Digital Logic Design ENEE 244-010x

Lecture 12

Announcements

- HW5 due today
- HW6 up on course webpage, due at the beginning of class on Wednesday, 10/28.

Agenda

- Last time:
 - Quine-McClusky (4.8)
 - Petrick's Method (4.9)
 - Table Reductions (4.10)
- This time:
 - Multiple Output Simplification Problem (4.12, 4.13)

The Multiple-Output Simplification Problem

- General combinational networks can have several output terminals.
- The output behavior of the network is described by a set of functions f_1, f_2, \ldots, f_m , one for each output terminal, each involving the same input variables, x_1, x_2, \ldots, x_n .
- The set of functions is represented by a truth table with m + n columns.
- Objective is to design a multiple-output network of minimal cost.
- Formally: A set of normal expressions that has associated with it a minimal cost as given by some cost criteria.
- Cost criteria: number of gates or number of gate inputs in the realization.

Pitfalls of Naïve Approach

- Multiple-output minimization problem is normally more difficult than sharing common terms in independently obtained minimal expressions.
- Consider:

$$f_{1}(x, y, z) = \sum m(1,3,5)$$

$$f_{2}(x, y, z) = \sum m(3,6,7)$$

$$f_{1}(x, y, z) = \overline{y}z + \overline{x}z$$

$$f_{2}(x, y, z) = yz + xy$$

Pitfalls of Naïve Approach

Naïve Approach:

Better Approach:

Multiple Output Prime Implicants

- A multiple-output prime implicant for a set of Boolean functions f₁, f₂, ..., f_m, is a product term that:
 - Is a prime implicant of one of the individual functions
 - Is a prime implicant of one of the product functions $\Pi_{i \in S} f_i$, $S \subseteq \{1, ..., m\}$

Examples of Multiple Output Prime Implicants

x	у	Z	f_1	f_2
0	0	0	1	0
0	0	1	0	1
0	1	0	1	1
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

 $y\overline{z}$ is a prime implicant of f_1

Examples of Multiple Output Prime Implicants

x	у	Z	f_1	f_2	$f_1 \cdot f_2$
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	0	1	0

 $\overline{x}y\overline{z}$ is a prime implicant of $f_1 \cdot f_2$

Multiple Output Prime Implicants

Theorem: Formulas that achieve the multipleoutput minimal sum consist only of sums of multiple-output prime implicants.

Tagged Product Terms

- Term consists of two parts: a kernel and a tag.
 - Kernel: product term involving the variables of the function
 - Tag: Appended to denote which functions are implied by its kernel.

Tagged Product Term Example

x	y	Z	<i>f</i> ₁	<i>f</i> ₂
0	0	0	1	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	
1	1	0	0	0
1	1	1	1	1

Binary Form
$000f_1 -$
$001f_{1}f_{2}$
$010f_1f_2$
$011 - f_2$
$101f_{1}f_{2}$
$111f_{1}f_{2}$

Quine-McClusky for tagged multipleoutput prime implicants

- The tag of a generated term has f_i iff f_i appears in both the tags of the generating terms.
- A generating term is checked only if its tag is identical to the tag of the generated term.

Minimal Sums Using Petrick's Method

Multiple Outputs Prime Implicant Tables

			m_0	m_1	m_2	m_5	m_7	m_1	m_2	m_3	<i>m</i> ₇
f_1	В	$\overline{x} \overline{y}$	Х	Х							
f_1	С	$\overline{x} \overline{z}$	X		Х						
f_2	А	Ζ						Х		Х	Х
f_2	Е	$\overline{\chi}_Z$							Х	Х	
$f_1 \cdot f_2$	D	$\overline{y}z$		Х		Х		Х			
$f_1 \cdot f_2$	F	XΖ				Х	Х				Х
$f_1 \cdot f_2$	G	$\overline{x}y\overline{z}$			Х				Х		

Multiple Outputs Prime Implicant Tables

			m_0	m_1	m_2	m_5	m_7	m_1	m_2	m_3	m_7
f_1	В	$\overline{x} \overline{y}$	Х	Х							
f_1	С	$\overline{x} \overline{z}$	Х		Х						
f_2	А	Ζ						Х		Х	Х
f_2	Е	$\overline{\chi}Z$							Х	Х	
$f_1 \cdot f_2$	D	$\overline{y}z$		Х		Х		Х			
$f_1 \cdot f_2$	F	XZ				Х	Х				Х
$f_1 \cdot f_2$	G	$\overline{x}y\overline{z}$			Х				Х		

When writing down p-expression, must make a distinction between primes associated with different functions.

