server, and sets stS to null.

• SimUpdate(stS ,L
Updt (wk),EDBk−1). Recall thatL

Updt (wk) =

opk . If opk = add , then let d = ⌈3 · 3 · 1.45 logN ⌉, else d =
⌈5 · 3 · 1.45 logN ⌉. Sim generates d random positions and sends

them to the server one after the other (receiving encrypted paths

from EDBk−1 in-between). Finally, let P be the set of paths from

T that correspond to the random positions generated for T , and
P ′ be the corresponding set of paths from T ′. Sim computes

fresh encryptions of all 0’s for these paths, and sends them to

the server.

• SimSearch(stS ,L
Srch (wk),EDBk−1). Recall that L

Srch (wk) =

TimeDB(w). Sim Retrieves from this the number of entries cur-

rently in the databasenw . Then, for j = 1, . . . , ⌈1.45 logN ⌉ it gen-
eratesmin{2j ,nw } random ORAM positions, which we denote

by tk, j . Sim sends them to the server tk,1, . . . , tk, ⌈1.45 logN ⌉ one
batch after the other (receiving encrypted paths from EDBk−1
in-between). Afterwards, let P be the set of paths from T that

correspond to the random positions generated forT , and likewise
P ′ forT ′. Sim computes fresh encryptions of all 0’s for these and

sends them to the server. Finally, let RW be the set of document

identifiers corresponding to the searched keyword, as deduced

from TimeDB(w). Sim sends Rw to the server.

Consider now the IdealSSE game with our simulator Sim. By our

earlier analysis, the produced transcript is indistinguishable from

Algorithm 7 Horus Setup(λ,N)

1: K ← Gen(1λ)
2: SrcCnt, UpdCnt, LastInd, Access, ReadyCnt← empty map

3: T ← ORAMsrc .Initialize(1
λ ,A)

▷ A is an empty memory array of size N

4: (T ′, rootID) ← OMAPupd .Setup(1
λ)

5: σ ← (rootID, SrcCnt,UpdCnt,LastInd,Access,ReadyCnt)
6: EDB ← (T ,T ′)
7: Send EDB to the server

the one produced during the RealSSE game as the ORAM positions

are generated in the same manner, the encryption scheme used for

the Path-ORAM is semantically secure, an equal number of ORAM

accesses is made, and the document identifiers are the same.

F HORUS CONSTRUCTION

Setup. The client generates five empty maps SrcCnt,UpdCnt,

LastInd,Access,ReadyCnt that will be stored locally, as well as

a PRF key K . Moreover, it initializes a non-recursive Path-ORAM

ORAMsrc for an array of size N (where N is an upper bound on the

size of the database), and an oblivious map OMAPupd and sends

the resulting data structures to the server. The aim of ORAMsrc is

to replace the oblivious mapOMAPsrc in Orion. Inputs of the form

(w,updcnt , srccnt ,acccnt) are mapped to one of the N leaves using

the PRFG under key K . The counterupdcnt is used to count update
locations forw , as in Orion. Each counter acccnt corresponds to
a specific location indicated by a updcnt , is initially set to 0, and

incremented by 1 every time the location indicated by updcnt is
accessed. Finally, srccnt for keywordw counts how many timesw
has been searched, is initially 0 and incremented by 1 after every

such search in order to map all relevant entries to new ORAM leafs.

The map OMAPupd works in a similar way as in Orion with

one modification. It maps keys (b,w,x) to two types of values

depending on the value of bit b. If b = 0, then x corresponds

to a file identifier id and the result of the lookup will be a pair

(updcnt ,acccnt) or null. The entry for (w, id) can then be found

in ORAMsrc at leaf GK (w,updcnt , srccnt ,acccnt), where srccnt is
the current search count for w (already known by the client). If

b = 1, then x corresponds to a counter updcnt and the result of the

lookup is (id,acccnt), where acccnt corresponds to the number of

times updcnt has been previously accessed, and id is the entry for

w currently associated with location updcnt .

Update. For updates, we distinguish between the case of addition

and deletion. For additions, the client first retrieves the correct

pair (updcnt ,acccnt) for the entry (w, id) to be added. He then

ensures that this has not been added before or has been added

and deleted (line 3). If the keyword is added for the first time or

the location updcnt has not been accessed before, he initializes the

values correctly (lines 4-12). He then retrieves from OMAPupd the

correct acccnt for the next updcnt counter (which is where the

new entry will be stored), increments it by one or initializes it, and

updates the local storage (lines 13-22). Note that the id returned

by the OMAPupd access is ignored at this point. He is then ready

to store into OMAPupd the two entries necessary for this, one

mapping (w, id) to the new (updcnt ,acccnt) and one mapping w
and the new updcnt to the new (id,acccnt) (lines 23-27). Then, he

is ready to store the entry for (w, id) in the correct position in

ORAMsrc and update the local state (lines 28-31). After storing the

entry in ORAM, he ensures that the next search operation will be

ready for execution, by setting (if necessary) a jump flag value at

acccnt = 1 which shows the correct left boundary of the binary

search for the current entry (lines 32-39).

