
Digital Logic Design
ENEE 244-010x

Lecture 13

Announcements

• HW 6 due on Wednesday, 10/28

Agenda

New Topic: MSI Components

• Today:

– Binary Adders and Subtracters (5.1, 5.1.1)

– Carry Lookahead Adders (5.1.2, 5.1.3)

Scale of Integration

• Scale of Integration = Complexity of the Chip

– SSI: small-scale integrated circuits, 1-10 gates

– MSI: medium-scale IC, 10-100 gates

– LSI: large scale IC, 100-1000 gates

– VLSI: very large-scale IC, 1000+ gates

– Today’s chip has millions of gates on it.

• MSI components: adder, subtracter,
comparator, decoder, encoder, multiplexer.

Scale of Integration

• LSI technology introduced highly generalized circuit
structures known as programmable logic devices
(PLDs).
– Can consist of an array of and-gates and an array of or-

gates. Must be modified for a specific application.
– Modification involves specifying the connections using a

hardware procedure. Procedure is known as
programming.

• Three types of programmable logic devices:
– Programmable read-only memory (PROM)
– Programmable logic array (PLA)
– Programmable array logic (PAL)

MSI Components

Binary Full Adder

𝒙𝒊 𝒚𝒊 𝒄𝒊 𝒄𝒊+𝟏 𝒔𝒊

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Finding a Simplified Circuit

0 1 0 1

1 0 1 0

0 0 1 0

0 1 1 1

Corresponding minimal sums:
𝑠𝑖 = 𝑥𝑖𝑦𝑖𝑐𝑖 + 𝑥𝑖𝑦𝑖𝑐𝑖 + 𝑥𝑖𝑦𝑖𝑐𝑖 + 𝑥𝑖𝑦𝑖𝑐𝑖

𝑐𝑖+1 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖𝑐𝑖 + 𝑦𝑖𝑐𝑖

We can simplify the sum for 𝑠𝑖 by using xor:

𝑠𝑖 = 𝑐𝑖 ⊕ 𝑥𝑖 ⊕ 𝑦𝑖

Realization of Full Binary Adder

𝑥𝑖

𝑦𝑖

𝑐𝑖

𝑠𝑖

𝑐𝑖+1

What about many bits?

• Consider addition of two binary numbers,
each consisting of 𝑛 bits.

• Direct approach: Write a truth table with 22𝑛
rows corresponding to all the combinations of
values and specifying the values of the sum
bits. Then find a minimal combinational
network.

• This will be intractable.

Parallel (ripple) Binary Adder

Why is it called “ripple” adder?
Recall—signed binary numbers,

final carry-out may signal overflow.

𝑥3 𝑦3

𝑐3

𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑐3

𝑠3

𝑥2 𝑦2

𝑐2

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑐2

𝑠2

𝑥1 𝑦1

𝑐1

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑐1

𝑠1

𝑥0 𝑦0

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑠0

𝑐𝑖𝑛

Binary Subtracters

𝒙𝒊 𝒚𝒊 𝒃𝒊 𝒃𝒊+𝟏 𝒅𝒊

0 0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Compute: 𝑥𝑖 − 𝑦𝑖.
𝑏𝑖 is a borrow-in bit from previous bit-order position.
𝑏𝑖+1 is a borrow-out bit.

Binary Subtracters

𝒙𝒊 𝒚𝒊 𝒃𝒊 𝒃𝒊+𝟏 𝒅𝒊

0 0 0 0 0

0 0 1 1 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Compute: 𝑥𝑖 − 𝑦𝑖.
𝑏𝑖 is a borrow-in bit from previous bit-order position.
𝑏𝑖+1 is a borrow-out bit.

10
-0

1

Binary Subtracters

𝒙𝒊 𝒚𝒊 𝒃𝒊 𝒃𝒊+𝟏 𝒅𝒊

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Compute: 𝑥𝑖 − 𝑦𝑖.
𝑏𝑖 is a borrow-in bit from previous bit-order position.
𝑏𝑖+1 is a borrow-out bit.

10
-1

Binary Subtracters

𝒙𝒊 𝒚𝒊 𝒃𝒊 𝒃𝒊+𝟏 𝒅𝒊

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0

1 0 1

1 1 0

1 1 1

Compute: 𝑥𝑖 − 𝑦𝑖.
𝑏𝑖 is a borrow-in bit from previous bit-order position.
𝑏𝑖+1 is a borrow-out bit.

10
-1

1

Binary Subtracters

𝒙𝒊 𝒚𝒊 𝒃𝒊 𝒃𝒊+𝟏 𝒅𝒊

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Compute: 𝑥𝑖 − 𝑦𝑖.
𝑏𝑖 is a borrow-in bit from previous bit-order position.
𝑏𝑖+1 is a borrow-out bit.