Multiple Outputs Prime Implicant Tables

			m_0	m_1	m_2	m_5	m_7	m_1	m_2	m_3	m_7
f_1	В	$\overline{x} \overline{y}$	Х	Х							
f_1	С	$\overline{x} \overline{z}$	Х		Х						
f_2	А	Ζ						Х		Х	Х
f_2	Е	$\overline{x}z$							Х	Х	
$f_1 \cdot f_2$	D	$\overline{y}z$		Х		Х		Х			
$f_1 \cdot f_2$	F	XΖ				Х	Х				Х
$f_1 \cdot f_2$	G	$\overline{x}y\overline{z}$			Х				Х		

P-expression: $(B_1 + C_1)(B_1 + D_1)(C_1 + G_1)(D_1 + F_1)F_1(A_2 + D_2)(E_2 + G_2)(A_2 + E_2)(A_2 + F_2)$

Manipulating P-expression into sum of product form

 $p = (B_1 + C_1)(B_1 + D_1)(C_1 + G_1)(D_1 + F_1)F_1(A_2 + D_2)(E_2 + G_2)(A_2 + E_2)(A_2 + F_2)$ = $A_2B_1C_1E_2F_1 + A_2B_1C_1F_1G_2 + B_1C_1D_2E_2F_1F_2$ + $A_2B_1E_2F_1G_1 + A_2B_1F_1G_1G_2$ + $B_1D_2E_2F_1F_2G_1 + A_2C_1D_1E_2F_1$ + $A_2C_1D_1F_1G_2 + C_1D_1D_2E_2F_1F_2$

When calculating cost of a product term, we can disregard subscripts.

i.e. F_1F_2 is the same cost as F.

Calculating Cost of Product Terms

• The term $A_2B_1F_1G_1G_2$ yields

$$-f_1(x, y, z) = \overline{x} \,\overline{y} + xz + \overline{x}y \,\overline{z}$$
$$-f_2(x, y, z) = z + \overline{x}y\overline{z}$$

• The term $C_1 D_1 D_2 E_2 F_1 F_2$ yields $-f_1(x, y, z) = \overline{x} \, \overline{z} + \overline{y}z + xz$ $-f_2(x, y, z) = \overline{y}z + \overline{x}y + xz$

Calculating Cost of multiple output combinational network

 f_1 , ..., f_m

Where $t_1, ..., t_p$ is the set of distinct terms, β_j is equal to the number of literals in t_j , unless the term consists of a single literal, in which case $\beta_j = 0$. Let α_i be the number of terms in f_i unless there is only a single term, in which case $\alpha_i = 0$.

Calculating Cost of Product Terms

- The term $A_2B_1F_1G_1G_2$ yields - $f_1(x, y, z) = \overline{x} \, \overline{y} + xz + \overline{x}y \, \overline{z}$
 - $f_2(x, y, z) = z + \overline{x} y \overline{z}$

Distinct terms: $\overline{x} \ \overline{y}, xz, \overline{x}y \ \overline{z}, z$ Beta costs: 2 + 2 + 3 + 0 = 7 Alpha costs = 3 + 2 = 5 Total cost: 12

• The term $C_1D_1D_2E_2F_1F_2$ yields

$$- f_1(x, y, z) = \overline{x} \,\overline{z} + \overline{y}z + xz$$
$$- f_2(x, y, z) = \overline{y}z + \overline{x}y + xz$$