For deletions, the client first retrieves the correct (updcnt ,acccnt)
counters for the entry (w, id) and proceeds only if the entry is in

the database currently (line 3). He first “removes” the entry from

OMAPupd by setting its updcnt to −1 and incrementing the acccnt
for that location (lines 4-6). Then, the client decrements the Upd-

Cnt[w] value to correspond to the correct number of entries for

w . If there are no remaining entries, he skips the rest of the pro-

cess (line 8) and sets LastId[w] = ⊥. Else, unless the entry that

was deleted was the latest one for w (indicated by the fact that

updcnt would be equal to the previous local entry of UpdCnt[w]),
he needs to perform the “swapping” operation: the previous latest

id needs to be written at the updcnt location of the deleted en-

try. This is done by writing an ORAM entry for (w,LastId(w)) at
location GK (w,updcnt , srccnt ,acccnt + 1) (lines 10-16). Moreover,

corresponding entries are added at ORAMupd (lines 17-22).

The remaining part of the process is for updating the local state.

Since the previous last entry has been moved, a new last entry

must be prepared for future updates. This entails retrieving the

(id,acccnt) pair for the decremented UpdCnt[w] location (line 25),

and updating the LastInd[w] local entry (line 26).

In both cases, a necessary number or oblivious map and oblivious

RAM dummy accesses is performed.

Search. The batch execution of ORAM read and write operations

is described in Algorithms BatchRead and BatchWrite . All the re-
quired information for these accesses is contained in rInd, rposList
for reads andwInd,wposList ,wval for writes.

Note that, according to the database manipulation during up-

dates, the search query is expected to return UpdCnt[w] identi-
fiers corresponding to locations (w,updcnt) for updcnt = 1, . . . ,

UpdCnt[w]. The problem is that the client does not know the cor-

rect acccnt for each updcnt . However, he does know the maximum

possible value for them isAccess(w). Thus he can perform a binary

search for each of them. The ORAM positions he searches for are

computed with the PRF G, initially testing for all acccnt = 1. The

client may see two possible values in the position for acccnt = 1:

If he receives an identifier, he sets the current value for the binary

search, denoted by curVal , to the mean of the left and right bound-

aries (line 30 of Algorithm 10). Otherwise, he interprets the result as

a jump flag value ’@acccnt ’ (see below) which indicates the proper

left boundary for the binary search for the current updcnt , and he

updates curVal accordingly (lines 26-28 of Algorithm 10). Then,

he starts the binary search procedure in the batch mode (line 34

of Algorithm 10). After the binary search, the client remaps the

retrieved entry to a new position using the PRF, by SrcCnt[w] + 1,
in order to disassociate the set of ORAM positions accessed during

this search from future operations forw (line 9-12 of Algorithm 11).

This repositioning may cause a problem in the next binary search,

as acccnt for each updtcnt will not reset to 1 (as we do not want

to update OMAPupd). To avoid this, the client stores a jump flag

value at acccnt = 1 if the current acccnt is greater than one (line

Algorithm 8 HorusUpdate(K ,add, (w, id),σ ;EDB)

1: mapKey = (0,w, id)
2: (rootID, (updcnt ,acccnt)) ← OMAPupd .Find(mapKey, rootID)
3: if updcnt = NULL or updcnt = −1 then
4: if UpdCnt[w] is NULL then

5: UpdCnt[w] = 0

6: SrcCnt[w] = 0

7: ReadyCnt[w] = 0

8: end if

9: if Access[w] is NULL then

10: Access[w] = 1

11: end if

12: UpdCnt[w] + +
13: mapKey = (1,w,UpdCnt[w])
14: (rootID, (id,acccnt)) = OMAPupd .Find(mapKey, rootID)
15: if acccnt = ⊥ then

16: acccnt = 1

17: else

18: acccnt = acccnt + 1
19: if acccnt > Access[w] then
20: Access[w] = acccnt
21: end if

