Digital Logic Design ENEE 244-010x

Lecture 12

Announcements

- HW5 due today
- HW6 up on course webpage, due at the beginning of class on Wednesday, 10/28.

Agenda

- Last time:
- Quine-McClusky (4.8)
- Petrick's Method (4.9)
- Table Reductions (4.10)
- This time:
- Multiple Output Simplification Problem (4.12, 4.13)

The Multiple-Output Simplification Problem

- General combinational networks can have several output terminals.
- The output behavior of the network is described by a set of functions $f_{1}, f_{2}, \ldots, f_{m}$, one for each output terminal, each involving the same input variables, $x_{1}, x_{2}, \ldots, x_{n}$.
- The set of functions is represented by a truth table with $m+n$ columns.
- Objective is to design a multiple-output network of minimal cost.
- Formally: A set of normal expressions that has associated with it a minimal cost as given by some cost criteria.
- Cost criteria: number of gates or number of gate inputs in the realization.

Pitfalls of Naïve Approach

- Multiple-output minimization problem is normally more difficult than sharing common terms in independently obtained minimal expressions.
- Consider:

$$
\begin{gathered}
f_{1}(x, y, z)=\sum m(1,3,5) \\
f_{2}(x, y, z)=\sum m(3,6,7) \\
f_{1}(x, y, z)=\bar{y} z+\bar{x} z \\
f_{2}(x, y, z)=y z+x y
\end{gathered}
$$

Pitfalls of Naïve Approach

Naïve Approach:

Better Approach:

Multiple Output Prime Implicants

- A multiple-output prime implicant for a set of Boolean functions $f_{1}, f_{2}, \ldots, f_{m}$, is a product term that:
- Is a prime implicant of one of the individual functions
- Is a prime implicant of one of the product functions $\Pi_{i \in S} f_{i}, S \subseteq\{1, \ldots, m\}$

Examples of Multiple Output Prime Implicants

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{f}_{1}	\boldsymbol{f}_{2}
0	0	0	1	0
0	0	1	0	1
0	1	0	1	1
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

$y \bar{z}$ is a prime implicant of f_{1}

Examples of Multiple Output Prime Implicants

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{f}_{1}	$\boldsymbol{f}_{\mathbf{2}}$	$\boldsymbol{f}_{\mathbf{1}} \cdot \boldsymbol{f}_{\mathbf{2}}$
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	0	1	0

$\bar{x} y \bar{z}$ is a prime implicant of $f_{1} \cdot f_{2}$

Multiple Output Prime Implicants

Theorem: Formulas that achieve the multipleoutput minimal sum consist only of sums of multiple-output prime implicants.

Tagged Product Terms

- Term consists of two parts: a kernel and a tag.
- Kernel: product term involving the variables of the function
- Tag: Appended to denote which functions are implied by its kernel.

Tagged Product Term Example

x	y	z	f_{1}	f_{2}
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	--
1	1	0	0	0
1	1	1	1	1

Algebraic Form	Binary Form
$\bar{x} \bar{y} \bar{z} f_{1}-$	$000 f_{1}-$
$\bar{x} \bar{y} z f_{1} f_{2}$	$001 f_{1} f_{2}$
$\bar{x} y \bar{z} f_{1} f_{2}$	$010 f_{1} f_{2}$
$\bar{x} y z-f_{2}$	$011-f_{2}$
$x \bar{y} z f_{1} f_{2}$	$101 f_{1} f_{2}$
$x y z f_{1} f_{2}$	$111 f_{1} f_{2}$

Quine-McClusky for tagged multipleoutput prime implicants

- The tag of a generated term has f_{i} iff f_{i} appears in both the tags of the generating terms.
- A generating term is checked only if its tag is identical to the tag of the generated term.

Minimal Sums Using Petrick's Method

Multiple Outputs Prime Implicant Tables

			m_{0}	m_{1}	m_{2}	m_{5}	m_{7}	m_{1}	m_{2}	m_{3}	m_{7}
f_{1}	B	$\bar{x} \bar{y}$	X	x							
f_{1}	C	$\bar{x} \bar{z}$	X		x						
f_{2}	A	z						x		X	X
f_{2}	E	$\bar{x} z$							X	X	
$f_{1} \cdot f_{2}$	D	$\bar{y} z$		x		x		x			
$f_{1} \cdot f_{2}$	F	$x z$				X	X				x
$f_{1} \cdot f_{2}$	G	$\bar{x} y \bar{z}$			X				X		

Multiple Outputs Prime Implicant Tables

When writing down p-expression, must make a distinction between primes associated with different functions.

