Cryptography

Lecture 26

Announcements

- HW9 due today
- "Optional" HW10 up on course webpage due on Wed 5/15.
- Final Review Sheet up on course webpage
- Upcoming:
- Scholarly paper EC due on 5/13
- Final Review Sheet solutions and Cheat Sheet will be posted on Canvas by the end of the week

Agenda

- Post-Quantum Crypto
- Last time:
- Lattices and hard problems, SVP, SIVP, Gap-SVP
- SIS problem, CRHF from SIS
- This time:
- LWE problem (search and decision)
- PKE from LWE
- The Ring-LWE (RLWE) Setting
- Key Exchange from RLWE
- Fully Homomorphic Encryption

The LWE Problem (Search)

Secret n-dimension vector s with entries chosen at random

Problem: Given, A, As+e, find s.

The LWE Problem Decision

Secret n-dimension vector s
 with entries chosen at random

Operations are mod p .

m-dimension error vector e, with entries sampled from χ
entries chosen at random
over Z_{p}

Relation to Lattices

- Worst-Case to Average-Case Reduction: Breaking the cryptosystem on average is as hard as breaking the hardest instance of the underlying lattice problem.
- LWE:
- Worst-Case to Average-Case Quantum Reduction from SIVP.
- Worst-Case to Average-Case Classical Reductions from GapSVP.

Lattice-Based Encryption

Regev’s Cryptosystem

Public
Key:

u =As + e

Secret
Key:

Regev's Cryptosystem

Encryption of $m \in\{0,1\}$
(1)

(2) \square $\mathrm{u}=\mathrm{As}+\mathrm{e}$

$$
+m \cdot\left\lfloor\frac{p}{2}\right\rfloor
$$

Regev's Cryptosystem

Decryption

Regev's Cryptosystem

Decryption

Regev’s Cryptosystem

Decryption

$+m \cdot\left\lfloor\frac{p}{2}\right\rfloor$

Regev’s Cryptosystem

Decryption

Properties of LWE

- Equivalance of Search/Decision LWE
- Equivalence of LWE with random secret/secret drawn from error distribution

Efficiency

- Efficiency is a main concern in lattice-based cryptosystems.
- In both SIS and LWE-based cryptosystems, the public key consists of a random matrix of size $\mathrm{m} \times \mathrm{n}(m \geq n \log p)$, requiring space $O\left(n^{2} \log ^{2} p\right)$.
- RSA and discrete-log based cryptosystems: public key size is linear in the security parameter.
- To reduce the public key size, consider lattices with structure.

The Ring Setting

- Quotient ring $\mathrm{Z}_{q}[x] / \Phi_{m}(x)$, where Φ_{m} is the m-th cyclotomic polynomial of degree $\varphi(m)$
- e.g., $\Phi_{2 n}=x^{n}+1, n=2, q=13$.
$-x^{2}=-1 \bmod \left(x^{2}+1\right)$
$-12 x^{3}+15 x^{2}+9 x+25 \rightarrow 12 x^{3}+2 x^{2}+9 x+$ $12 \rightarrow x-2+9 x+12 \rightarrow(10,10)$.
- Lattice is defined as an ideal $I \subseteq Z[x] / \Phi_{m}(x)$.
- Ring-LWE and ring-SIS problems are defined by substituting the matrix A with polynomials from the quotient ring and substituting polynomial multiplication for matrix-vector multiplication.
- The public key is now a polynomial in $\mathrm{Z}_{q}[x] / \Phi_{m}(x)$, and so can be described using $O(n \log q)$ bits.

NTT Transform

Consider Φ_{m}, where m is a power of 2 . Then degree is equal to n, power of $2, m=2 n$. $\Phi_{2 n}=x^{n}+1$

- Consider prime q s.t. $q=1 \bmod 2 n$.
- Then we have $n 2 n$-th primitive roots modulo q
- Why? Z_{q}^{*} is cyclic with order $q-1.2 n \mid(q-1)$.
- Let g be a generator of $Z_{q}^{*} . g$ is a ($q-1$)-th primitive root.
- $g^{a \cdot 2 n}=g^{q-1}$, since $2 n \mid(q-1) . g^{a}$ is a $2 n$-th primitive root. Also $\left(g^{a}\right)^{i}$, where i is relatively prime to $2 n$.
- Note that $\left(g^{a}\right)^{n}=-1 \bmod q$. Modulo $x^{n}+1$ means $x^{n}=-1$.
- Let $\gamma_{1}, \ldots, \gamma_{n}$ be the n number of $2 n$-th primitive roots
- For a polynomial $p(x) \in Z_{q}[x] / x^{n}+1$
- For every $\gamma_{i}, p\left(\gamma_{i}\right) \bmod p$ is equal to taking $p(x)$ modulo $x^{n}+1$ and modulo q and then evaluating the reduced polynomial at γ_{i}.

