Cryptography

Lecture 26



Announcements

HW9 due today

“Optional” HW10 up on course webpage due
on Wed 5/15.

Final Review Sheet up on course webpage
Upcoming:
— Scholarly paper EC due on 5/13

— Final Review Sheet solutions and Cheat Sheet will
be posted on Canvas by the end of the week



Agenda

* Post-Quantum Crypto

* Lasttime:
— Lattices and hard problems, SVP, SIVP, Gap-SVP
— SIS problem, CRHF from SIS
* This time:
— LWE problem (search and decision)
— PKE from LWE
— The Ring-LWE (RLWE) Setting
— Key Exchange from RLWE
— Fully Homomorphic Encryption



The LWE Problem (Search)

Secret n-dimension vector s
with entries chosen at random

Operations are mod p.

x B + ol Aste

m-dimension error
vector e, with entries
sampled from y.

Public m X n matrix A, with Distribution y depends
entries chosen at random on dimension of A and
over Zp the modulus.

Problem: Given, A, As+e, find s.



The LWE Problem Decision

Secret n-dimension vector s

with entries chosen at random
Operations are mod p.

A ><+—=

m-dimension error
vector e, with entries

Public m X n matrix A, with sampled from x

entries chosen at random

over Z, ~
NS

m uniform random
elements from Zp



Relation to Lattices

* Worst-Case to Average-Case Reduction:
Breaking the cryptosystem on average is as
hard as breaking the hardest instance of the
underlying lattice problem.

e |WE:

— Worst-Case to Average-Case Quantum Reduction
from SIVP.

— Worst-Case to Average-Case Classical Reductions
from GapSVP.



Lattice-Based Encryption



Regev’s Cryptosystem

Public
Key:

Secret
Key: =



Regev’s Cryptosystem

Encryption of m € {0,1}

(1)

r € {0,1}™ chosen at
random.
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Regev’s Cryptosystem

Decryption

: u=As+e
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Regev’s Cryptosystem

Decryption

: u=As+e
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Regev’s Cryptosystem

Decryption
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Regev’s Cryptosystem

Decryption
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Properties of LWE

* Equivalance of Search/Decision LWE

* Equivalence of LWE with random secret/secret
drawn from error distribution



Efficiency

* Efficiency is a main concern in lattice-based
cryptosystems.

* |n both SIS and LWE-based cryptosystems, the
public key consists of a random matrix of size
m X n (m = nlogp), requiring space
0(n%log? p).

— RSA and discrete-log based cryptosystems: public
key size is linear in the security parameter.

* To reduce the public key size, consider lattices
with structure.



The Ring Setting

Quotient ring Z, [x]/®, (x), where @, is the m-th
cyclotomic ponnomlaI of degree p(m)

—eg,d,, = x"+1,n=2,q = 13.

— x? = —1mod (x* + 1)

— 12x3 + 15x% + 9x + 25 - 12x3 + 2x% + 9x +
12 > x — 2+ 9x + 12 - (10,10).

Lattice is defined as anideal I € Z[x]/®,,(x).

Ring-LWE and ring-SIS problems are defined by
substituting the matrix A with polynomials from the
quotient ring and substituting polynomial
multiplication for matrix-vector multiplication.

The public key is now a polynomial in Z [x]/®,, (x),
and so can be described using O(n log q) bits.



NTT Transform

Consider @,,,, where m is a power of 2. Then degree is equal
ton, powerof2, m =2n.d,, = x"+1

* Consider prime g s.t. ¢ = 1 mod 2n.

* Then we have n 2n-th primitive roots modulo g
— Why? Zg is cyclic with order g — 1. 2n | (q — 1).
— Let g be a generator of Z;. g is a (g9 — 1)-th primitive root.

— g92" = g971 since 2n | (q — 1). g% is a 2n-th primitive root.

Also (g%)*, where i is relatively prime to 2n.
— Note that (g%)™ = —1 mod q. Modulo x™ + 1 means x™ = —1.
— Let y4, ..., ¥, be the n number of 2n-th primitive roots
* Forapolynomial p(x) € Z,[x]/x"+1

* Forevery y;, p(y;) mod p is equal to taking p(x) modulo
x™ + 1 and modulo g and then evaluating the reduced
polynomial at y;.



NTT Transform

* For a polynomial p(x) € Z,[x]/x"+1

* Evaluate p(x) on all n number of 2n-th
primitive roots. Obtain a vector

p(y1) . p(¥n)-
* Can now do both addition and multiplication
coordinate-wise.



Key Exchange from Ring-LWE



Simple Key Exchange

(a,uy = a- s; + e1)

(a,u, = a- s, + e,)

uz . Sl =~ a - SZ . Sl RECONCILIATION ul . SZ =~ a - Sl . SZ



Fully Homomorphic Encryption

* Key Generation: Sample g(i),u(i) from y
— SecretKey: f® = 2u4® +1
—  PublicKey: h® = Zg(i)(f(i))_1
* Encrypt a bit b:
c®D =nWOs42e+b,{s e}y
* Decrypt ciphertext c®:; Output
b=FfOc® mod 2
e Addition:
céi) = hWs, + 2e, + by, cl(i) = hWs, +2e; + by
¢+ D = KD (sy + 51) + 2(ep + 1) + (by + by)
* Multiplication:
Céi) = h(i)so + 2ey + by, cl(i) = h(i)sl + 2e; + by
c(gl) _ Cl(i)
= (h)2(sq - 51) + KD (2s0e; + 2510 + Soby + s1bg) + 4ege; + 2eyby + 26, b
+ (bo - b1)

Decrypts correctly under (f(9)?, but noise grows fast



Relinearization

* |dea: Different secret key at each “level” |

e After the i-th multiplication switch from a
noisy encryption under sk_i to a fresh
encryption under sk_i+1.

* To do this, we encrypt sk _i under sk_i+1 and
use homomorphic properties to perform
decryption under sk _iinside the sk_i+1
ciphertext



Relinearization

* Helper ciphertexts: Encryptions of sk_i under
sk_i+1:

B T(i+1) _ h("“)sr(i“) n 2eT(i+1) n ZT(f(i))Z

~ {ST(””, ef(””} < x 7 €[0,logq]

* Given ciphertext ¢V, let CT(i) denote the
polynomial consisting of the 7-th bit of each
coefficient

. ZT((H'l) (1) _ h(l+1)S+Ze+ (f(l))Z C(l)

Decryption of ¢® under

()’