Distinct terms: $\overline{x} \ \overline{z}, \overline{y}z, xz, \overline{x}y$ Beta costs: 2+2+2+2 = 8 Alpha costs = 3 +3 = 6 Total cost: 14

Minimal Sums using Table Reduction

		m_0	m_1	m_2	m_5	m_7	m_1	m_2	m_3	m_7	Cost
В	$\overline{x} \overline{y}$	Х	Х								3
С	$\overline{x} \overline{z}$	Х		Х							3
А	Ζ						Х		Х	Х	1
Е	$\overline{x}y$							Х	Х		3
D	$\overline{y}z$		Х		Х		Х				3,4
F	XΖ				Х	Х				Х	3,4
G	$\overline{x}y\overline{z}$			Х				Х			4,5

Cost in case D is used in f_1 or f_2 but not both, Cost in case D is used in both f_1, f_2

		m_0	m_1	m_2	m_5	m_7	m_1	m_2	m_3	m_7	Cost
В	$\overline{x} \overline{y}$	Х	Х								3
С	$\overline{x} \overline{z}$	Х		Х							3
А	Ζ						Х		Х	Х	1
Ε	$\overline{x}y$							Х	Х		3
D	$\overline{y}z$		Х		Х		Х				3,4
F	χz				Х	Х				Х	3,4
G	$\overline{x}y\overline{z}$			Х				Х			4,5

Essential prime implicant for f_1 .

		m_0	m_1	m_2	m_1	<i>m</i> ₂	m_3	m_7	Cost
В	$\overline{x} \overline{y}$	Х	Х						3
С	$\overline{x} \overline{z}$	Х		Х					3
А	Ζ				Х		Х	Х	1
Е	$\overline{x}y$					Х	Х		3
D	$\overline{y}z$		Х		Х				3,4
*1 F	χz							Х	(1)
G	$\overline{x}y\overline{z}$			Х		Х			4,5

$$f_1 = xz + \cdots$$
$$f_2 = \cdots$$

 m_7 column cannot be removed from f_2 part since xz is not essential for f_2 .

		m_0	m_1	<i>m</i> ₂	m_1	m_2	<i>m</i> ₃	<i>m</i> ₇	Cost
В	$\overline{x} \overline{y}$	Х	Х						3
С	$\overline{x} \overline{z}$	Х		Х					3
А	Ζ				Х		Х	Х	1
Е	$\overline{x}y$					Х	Х		3
D	$\overline{y}z$		Х		Х				3,4
*1 F	χz							Х	(1)
G	$\overline{x}y\overline{z}$			Х		Х			4,5

$$f_1 = xz + \cdots$$
$$f_2 = \cdots$$

		m_0	m_1	m_2	m_1	m_2	m_3	m_7	Cost
В	$\overline{x} \overline{y}$	Х	Х						3
С	$\overline{\chi} \overline{Z}$	Х		Х					3
А	Ζ				Х		Х	Х	1
Е	$\overline{x}y$					Х	Х		3
D	$\overline{y}z$		Х		Х				3,4
*1 F	xz							Х	(1)
G	$\overline{x}y\overline{z}$			Х		Х			4,5

Dominated Rows Row A dominates Row F Cost for Row A is not greater than cost for Row F.

$$f_1 = xz + \cdots$$
$$f_2 = \cdots$$

		m_0	m_1	<i>m</i> ₂	m_1	<i>m</i> ₂	m_3	m_7	Cost
В	$\overline{x} \overline{y}$	Х	Х						3
С	$\overline{x} \overline{z}$	Х		Х					3
А	Ζ				Х		Х	Х	1
Е	$\overline{x}y$					Х	Х		3
D	$\overline{y}z$		Х		Х				3,4
G	$\overline{x}y\overline{z}$			Х		Х			4,5

$$f_1 = xz + \cdots$$
$$f_2 = \cdots$$

		m_0	m_1	<i>m</i> ₂	m_1	<i>m</i> ₂	<i>m</i> ₃	<i>m</i> ₇	Cost
В	$\overline{x} \overline{y}$	Х	Х						3
С	$\overline{x} \overline{z}$	Х		Х					3
А	Ζ				Х		Х	Х	1
Е	$\overline{x}y$					Х	Х		3
D	$\overline{y}z$		Х		Х				3,4
G	$\overline{x}y\overline{z}$			Х		Х			4,5