NTT Transform

- For a polynomial $p(x) \in Z_{q}[x] / x^{n}+1$
- Evaluate $p(x)$ on all n number of $2 n$-th primitive roots. Obtain a vector $p\left(\gamma_{1}\right) \ldots p\left(\gamma_{n}\right)$.
- Can now do both addition and multiplication coordinate-wise.

Key Exchange from Ring-LWE

Simple Key Exchange

$$
\begin{array}{ccc}
P_{1} & \begin{array}{c}
P_{2} \\
s_{1}\left(a, u_{1}=a \cdot s_{1}+e_{1}\right)
\end{array} & s_{2} \\
& \left(a, u_{2}=a \cdot s_{2}+e_{2}\right) \\
u_{2} \cdot s_{1} \approx a \cdot s_{2} \cdot s_{1} & \text { RECONCILIATION } & u_{1} \cdot s_{2} \approx a \cdot s_{1} \cdot s_{2}
\end{array}
$$

Fully Homomorphic Encryption

- Key Generation: Sample $g^{(i)}, u^{(i)}$ from χ
- Secret Key: $f^{(i)}=2 u^{(i)}+1$
- Public Key: $h^{(i)}=2 g^{(i)}\left(f^{(i)}\right)^{-1}$
- Encrypt a bit b :

$$
c^{(i)}=h^{(i)} s+2 e+b,\{s, e\} \leftarrow \chi
$$

- Decrypt ciphertext $c^{(i)}$: Output

$$
b=f^{(i)} c^{(i)} \bmod 2
$$

- Addition:

$$
c_{0}^{(i)}=h^{(i)} s_{0}+2 e_{0}+b_{0}, c_{1}^{(i)}=h^{(i)} s_{1}+2 e_{1}+b_{1}
$$

$$
c_{0}^{(i)}+c_{1}^{(i)}=h^{(i)}\left(s_{0}+s_{1}\right)+2\left(e_{0}+e_{1}\right)+\left(b_{0}+b_{1}\right)
$$

- Multiplication:

$$
\begin{aligned}
& c_{0}^{(i)}=h^{(i)} s_{0}+2 e_{0}+b_{0}, c_{1}^{(i)}=h^{(i)} s_{1}+2 e_{1}+b_{1} \\
& \quad c_{0}^{(i)} \cdot c_{1}^{(i)} \\
& \quad=\left(h^{(i)}\right)^{2}\left(s_{0} \cdot s_{1}\right)+h^{(i)}\left(2 s_{0} e_{1}+2 s_{1} e_{0}+s_{0} b_{1}+s_{1} b_{0}\right)+4 e_{0} e_{1}+2 e_{0} b_{1}+2 e_{1} b_{0} \\
& \quad+\left(b_{0} \cdot b_{1}\right)
\end{aligned}
$$

Decrypts correctly under $\left(f^{(i)}\right)^{2}$, but noise grows fast

Relinearization

- Idea: Different secret key at each "level" I
- After the i-th multiplication switch from a noisy encryption under sk_i to a fresh encryption under sk_i+1.
- To do this, we encrypt sk_i under sk_i+1 and use homomorphic properties to perform decryption under sk_i inside the sk_i+1 ciphertext

Relinearization

- Helper ciphertexts: Encryptions of sk_i under sk_i+1:

$$
\begin{aligned}
& -\zeta_{\tau}^{(i+1)}=h^{(i+1)} s_{\tau}^{(i+1)}+2 e_{\tau}^{(i+1)}+2^{\tau}\left(f^{(i)}\right)^{2} \\
& -\left\{s_{\tau}^{(i+1)}, e_{\tau}^{(i+1)}\right\} \leftarrow \chi, \tau \in\left[0, \log q_{i}\right]
\end{aligned}
$$

- Given ciphertext $c^{(i)}$, let $c_{\tau}^{(i)}$ denote the polynomial consisting of the τ-th bit of each coefficient
- $\sum_{\tau} \zeta_{\tau}^{(i+1)} c_{\tau}^{(i)}=h^{(i+1)} \tilde{s}+2 \tilde{e}+\left(f^{(i)}\right)^{2} \cdot c^{(i)}$

