
Cryptography

Lecture 26

Announcements

• HW9 due today
• “Optional” HW10 up on course webpage due

on Wed 5/15.
• Final Review Sheet up on course webpage
• Upcoming:

– Scholarly paper EC due on 5/13
– Final Review Sheet solutions and Cheat Sheet will

be posted on Canvas by the end of the week

Agenda

• Post-Quantum Crypto
• Last time:

– Lattices and hard problems, SVP, SIVP, Gap-SVP
– SIS problem, CRHF from SIS

• This time:
– LWE problem (search and decision)
– PKE from LWE
– The Ring-LWE (RLWE) Setting
– Key Exchange from RLWE
– Fully Homomorphic Encryption

The LWE Problem (Search)

A s e As+e

Public matrix A, with
entries chosen at random
over ௣

Secret -dimension vector s
with entries chosen at random

-dimension error
vector e, with entries
sampled from .
Distribution depends
on dimension of A and
the modulus.

Operations are mod p.

Problem: Given, A, As+e, find s.

The LWE Problem Decision

u

A s e As+e

Public matrix A, with
entries chosen at random
over ௣

Secret -dimension vector s
with entries chosen at random

-dimension error
vector e, with entries
sampled from

m uniform random
elements from ௣

Operations are mod p.

Relation to Lattices

• Worst-Case to Average-Case Reduction:
Breaking the cryptosystem on average is as
hard as breaking the hardest instance of the
underlying lattice problem.

• LWE:
– Worst-Case to Average-Case Quantum Reduction

from SIVP.
– Worst-Case to Average-Case Classical Reductions

from GapSVP.

Lattice-Based Encryption

Regev’s Cryptosystem

A u =As+e

s

Public
Key:

Secret
Key:

Regev’s Cryptosystem

Ar

r u=As + e

Encryption of

(1)

(2)

r ௠ chosen at
random.

Regev’s Cryptosystem

r u=As+e

Ar s

Decryption

Regev’s Cryptosystem

r u=As+e

Ar s

Decryption

Regev’s Cryptosystem

r u=As+e

r

Decryption

As

r e

Regev’s Cryptosystem

r u=As+e

r

Decryption

As

Properties of LWE

• Equivalance of Search/Decision LWE
• Equivalence of LWE with random secret/secret

drawn from error distribution

Efficiency
• Efficiency is a main concern in lattice-based

cryptosystems.
• In both SIS and LWE-based cryptosystems, the

public key consists of a random matrix of size
n (, requiring space

.
– RSA and discrete-log based cryptosystems: public

key size is linear in the security parameter.
• To reduce the public key size, consider lattices

with structure.

The Ring Setting
• Quotient ring , where is the m-th

cyclotomic polynomial of degree
– e.g., .
–

–

• Lattice is defined as an ideal .
• Ring-LWE and ring-SIS problems are defined by

substituting the matrix A with polynomials from the
quotient ring and substituting polynomial
multiplication for matrix-vector multiplication.

• The public key is now a polynomial in ,
and so can be described using bits.

NTT Transform
Consider , where is a power of 2. Then degree is equal
to , power of 2,
• Consider prime s.t. .
• Then we have -th primitive roots modulo

– Why? ௤
∗ is cyclic with order .

– Let be a generator of ௤
∗ . is a -th primitive root.

– ௔⋅ଶ௡ ௤ିଵ, since . ௔ is a -th primitive root.
Also ௔ ௜ , where is relatively prime to .

– Note that ௔ ௡ . Modulo ௡ means ௡ .
– Let ଵ ௡ be the number of -th primitive roots

• For a polynomial +1
• For every is equal to taking modulo

and modulo and then evaluating the reduced
polynomial at .

NTT Transform

• For a polynomial +1
• Evaluate on all number of -th

primitive roots. Obtain a vector
.

• Can now do both addition and multiplication
coordinate-wise.

Key Exchange from Ring-LWE

Simple Key Exchange

ଵ ଶ

ଵ ଶ

ଵ ଵ ଵ

ଶ ଶ ଶ

ଶ ଵ ଶ ଵ ଵ ଶ ଵ ଶ
RECONCILIATION

Fully Homomorphic Encryption
• Key Generation: Sample (௜) (௜) from

– Secret Key: 𝑓(௜) = 2𝑢(௜) + 1

– Public Key: ℎ(௜) = 2𝑔 ௜ 𝑓 ௜ ିଵ

• Encrypt a bit :
(௜) (௜)

• Decrypt ciphertext (௜): Output
(௜) (௜)

• Addition:

଴
௜ (௜)

଴ ଴ ଴, ଵ
௜ (௜)

ଵ ଵ ଵ

଴
(௜)

ଵ
௜ ௜

଴ ଵ ଴ ଵ ଴ ଵ

• Multiplication:

଴
௜ (௜)

଴ ଴ ଴, ଵ
௜ (௜)

ଵ ଵ ଵ

଴
(௜)

ଵ
௜

௜ ଶ
଴ ଵ

௜
଴ ଵ ଵ ଴ ଴ ଵ ଵ ଴ ଴ ଵ ଴ ଵ ଵ ଴

଴ ଵ

Decrypts correctly under (௜) ଶ , but noise grows fast

Relinearization

• Idea: Different secret key at each “level” I
• After the i-th multiplication switch from a

noisy encryption under sk_i to a fresh
encryption under sk_i+1.

• To do this, we encrypt sk_i under sk_i+1 and
use homomorphic properties to perform
decryption under sk_i inside the sk_i+1
ciphertext

Relinearization

• Helper ciphertexts: Encryptions of sk_i under
sk_i+1:

–

–

• Given ciphertext , let denote the
polynomial consisting of the -th bit of each
coefficient

•
Decryption of (௜) under

(௜) ଶ
.