Only row that covers m_7

$$f_1 = xz + \cdots$$
$$f_2 = \cdots$$

		m_0	m_1	<i>m</i> ₂	m_2	Cost
В	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{\chi} \overline{Z}$	Х		Х		3
*2 A	Z					1
Е	$\overline{x}y$				Х	3
D	$\overline{y}z$		Х			3,4
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Delete m_1, m_3, m_7

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m_0	m_1	<i>m</i> ₂	m_2	Cost
В	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{x} \overline{z}$	Х		Х		3
E	$\overline{x}y$				Х	3
D	$\overline{y}z$		Х			3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Delete row A

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m_0	m_1	<i>m</i> ₂	m_2	Cost
В	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{x} \overline{z}$	Х		Х		3
E	$\overline{x}y$				Х	3
D	$\overline{y}z$		Х			3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Row D is dominated by Row B.

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m_0	m_1	<i>m</i> ₂	m_2	Cost
В	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{x} \overline{z}$	Х		Х		3
E	$\overline{x}y$				Х	3
D	$\overline{y}z$		Х			3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Row D is dominated by Row B.

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m_0	m_1	m_2	m_2	Cost
В	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{x} \overline{z}$	Х		Х		3
E	$\overline{x}y$				Х	3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Row D is dominated by Row B.

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m_0	m_1	m_{2}	m_{2}	Cost
В	$\overline{x} \overline{y}$	X	X	2	2	3
С	$\overline{x} \overline{z}$	Х		Х		3
E	$\overline{x}y$				Х	3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Row B is the only row covering m_1

$$f_1 = xz + \cdots$$
$$f_2 = z + \cdots$$

		m	m.	m	m	Cost
		<i></i> 0	m_1	m_2	m_2	Cost
*1 B	$\overline{x} \overline{y}$	Х	Х			3
С	$\overline{x} \overline{z}$	Х		Х		3
Е	$\overline{x}y$				Х	3
G	$\overline{x}y\overline{z}$			Х	Х	4,5

Row B is the only row covering m_1

$$f_1 = xz + \overline{x} \, \overline{y} + \cdots$$
$$f_2 = z + \cdots$$

		m_2	m_2	Cost
*1 B	$\overline{x} \overline{y}$			3
С	$\overline{\chi} \overline{Z}$	Х		3
E	$\overline{x}y$		Х	3
G	$\overline{x}y\overline{z}$	Х	Х	4,5

Delete columns m_0, m_1

$$f_1 = xz + \overline{x} \, \overline{y} + \cdots$$
$$f_2 = z + \cdots$$

		m_2	m_2	Cost
С	$\overline{x} \overline{z}$	Х		3
Е	$\overline{x}y$		Х	3
G	$\overline{x}y\overline{z}$	Х	Х	4,5

Delete columns m_0, m_1

$$f_1 = xz + \overline{x} \, \overline{y} + \cdots$$
$$f_2 = z + \cdots$$

		m_2	m_2	Cost
С	$\overline{x} \overline{z}$	Х		3
Е	$\overline{x}y$		Х	3
G	$\overline{x}y\overline{z}$	Х	Х	4,5

Cannot delete dominated rows since their cost is lower. **Table is cyclic**

$$f_1 = xz + \overline{x} \, \overline{y} + \cdots$$
$$f_2 = z + \cdots$$

		m_2	m_2	Cost
С	$\overline{x} \overline{z}$	Х		3
Е	$\overline{x}y$		Х	3
G	$\overline{x}y\overline{z}$	Х	Х	4,5

Cannot delete dominated rows since their cost is lower. **Table is cyclic**

$$f_1 = xz + \overline{x} \, \overline{y} + \overline{x} y \overline{z}$$
$$f_2 = z + \overline{x} y \overline{z}$$