Multiple Outputs Prime Implicant Tables

			m_{0}	m_{1}	m_{2}	m_{5}	m_{7}	m_{1}	m_{2}	m_{3}	m_{7}
f_{1}	B	$\bar{x} \bar{y}$	x	x							
f_{1}	C	$\bar{x} \bar{z}$	X		X						
f_{2}	A	z						x		x	x
f_{2}	E	$\bar{x} z$							x	X	
$f_{1} \cdot f_{2}$	D	$\bar{y} z$		X		x		x			
$f_{1} \cdot f_{2}$	F	$x z$				x	x				x
$f_{1} \cdot f_{2}$	G	$\bar{x} y \bar{z}$			X				X		

P-expression: $\left(B_{1}+C_{1}\right)\left(B_{1}+D_{1}\right)\left(C_{1}+G_{1}\right)\left(D_{1}+F_{1}\right) F_{1}\left(A_{2}+D_{2}\right)\left(E_{2}+G_{2}\right)\left(A_{2}+\right.$ $\left.E_{2}\right)\left(A_{2}+F_{2}\right)$

Manipulating P-expression into sum of product form

$$
\begin{gathered}
p=\left(B_{1}+C_{1}\right)\left(B_{1}+D_{1}\right)\left(C_{1}+G_{1}\right)\left(D_{1}+F_{1}\right) F_{1}\left(A_{2}\right. \\
\left.+D_{2}\right)\left(E_{2}+G_{2}\right)\left(A_{2}+E_{2}\right)\left(A_{2}+F_{2}\right) \\
=A_{2} B_{1} C_{1} E_{2} F_{1}+A_{2} B_{1} C_{1} F_{1} G_{2}+B_{1} C_{1} D_{2} E_{2} F_{1} F_{2} \\
+A_{2} B_{1} E_{2} F_{1} G_{1}+A_{2} B_{1} F_{1} G_{1} G_{2} \\
+B_{1} D_{2} E_{2} F_{1} F_{2} G_{1}+A_{2} C_{1} D_{1} E_{2} F_{1} \\
+A_{2} C_{1} D_{1} F_{1} G_{2}+C_{1} D_{1} D_{2} E_{2} F_{1} F_{2}
\end{gathered}
$$

When calculating cost of a product term, we can disregard subscripts.
i.e. $F_{1} F_{2}$ is the same cost as F.

Calculating Cost of Product Terms

- The term $A_{2} B_{1} F_{1} G_{1} G_{2}$ yields

$$
\begin{aligned}
& -f_{1}(x, y, z)=\bar{x} \bar{y}+x z+\bar{x} y \bar{z} \\
& -f_{2}(x, y, z)=z+\bar{x} y \bar{z}
\end{aligned}
$$

- The term $C_{1} D_{1} D_{2} E_{2} F_{1} F_{2}$ yields
$-f_{1}(x, y, z)=\bar{x} \bar{z}+\bar{y} z+x z$
$-f_{2}(x, y, z)=\bar{y} z+\bar{x} y+x z$

Calculating Cost of multiple output combinational network

$$
f_{1}, \ldots, f_{m}
$$

$$
\sum_{i=1}^{m} \alpha_{i}+\sum_{j=1}^{p} \beta_{j}
$$

Where t_{1}, \ldots, t_{p} is the set of distinct terms, β_{j} is equal to the number of literals in t_{j}, unless the term consists of a single literal, in which case $\beta_{j}=0$. Let α_{i} be the number of terms in f_{i} unless there is only a single term, in which case $\alpha_{i}=0$.