22: end if

23: updVal = (UpdCnt[w],acccnt)
24: data = ((0,w, id),updVal)
25: rootID ← OMAPupd .Insert(data, rootID)
26: data = ((1,w,UpdCnt[w]), (id,acccnt))
27: rootID ← OMAPupd .Insert(data, rootID)
28: srcInd = w | |UpdCnt[w]| |SrcCnt[w]| |acccnt
29: newPos = GK (w | |UpdCnt[w]| |SrcCnt[w]| |acccnt)
30: T (newPos) ← ORAMsrc .Write(srcInd, id,newPos)
31: LastInd[w] = id
32: if ReadyCnt[w] < UpdCnt[w] then
33: ReadyCnt[w] + +
34: if acccnt > 1 then

35: srcInd = w | |UpdCnt[w]| |SrcCnt[w]| |1
36: newPos = GK (w | |UpdCnt[w]| |SrcCnt[w]| |1)
37: T (newPos) ← ORAMsrc .Write(srcInd,

’@’| |acccnt ,newPos)
38: end if

39: end if

40: end if

41: Execute necessary dummy OMAPupd and ORAMsrc accesses

13-18 of Algorithm 11). Consequently, at the beginning of the next

search operation forw the client will start the binary search from

the value specified by the flag.

Another issue can be caused when anupdtcnt position is deleted

and after some search operations it is used again, due to intermedi-

ate insertions. E.g., suppose we have inserted four file identifiers

for w , we execute a search (srccnt = 1), and then remove one of

them. During a subsequent search the srccnt for the fourth updcnt
position will not be increased. Assume that after a new search

(srccnt = 2) we insert another file for the same keyword. This will

update the ORAM so that it contains new identifier with acccnt = 2

and srccnt = 2 while there is not any entry for acccnt = 1 and

Algorithm 9 HorusUpdate(K ,del , (w, id),σ ;EDB)

1: mapKey = (0,w, id)
2: (rootID, (updcnt ,acccnt)) ← OMAPupd .Find(mapKey, rootID)
3: if updcnt > 0 then

4: mapValue = (−1,acccnt + 1)
5: data = (mapKey,mapValue)
6: rootID ← OMAPupd .Insert(data, rootID)
7: UpdCnt[w]--
8: if UpdCnt[w] > 0 then

9: if UpdCnt[w] + 1 , updcnt then
10: acccnt++
11: if acccnt > Access[w] then
12: Access[w] = acccnt
13: end if

14: srcInd = w | |updcnt | |SrcCnt[w]| |acccnt
15: newPos = GK (w | |updcnt | |SrcCnt[w]| |acccnt)
16: T (newPos) ← ORAMsrc .Write(srcInd,

LastInd[w],newPos)
17: mapKey = (0,w,LastInd[w])
18: mapVal = (updcnt ,acccnt)
19: data = (mapKey,mapVal)
20: rootID ← OMAPupd .Insert(data, rootID)
21: data = ((1,w,updcnt), (LastInd[w],acccnt))
22: rootID ← OMAPupd .Insert(data, rootID)
23: end if

24: key = (1,w,UpdCnt[w])
25: (rootID, (id,acccnt)) ← OMAPupd .Find(key, rootID)
26: LastInd[w] = id
27: else

28: LastInd[w] = ⊥
29: end if

30: end if

31: Execute necessary dummy OMAPupd and ORAMsrc accesses

srccnt = 2, which prevents the next binary search from finding the

correct acccnt . To solve this, we store the last number of updtcnt s
which were successfully used (and updated) by the last binary

search in ReadyCnt[w]. During insertions, the client compares

ReadyCnt[w] with UpdtCnt[w] to determine the necessity of a

jump flag insertion at acccnt = 1 (if not set previously).

At the end of search procedure, the client increments SrcCnt[w],
updates ReadyCnt[w], and executes batch write to store new en-

cryptions on the server (lines 40-42 of Algorithm 10).

Efficiency of Horus. Following from the analysis of Orion and

the fact that ORAM accesses for a non-recursive Path-ORAM take

O(logN) time and communication, the update time and communi-

cation of Horus is again O(log2 N). For searches, observe that the
while-loop in line 10 of Algorithm 10 will run forO(logAccess[w])
times from standard binary search analysis. Each loop entails two

for-loops (lines 12 and 21 of Algorithm 10) that run forUpdCnt[w]
steps, and one ORAM batch read (line 20 of Algorithm 10). Recall

thatUpdCnt[w] = nw , by definition of our construction. Moreover,

our analysis in the extended version indicates that Access[w] ∈
O(dw), i.e., it grows linearly with the number of deletions for w .