1

Finding a Simplified Circuit

𝑑𝑖 = 𝑏𝑖 ⊕ 𝑥𝑖 ⊕ 𝑦𝑖 (Same as sum in adder)
𝑏𝑖+1 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖𝑏𝑖 + 𝑦𝑖𝑏𝑖

𝑥3 𝑦3

𝑑3

𝑏4

𝑥2 𝑦2

𝑑2

𝑥1 𝑦1

𝑑1

𝑥0 𝑦0

𝑑0

𝑏0

A better approach using 2’s
complement

𝑥3

𝑦3

𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑠3

𝑐3

𝑐3

𝑥2

𝑦2

𝑐2

𝑥 𝑦 𝑐𝑖𝑛

𝑐2

𝑠2

𝑥1

𝑦1

𝑐1

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑐1

𝑠1

𝑥0

𝑦0

𝑐𝑜𝑢𝑡 𝑠

𝑥 𝑦 𝑐𝑖𝑛

𝑠0

𝑐𝑖𝑛= 1

Parallel Adder/Subtracter

𝑥3

𝑦3

𝑥2

𝑦2

𝑥1

𝑦1

𝑥0

𝑦0

Carry Lookahead Adder

• Ripple effect:
– If a carry is generated in the least-significant-bit

the carry must propagate through all the
remaining stages.

– Assuming two-levels of logic are need to
propogate the carry through each of the next
higher-order stages. Delay is 2n.

• Must speed up propagation of the carries.
Adders designed with this consideration in
mind are called high-speed adders.

Carry Lookahead Adder

• Consider 𝑐𝑖+1 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖𝑐𝑖 + 𝑦𝑖𝑐𝑖
 = 𝑥𝑖𝑦𝑖 + 𝑥𝑖 + 𝑦𝑖 𝑐𝑖
• The first term 𝑥𝑖𝑦𝑖 is called the carry-generate

function since it corresponds to the formation of
a carry at the i-th stage.

• The second term 𝑥𝑖 + 𝑦𝑖 𝑐𝑖 corresponds to a
previously generated carry 𝑐𝑖 that must
propagate past the i-th stage to the next stage.

• The 𝑥𝑖 + 𝑦𝑖 part of this term is called the carry-
propagate function.

• Carry-generate function will be denoted by 𝑔𝑖,
carry-propagate function will be denoted by 𝑝𝑖.

Carry Lookahead Adder

𝑔𝑖 = 𝑥𝑖𝑦𝑖
𝑝𝑖 = 𝑥𝑖 + 𝑦𝑖

𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖𝑐𝑖

Using this general result, the output carry at
each of the stages can be written in terms of the
𝑔’s, 𝑝’s and initial input carry 𝑐0.

Carry Lookahead Adder

𝑐1 = 𝑔0 + 𝑝0𝑐0
𝑐2 = 𝑔1 + 𝑝1𝑐1

= 𝑔1 + 𝑝1 𝑔0 + 𝑝0𝑐0
= 𝑔1 + 𝑝1𝑔0 + 𝑝1𝑝0𝑐0

𝑐3 = 𝑔2 + 𝑝2𝑐2
= 𝑔2 + 𝑝2(𝑔1 + 𝑝1𝑔0 + 𝑝1𝑝0𝑐0)

= 𝑔2 + 𝑝2𝑔1 + 𝑝2𝑝1𝑔0 + 𝑝2𝑝1𝑝0𝑐0

𝑐𝑖+1 = 𝑔𝑖 + 𝑝𝑖𝑔𝑖−1 + 𝑝𝑖𝑝𝑖−1𝑔𝑖−2 + ⋯ + 𝑝𝑖𝑝𝑖−1 ⋯ 𝑝1𝑔0

+ 𝑝𝑖𝑝𝑖−1 ⋯ 𝑝0𝑐0
Why is this a good idea? Do we save on computation?

Carry Lookahead Adder

Carry Lookahead Adder

Carry Lookahead Adder

• What is the delay?
– One level of logic to form g’s, p’s

– Two levels of logic to propagate through the carry
lookahead

– One level of logic to have the carry effect a sum
output.

– Total: 4 units of time.

• Delay of 4-bit ripple-adder?
– 2 levels of logic for each 𝑐1, 𝑐2, 𝑐3, 𝑐4

– 8 levels of logic

Large High-Speed Adders

• The carry lookahead network can very large as
the number of bits increases.

• Approach: Divide bits of the operands into
blocks, use carry lookahead adders for each
block. Cascade the adders for the blocks.

• Ripple carries occur between the cascaded
adders.

Another Approach to Large High-
Speed Adders

• Carry lookahead generators that generate the
carry of an entire block.

• Assume 4-bit blocks.

• For each block, 4-bit carry lookahead
generator outputs:

𝐺 = 𝑔3 + 𝑝3𝑔2 + 𝑝3𝑝2𝑔1 + 𝑝3𝑝2𝑝1𝑔0
𝑃 = 𝑝3𝑝2𝑝1𝑝0

Carry Lookahead Generator

Large High-Speed Adders

