Class Exercise—Logic Design with Decoders and Multiplexers

11/2/15

1. Using or-gates and/or nor-gates along with a 3-to-8 line decoder, realize the following pair of expressions. The gates should be selected so as to minimize their total number of input terminals.

$$
\begin{aligned}
& f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\sum m(0,2,4) \\
& f_{2}\left(x_{2}, x_{1}, x_{0}\right)=\sum m(1,2,4,5,7)
\end{aligned}
$$

Class Exercise—Logic Design with Decoders and Multiplexers

11/2/15

2. Realize the Boolean expression

$$
f(w, x, y, z)=\sum m(4,5,7,8,10,12,15)
$$

using a 4-to-1 line multiplexer and external gates
(a) Let w and x appear on the select lines S_{1} and S_{0}, respectively.
(b) Let y and z appear on the select lines S_{1} and S_{0}, respectively.