Calculating Cost of Product Terms

- The term $A_{2} B_{1} F_{1} G_{1} G_{2}$ yields
- $f_{1}(x, y, z)=\bar{x} \bar{y}+x z+\bar{x} y \bar{z}$
- $f_{2}(x, y, z)=z+\bar{x} y \bar{z}$

Distinct terms: $\bar{x} \bar{y}, x z, \bar{x} y \bar{z}, z$
Beta costs: $2+2+3+0=7$
Alpha costs $=3+2=5$
Total cost: 12

- The term $C_{1} D_{1} D_{2} E_{2} F_{1} F_{2}$ yields
$-f_{1}(x, y, z)=\bar{x} \bar{z}+\bar{y} z+x z$
$-f_{2}(x, y, z)=\bar{y} z+\bar{x} y+x z$
Distinct terms: $\bar{x} \bar{z}, \bar{y} z, x z, \bar{x} y$ Beta costs: $2+2+2+2=8$
Alpha costs $=3+3=6$
Total cost: 14

Minimal Sums using Table Reduction

Table Reduction

		m_{0}	m_{1}	m_{2}	m_{5}	m_{7}	m_{1}	m_{2}	m_{3}	m_{7}	Cost	
B	$\bar{x} \bar{y}$	x	x								3	
C	$\bar{x} \bar{z}$	X		X							3	Cost in case D is
A	z						X		X	x	1	used in f_{1} or f_{2} but not both, Cost in
E	$\bar{x} y$							x	x		3	case D is used in
D	$\bar{y} z$		x		x		x				3,4	both f_{1}, f_{2}
F	$x z$				x	x				x	3,4	
G	$\bar{x} y \bar{z}$			X				x			4,5	

Table Reduction

		m_{0}	m_{1}	m_{2}	m_{5}	m_{7}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
B	$\bar{x} \bar{y}$	X	X								3
C	$\bar{x} \bar{z}$	X		X							3
A	Z						X		X	X	1
E	$\bar{x} y$							X	X		3
D	$\bar{y} Z$		X		X		X				3,4
F	$x Z$				X	X				X	3,4
G	$\bar{x} y \bar{z}$			X				X			4,5

Essential prime implicant for f_{1}.

Table Reduction

		m_{0}	m_{1}	m_{2}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
B	$\bar{x} \bar{y}$	X	X						3
C	$\bar{x} \bar{z}$	X		X					3
A	z				X		x	x	1
E	$\bar{x} y$					X	X		3
D	$\bar{y} z$		X		X				3,4
*1	$x z$							x	1
G	$\bar{x} y \bar{z}$			X		X			4,5

m_{7} column cannot be removed from f_{2} part since $x z$ is not essential for f_{2}.

Table Reduction

		m_{0}	m_{1}	m_{2}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
B	$\bar{x} \bar{y}$	X	X						3
C	$\bar{x} \bar{z}$	X		X					3
A	z				X		X	X	1
E	$\bar{x} y$					X	X		3
D	$\bar{y} z$		X		X				3,4
*1 F	$x z$							X	(1)
G	$\bar{x} y \bar{z}$			X		X			4,5

Dominated Rows

Table Reduction

		m_{0}	m_{1}	m_{2}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
B	$\bar{x} \bar{y}$	X	X						3
C	$\bar{x} \bar{z}$	X		X					3
A	z				X		x	X	1
E	$\bar{x} y$					X	X		3
D	$\bar{y} z$		X		X				3,4
*1 F	$x z$							X	1
G	$\bar{x} y \bar{z}$			X		X			4,5

$$
\begin{gathered}
f_{1}=x z+\cdots \\
f_{2}=\cdots
\end{gathered}
$$

Dominated Rows Row A dominates Row F Cost for Row A is not greater than cost for Row F.

Table Reduction

B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
C	$\bar{x} \bar{z}$	X		X					
A	Z				X		X	X	1
E	$\bar{x} y$					X	X		3
D	$\bar{y} z$		X		X				3,4
G	$\bar{x} y \bar{z}$			X		X			4,5

$$
\begin{gathered}
f_{1}=x z+\cdots \\
f_{2}=\cdots
\end{gathered}
$$

Table Reduction

B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{1}	m_{2}	m_{3}	m_{7}	Cost
C	$\bar{x} \bar{z}$	X		X					
A	z				X		X	X	1
E	$\bar{x} y$					X	X		3
D	$\bar{y} Z$		X		X				3,4
G	$\bar{x} y \bar{z}$			X		X			4,5

