Digital Logic Design ENEE 244-010x

Lecture 13

Announcements

- HW 6 due on Wednesday, 10/28

Agenda

New Topic: MSI Components

- Today:
- Binary Adders and Subtracters (5.1, 5.1.1)
- Carry Lookahead Adders (5.1.2, 5.1.3)

Scale of Integration

- Scale of Integration = Complexity of the Chip
- SSI: small-scale integrated circuits, 1-10 gates
- MSI: medium-scale IC, 10-100 gates
- LSI: large scale IC, 100-1000 gates
- VLSI: very large-scale IC, 1000+ gates
- Today's chip has millions of gates on it.
- MSI components: adder, subtracter, comparator, decoder, encoder, multiplexer.

Scale of Integration

- LSI technology introduced highly generalized circuit structures known as programmable logic devices (PLDs).
- Can consist of an array of and-gates and an array of orgates. Must be modified for a specific application.
- Modification involves specifying the connections using a hardware procedure. Procedure is known as programming.
- Three types of programmable logic devices:
- Programmable read-only memory (PROM)
- Programmable logic array (PLA)
- Programmable array logic (PAL)

MSI Components

Binary Full Adder

x_{i}	y_{i}	c_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Finding a Simplified Circuit

0	1	0	1
1	0	1	0

0	0	1	0
0	1	1	1

Corresponding minimal sums:

$$
\begin{gathered}
s_{i}=\bar{x}_{i} \bar{y}_{i} c_{i}+\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+x_{i} y_{i} c_{i} \\
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
\end{gathered}
$$

We can simplify the sum for s_{i} by using xor:

$$
s_{i}=c_{i} \oplus x_{i} \oplus y_{i}
$$

Realization of Full Binary Adder

What about many bits?

- Consider addition of two binary numbers, each consisting of n bits.
- Direct approach: Write a truth table with $2^{2 n}$ rows corresponding to all the combinations of values and specifying the values of the sum bits. Then find a minimal combinational network.
- This will be intractable.

Parallel (ripple) Binary Adder

Why is it called "ripple" adder?
Recall-signed binary numbers,
final carry-out may signal overflow.

Binary Subtracters

Compute: $x_{i}-y_{i}$.
b_{i} is a borrow-in bit from previous bit-order position.
b_{i+1} is a borrow-out bit.

x_{i}	y_{i}	b_{i}	b_{i+1}	d_{i}
0	0	0	0	0
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Binary Subtracters

Compute: $x_{i}-y_{i}$.
b_{i} is a borrow-in bit from previous bit-order position.
b_{i+1} is a borrow-out bit.

x_{i}	y_{i}	b_{i}	b_{i+1}	d_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Binary Subtracters

Compute: $x_{i}-y_{i}$.
b_{i} is a borrow-in bit from previous bit-order position.
b_{i+1} is a borrow-out bit.

x_{i}	y_{i}	b_{i}	b_{i+1}	d_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Binary Subtracters

Compute: $x_{i}-y_{i}$.
b_{i} is a borrow-in bit from previous bit-order position.
b_{i+1} is a borrow-out bit.

x_{i}	y_{i}	b_{i}	b_{i+1}	d_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Binary Subtracters

Compute: $x_{i}-y_{i}$.
b_{i} is a borrow-in bit from previous bit-order position.
b_{i+1} is a borrow-out bit.

x_{i}	y_{i}	b_{i}	b_{i+1}	d_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Finding a Simplified Circuit

$d_{i}=b_{i} \oplus x_{i} \oplus y_{i}$ (Same as sum in adder)

$$
b_{i+1}=\bar{x}_{i} y_{i}+\bar{x}_{i} b_{i}+y_{i} b_{i}
$$

A better approach using 2's complement

Parallel Adder/Subtracter

Carry Lookahead Adder

- Ripple effect:
- If a carry is generated in the least-significant-bit the carry must propagate through all the remaining stages.
- Assuming two-levels of logic are need to propogate the carry through each of the next higher-order stages. Delay is 2 n .
- Must speed up propagation of the carries. Adders designed with this consideration in mind are called high-speed adders.

Carry Lookahead Adder

- Consider $c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}$

$$
=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

- The first term $x_{i} y_{i}$ is called the carry-generate function since it corresponds to the formation of a carry at the i-th stage.
- The second term $\left(x_{i}+y_{i}\right) c_{i}$ corresponds to a previously generated carry c_{i} that must propagate past the i-th stage to the next stage.
- The $\left(x_{i}+y_{i}\right)$ part of this term is called the carrypropagate function.
- Carry-generate function will be denoted by g_{i}, carry-propagate function will be denoted by p_{i}.

Carry Lookahead Adder

$$
\begin{gathered}
g_{i}=x_{i} y_{i} \\
p_{i}=x_{i}+y_{i} \\
c_{i+1}=g_{i}+p_{i} c_{i}
\end{gathered}
$$

Using this general result, the output carry at each of the stages can be written in terms of the $g^{\prime} s, p$'s and initial input carry c_{0}.

Carry Lookahead Adder

$$
\begin{gathered}
c_{1}=g_{0}+p_{0} c_{0} \\
c_{2}=g_{1}+p_{1} c_{1} \\
=g_{1}+p_{1}\left(g_{0}+p_{0} c_{0}\right) \\
=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3}=g_{2}+p_{2} c_{2} \\
=g_{2}+p_{2}\left(g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}\right) \\
=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
c_{i+1}=g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} g_{i-2}+\cdots+p_{i} p_{i-1} \cdots p_{1} g_{0} \\
+p_{i} p_{i-1} \cdots p_{0} c_{0}
\end{gathered}
$$

Why is this a good idea? Do we save on computation?

Carry Lookahead Adder

Carry Lookahead Adder

Carry Lookahead Adder

- What is the delay?
- One level of logic to form g's, p's
- Two levels of logic to propagate through the carry lookahead
- One level of logic to have the carry effect a sum output.
- Total: 4 units of time.
- Delay of 4-bit ripple-adder?
- 2 levels of logic for each $c_{1}, c_{2}, c_{3}, c_{4}$
- 8 levels of logic

Large High-Speed Adders

- The carry lookahead network can very large as the number of bits increases.
- Approach: Divide bits of the operands into blocks, use carry lookahead adders for each block. Cascade the adders for the blocks.
- Ripple carries occur between the cascaded adders.

Another Approach to Large High-

 Speed Adders- Carry lookahead generators that generate the carry of an entire block.
- Assume 4-bit blocks.
- For each block, 4-bit carry lookahead generator outputs:

$$
\begin{gathered}
G=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0} \\
P=p_{3} p_{2} p_{1} p_{0}
\end{gathered}
$$

Carry Lookahead Generator

Large High-Speed Adders

