Class Exercise—Building a 2-bit Lookahead Adder

$$
10 / 26 / 15
$$

Recall: The i-th binary adder has inputs x_{i}, y_{i}, c_{i}
For $i>1$, instead of waiting for c_{i} to propagate, we would like to compute it ahead of time. We have the following formulas:

$$
\begin{gathered}
g_{i}=x_{i} y_{i} \\
p_{i}=x_{i}+y_{i} \\
c_{i+1}=g_{i}+p_{i} c_{i}
\end{gathered}
$$

Finally, $s_{i}=\mathrm{c}_{\mathrm{i}} \bigoplus x_{i} \oplus y_{i}$

1. Draw the circuits for computing $s_{0}, s_{1}, p_{0}, g_{0}$.
2. Draw the circuit for computing c_{1} given inputs wires corresponding to p_{0}, g_{0}, c_{0}.
3. Draw the circuit diagram for the 2-bit lookahead adder by combining 1 and 2.

Class Exercise—Building a 3-bit Lookahead Adder

10/26/15

Recall: The i-th binary adder has inputs x_{i}, y_{i}, c_{i}
For $i>1$, instead of waiting for c_{i} to propagate, we would like to compute it ahead of time. We have the following formulas:

$$
\begin{gathered}
g_{i}=x_{i} y_{i} \\
p_{i}=x_{i}+y_{i} \\
c_{i+1}=g_{i}+p_{i} c_{i}
\end{gathered}
$$

Finally, $s_{i}=\mathrm{c}_{\mathrm{i}} \oplus x_{i} \oplus y_{i}$

1. Draw the circuits for computing $s_{2}, \mathrm{p}_{1}, \mathrm{~g}_{1}$
2. Draw the circuit for computing c_{2} given input wires corresponding to $p_{0}, g_{0}, p_{1}, g_{1}, c_{0}$.
3. Draw the circuit diagram for the 3-bit lookahead adder by combining 1 and 2 and the 2bit lookahead adder (you can add on to your diagram from the previous page).
4. How many time steps does it take to compute the final 4-bit sum?