Only row that covers m_{7}

$$
\begin{gathered}
f_{1}=x z+\cdots \\
f_{2}=\cdots
\end{gathered}
$$

Table Reduction

B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X			X	
*2 A	z					3
E	$\bar{x} y$				X	3
D	$\bar{y} z$		X			3,4
G	$\bar{x} y \bar{z}$			X	X	4,5

Delete m_{1}, m_{3}, m_{7}

$$
\begin{aligned}
& f_{1}=x z+\cdots \\
& f_{2}=z+\cdots
\end{aligned}
$$

Table Reduction

B	$\bar{x} \bar{y}$	X	X			3
C	$\bar{x} \bar{z}$	X		X		3
E	$\bar{x} y$				X	3
D	$\bar{y} z$		X			3
G	$\bar{x} y \bar{z}$			X	X	4,5

Delete row A

$$
\begin{aligned}
& f_{1}=x z+\cdots \\
& f_{2}=z+\cdots
\end{aligned}
$$

Table Reduction

B	$\bar{x} \bar{y}$	X	X			3
C	$\bar{x} \bar{z}$	X		X		3
E	$\bar{x} y$				X	3
D	$\bar{y} z$		X			3
G	$\bar{x} y \bar{z}$			X	X	4,5

Row D is dominated by Row B.

$$
\begin{gathered}
f_{1}=x z+\cdots \\
f_{2}=z+\cdots
\end{gathered}
$$

Table Reduction

B	$\bar{x} \bar{y}$	X	X			3
C	$\bar{x} \bar{z}$	X		X		3
E	$\bar{x} y$				X	3
D	$\bar{y} z$		X			3
G	$\bar{x} y \bar{z}$			X	X	4,5

Row D is dominated by Row B.

$$
\begin{aligned}
& f_{1}=x z+\cdots \\
& f_{2}=z+\cdots
\end{aligned}
$$

Table Reduction

B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X				3
E	$\bar{x} y$					3
G	$\bar{x} y \bar{z}$			X	X	4,5

Row D is dominated by Row B.

$$
\begin{aligned}
& f_{1}=x z+\cdots \\
& f_{2}=z+\cdots
\end{aligned}
$$

Table Reduction

B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X				3
E	$\bar{x} y$					3
G	$\bar{x} y \bar{z}$			X	X	4,5

Row B is the only row covering m_{1}

$$
\begin{aligned}
& f_{1}=x z+\cdots \\
& f_{2}=z+\cdots
\end{aligned}
$$

Table Reduction

*1 B	$\bar{x} \bar{y}$	m_{0}	m_{1}	m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X		X		3
E	$\bar{x} y$				X	3
G	$\bar{x} y \bar{z}$			X	X	4,5

Row B is the only row covering m_{1}

$$
\begin{gathered}
f_{1}=x z+\bar{x} \bar{y}+\cdots \\
f_{2}=z+\cdots
\end{gathered}
$$

Table Reduction

*1 B	$\bar{x} \bar{y}$			3
C	$\bar{x} \bar{z}$	X		3
E	$\bar{x} y$		X	3
G	$\bar{x} y \bar{z}$	X	X	4,5

Delete columns m_{0}, m_{1}

$$
\begin{gathered}
f_{1}=x z+\bar{x} \bar{y}+\cdots \\
f_{2}=z+\cdots
\end{gathered}
$$

Table Reduction

		m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X		3
E	$\bar{x} y$		X	3
G	$\bar{x} y \bar{z}$	X	X	4,5

Delete columns m_{0}, m_{1}

Table Reduction

		m_{2}	m_{2}	Cost
C	$\bar{x} \bar{z}$	X		3
E	$\bar{x} y$		X	3
G	$\bar{x} y \bar{z}$	X	X	4,5

Cannot delete dominated rows since their cost is
lower.
Table is cyclic

$$
\begin{gathered}
f_{1}=x z+\bar{x} \bar{y}+\cdots \\
f_{2}=z+\cdots
\end{gathered}
$$

Table Reduction

C	$\bar{x} \bar{z}$	X		3
E	$\bar{x} y$		X	3
G	$\bar{x} y \bar{z}$	X	X	4,5

Cannot delete dominated rows since their cost is
lower.
Table is cyclic

$$
\begin{gathered}
f_{1}=x z+\bar{x} \bar{y}+\bar{x} y \bar{z} \\
f_{2}=z+\bar{x} y \bar{z}
\end{gathered}
$$

