Digital Logic Design ENEE 244-010x

Lecture 13

Announcements

• HW 6 due on Wednesday, 10/28

Agenda

New Topic: MSI Components

- Today:
 - Binary Adders and Subtracters (5.1, 5.1.1)
 - Carry Lookahead Adders (5.1.2, 5.1.3)

Scale of Integration

- Scale of Integration = Complexity of the Chip
 - SSI: small-scale integrated circuits, 1-10 gates
 - MSI: medium-scale IC, 10-100 gates
 - LSI: large scale IC, 100-1000 gates
 - VLSI: very large-scale IC, 1000+ gates
 - Today's chip has millions of gates on it.
- MSI components: adder, subtracter, comparator, decoder, encoder, multiplexer.

Scale of Integration

- LSI technology introduced highly generalized circuit structures known as programmable logic devices (PLDs).
 - Can consist of an array of and-gates and an array of orgates. Must be modified for a specific application.
 - Modification involves specifying the connections using a hardware procedure. Procedure is known as programming.
- Three types of programmable logic devices:
 - Programmable read-only memory (PROM)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)

MSI Components

Binary Full Adder

x _i	y _i	c _i	<i>c</i> _{<i>i</i>+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Finding a Simplified Circuit

0		0	
	0	1	0

0	0	1	0
0	1	1	1

Corresponding minimal sums:

$$s_{i} = \overline{x}_{i}\overline{y}_{i}c_{i} + \overline{x}_{i}y_{i}\overline{c}_{i} + x_{i}\overline{y}_{i}\overline{c}_{i} + x_{i}y_{i}c_{i}$$
$$c_{i+1} = x_{i}y_{i} + x_{i}c_{i} + y_{i}c_{i}$$

We can simplify the sum for s_i by using xor: $s_i = c_i \bigoplus x_i \bigoplus y_i$

Realization of Full Binary Adder

What about many bits?

- Consider addition of two binary numbers, each consisting of *n* bits.
- Direct approach: Write a truth table with 2²ⁿ rows corresponding to all the combinations of values and specifying the values of the sum bits. Then find a minimal combinational network.
- This will be intractable.

Parallel (ripple) Binary Adder

Why is it called "ripple" adder? Recall—signed binary numbers, final carry-out may signal overflow.

x _i	y _i	b _i	<i>b</i> _{<i>i</i>+1}	d _i
0	0	0	0	0
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

x _i	y _i	b _i	<i>b</i> _{<i>i</i>+1}	d _i	
0	0	0	0	0	
0	0	1	1	1	1
0	1	0			10
0	1	1			-0
1	0	0			
1	0	1			
1	1	0			
1	1	1			

x _i	y _i	b _i	<i>b</i> _{<i>i</i>+1}	d _i	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	10
0	1	1			-1
1	0	0			
1	0	1			
1	1	0			
1	1	1			

x _i	y _i	b _i	<i>b</i> _{<i>i</i>+1}	<i>d</i> _{<i>i</i>}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0		
1	0	1		
1	1	0		
1	1	1		

x _i	<i>Y</i> _i	b _i	<i>b</i> _{<i>i</i>+1}	d _i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Finding a Simplified Circuit

 $d_i = b_i \bigoplus x_i \bigoplus y_i$ (Same as sum in adder) $b_{i+1} = \overline{x}_i y_i + \overline{x}_i b_i + y_i b_i$

A better approach using 2's complement

Parallel Adder/Subtracter

- Ripple effect:
 - If a carry is generated in the least-significant-bit the carry must propagate through all the remaining stages.
 - Assuming two-levels of logic are need to propogate the carry through each of the next higher-order stages. Delay is 2n.
- Must speed up propagation of the carries. Adders designed with this consideration in mind are called high-speed adders.

- Consider $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$ = $x_i y_i + (x_i + y_i) c_i$
- The first term x_iy_i is called the carry-generate function since it corresponds to the formation of a carry at the i-th stage.
- The second term $(x_i + y_i)c_i$ corresponds to a previously generated carry c_i that must propagate past the i-th stage to the next stage.
- The $(x_i + y_i)$ part of this term is called the carrypropagate function.
- Carry-generate function will be denoted by g_i , carry-propagate function will be denoted by p_i .

$$g_i = x_i y_i$$
$$p_i = x_i + y_i$$
$$c_{i+1} = g_i + p_i c_i$$

Using this general result, the output carry at each of the stages can be written in terms of the g's, p's and initial input carry c_0 .

$$c_{1} = g_{0} + p_{0}c_{0}$$

$$c_{2} = g_{1} + p_{1}c_{1}$$

$$= g_{1} + p_{1}(g_{0} + p_{0}c_{0})$$

$$= g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}$$

$$c_{3} = g_{2} + p_{2}c_{2}$$

$$= g_{2} + p_{2}(g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0})$$

$$= g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}$$

 $c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \dots + p_i p_{i-1} \dots p_1 g_0$ + $p_i p_{i-1} \dots p_0 c_0$ Why is this a good idea? Do we save on computation?

- What is the delay?
 - One level of logic to form g's, p's
 - Two levels of logic to propagate through the carry lookahead
 - One level of logic to have the carry effect a sum output.
 - Total: 4 units of time.
- Delay of 4-bit ripple-adder?
 - 2 levels of logic for each c_1, c_2, c_3, c_4
 - 8 levels of logic

Large High-Speed Adders

- The carry lookahead network can very large as the number of bits increases.
- Approach: Divide bits of the operands into blocks, use carry lookahead adders for each block. Cascade the adders for the blocks.
- Ripple carries occur between the cascaded adders.

Another Approach to Large High-Speed Adders

- Carry lookahead generators that generate the carry of an entire block.
- Assume 4-bit blocks.
- For each block, 4-bit carry lookahead generator outputs:

$$G = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0$$
$$P = p_3p_2p_1p_0$$

Carry Lookahead Generator

Large High-Speed Adders