Since each ORAM access takes O(logN) time, the overall search

time complexity, as well as communication size, are O(nw logdw

Algorithm 10 Horus Search(K ,w,σ ;EDB)

1: R = {}
2: f oundItem, le f t , riдht , curVal , lastID, lastAcc = []
3: rInd,wInd, rposList ,wposList ,wval = []
4: for i = 1 to UpdCnt[w] do
5: le f t[i] = 1; f oundItem[i] = f alse; curVal[i] = 1

6: riдht[i] = Access[w]
7: end for

8: f oundAll = f alse
9: f irstRun = true
10: while f oundAll = f alse do
11: f oundAll = true
12: for i = 1 to UpdCnt[w] do
13: if f oundItem[i] = f alse then
14: f oundAll = f alse
15: rInd[i] = w | |i | |SrcCnt[w]| |curVal[i]
16: rposList[i] = GK (w | |i | |SrcCnt[w]| |curVal[i])
17: end if

18: end for

19: if f oundAll = f alse then
20: ids ← ORAMsrc .BatchRead(rInd, rposList)
21: for i = 1 to UpdCnt[w] do
22: if f oundItem[i] = f alse then
23: id ← ids[i]
24: if f irstRun = true then
25: if id[0] = ’@’ and le f t[i] = 1 then

26: le f t[i] = extractValue(id)
27: curVal[i] = (le f t[i] + riдht[i])/2
28: lastAcc[i] = curVal[i]
29: else

30: curVal[i] = (le f t[i] + riдht[i])/2
31: end if

32: Continue ▷ Increment i and restart loop

33: end if

34: BinarySearch(id, i,σ)
35: end if

36: end for

37: f irstRun = f alse
38: end if

39: end while

40: SrcCnt[w]++
41: ReadyCnt[w] = R.size
42: T (newPos) ← ORAMsrc .BatchWrite(wInd,wval ,wposList)
43: return R

logN). Assuming the O(nw) ORAM accesses in each repetition

of the while-loop and the remapping ORAM accesses in line 42

of Algorithm 10 are executed in batch, the number of necessary

roundtrips is O(logdw). Finally, the client storage is |W |loд |D | for
storing the keyword dictionaries. We cannot use the same trick

as in Orion to store these in the OMAP, as that would impose

O(logN) rounds of interaction for search.

Algorithm 11 Horus BinarySearch(id, i,σ ;EDB)

1: if id = ⊥ or le f t[i] ≥ riдht[i] then
2: if riдht[i] ≤ le f t[i] then
3: f oundItem[i] = true
4: if lastID[i] =⊥ then

5: lastID[i] = id
6: lastAcc[i] = curVal[i]
7: end if

8: R = R ∪ {lastID[i]}
9: wInd .add(w | |i | |SrcCnt[w] + 1| |lastAcc[i])
10: p = GK (w | |i | |SrcCnt[w] + 1| |lastAcc[i])
11: wposList .add(p)
12: wval .add(lastID[i])
13: if lastAcc[i] > 1 then

14: wInd .add(w | |i | |SrcCnt[w] + 1| |1)
15: p = GK (w | |i | |SrcCnt[w] + 1| |1)
16: wposList .add(p)
17: wval .add(’@’| |lastAcc[i])
18: end if

19: else

20: if curVal[i] = riдht[i] then
21: curVal[i] = ⌊(le f t[i] + riдht[i])/2⌋
22: riдht[i] = curVal[i]
23: else

24: riдht[i] = curVal[i]
25: curVal[i] = ⌈(le f t[i] + riдht[i])/2⌉
26: end if

27: end if

28: else

29: lastID[i] = id
30: lastAcc[i] = curVal[i]
31: if curVal[i] = le f t[i] then
32: le f t[i] = curVal[i]
33: curVal[i] = ⌈(le f t[i] + riдht[i])/2⌉
34: else

35: le f t[i] = curVal[i]
36: curVal[i] = ⌊(le f t[i] + riдht[i])/2⌋
37: end if

38: end if

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Cryptographic Background
	3 Mitra: A Simple Forward and Backward Private Scheme
	4 Orion: Backward and Forward Private SSE with Quasi-optimal search time
	4.1 A Warm-up Solution
	4.2 Orion Construction
	4.3 Horus: More Efficient Searches

	5 Experimental Evaluation
	5.1 Performance comparison for Mitra
	5.2 Performance of Orion & Horus

	6 Conclusion and Open Problems
	References
	A Game Definitions for SSE Security
	B Tree-based ORAM
	C Oblivious Map routines
	D Proof of Theorem 3.1
	E Proof of Theorem 4.2
	F Horus Construction

