Digital Logic Design ENEE 244-010x

Lecture 15

Announcements

- Homework 7 due Wednesday 11/4
- Coming up: Midterm on 11/11
- Topics for Midterm posted online
- Review problems will be posted by Tuesday night

Agenda

- Last time:
- Decimal Adders (5.2)
- Comparators (5.3)
- Decoders (5.4)
- Encoders (5.5)
- Multiplexers (5.6)
- This time:
- Logic Design with Decoders and Multiplexers (5.4, 5.6)
- Start Programmable Logic Devices (PLD) (5.7)

Logic Design Using Decoders

Symbol

Inputs								Outputs																	
x_{2}	x_{1}	x_{0}	z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}																
z_{7}															$]$	0	0	0	1	0	0	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	0															

Logic Design Using Decoders

- An n-to- 2^{n} line decoder is a minterm generator.
- By using or-gates in conjunction with an n-to- 2^{n} line decoder, realizations of Boolean functions are possible.
- Do not correspond to minimal sum-of-products.
- Are simple to produce. Particularly convenient when several functions of the same variable have to be realized.

Minterms using OR Gates

Figure 5.19 Realization of the Boolean expressions
$f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\Sigma m(1,2,4,5)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=\Sigma m(1,5,7)$ with a 3-to-8-

Minterms using NOR Gates

Figure 5.20 Realization of the Boolean expressions
$f_{1}\left(x_{2}, x_{1}, x_{0}\right)=\Sigma m(0,1,3,4,5,6)=\Sigma m(2,7)$ and $f_{2}\left(x_{2}, x_{1}, x_{0}\right)=\Sigma m(1,2,3,4,6)=$ $\Sigma m(0,5,7)$ with a 3-to-8-line decoder anc two nor-gates.

Logic Design with Multiplexers

	$S_{1} S_{0} I_{0} I_{1} I_{2} I_{3}$	f
0	$\times \times \times \times \times \times$	0
1	$000 \times \times \times$	0
	$001 \times \times \times$	1
1	$01 \times 0 \times \times$	0
1	$01 \times 1 \times \times$	1
	$10 \times 0 \times$	0
	$10 \times \times 1 \times$	1
	$11 \times \times \times$	0
1	$11 \times \times \times 1$	1

Logic Design with Multiplexers

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{f}
0	0	0	f_{0}
0	0	1	f_{1}
0	1	0	f_{2}
0	1	1	f_{3}
1	0	0	f_{4}
1	0	1	f_{5}
1	1	0	f_{6}
1	1	1	f_{7}

The Boolean expression corresponding to this truth table can be written as:

$$
\begin{aligned}
& f(x, y, z) \\
& \quad=f_{0} \cdot \bar{x} \bar{y} \bar{z}+f_{1} \cdot \bar{x} \bar{y} z+f_{2} \cdot \bar{x} y \bar{z}+f_{3} \cdot \bar{x} y z+f_{4} \cdot x \bar{y} \bar{z} \\
& \quad+f_{5} \cdot x \bar{y} z+f_{6} x y \bar{z}+f_{7} \cdot x y z .
\end{aligned}
$$

Logic Design with Multiplexers

- The Boolean expression corresponding to this truth table can be written as:
$f(x, y, z)=f_{0} \cdot \bar{x} \bar{y} \bar{z}+f_{1} \cdot \bar{x} \bar{y} z+f_{2}$.
$\bar{x} y \bar{z}+f_{3} \cdot \bar{x} y z+f_{4} \cdot x \bar{y} \bar{z}+f_{5} \cdot x \bar{y} z+f_{6} x y \bar{z}+$
$f_{7} \cdot x y z$.
- The Boolean expression for an 8-to-1-line multiplexer is:

$$
\begin{aligned}
f=(& I_{0} \bar{S}_{2} \bar{S}_{1} \bar{S}_{0}+I_{1} \bar{S}_{2} \bar{S}_{1} S_{0}+I_{2} \bar{S}_{2} S_{1} \bar{S}_{0}+I_{3} \bar{S}_{2} S_{1} S_{0} \\
& +I_{4} S_{2} \bar{S}_{1} \bar{S}_{0}+I_{5} S_{2} \bar{S}_{1} S_{0}+I_{6} S_{2} S_{1} \bar{S}_{0} \\
& \left.+I_{7} S_{2} S_{1} S_{0}\right)
\end{aligned}
$$

Logic Design with Multiplexers

- If E is logic-1 then the latter is transformed into the former by replacing I_{i} with f_{i}, S_{2} with x, S_{1} with y, and S_{0} with z.
- Placing x, y, z on the select lines S_{2}, S_{1}, S_{0}, respectively and placing the functional values f_{i} on data input lines I_{i}.

Example:

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Logic Design with Multiplexers

- If at least one input variable of a Boolean function is available in both its complemented and uncomplemented form, any n-variable function is realizable with a 2^{n-1}-to-1line multiplexer.
- For the case of a 3-variable function, only a 4-to-1 multiplexer is needed.
- $f(x, y, z)=f_{0} \cdot \bar{x} \bar{y} \bar{z}+f_{1} \cdot \bar{x} \bar{y} z+f_{2} \cdot \bar{x} y \bar{z}+f_{3} \cdot \bar{x} y z+$ $f_{4} \cdot x \bar{y} \bar{z}+f_{5} \cdot x \bar{y} z+f_{6} x y \bar{z}+f_{7} \cdot x y z$ $=\left(f_{0} \cdot \bar{z}+f_{1} \cdot z\right) \bar{x} \bar{y}+\left(f_{2} \cdot \bar{z}+f_{3} \cdot z\right) \bar{x} y$ $+\left(f_{4} \cdot \bar{z}+f_{5} \cdot z\right) x \bar{y}+\left(f_{6} \cdot \bar{z}+f_{7} \cdot z\right) x y$
- When $\mathrm{E}=1$, 4-to-1 Multiplexer has the form

$$
I_{0} \bar{S}_{1} \bar{S}_{0}+I_{1} \bar{S}_{1} S_{0}+I_{2} S_{1} \bar{S}_{0}+I_{3} S_{1} S_{2}
$$

Logic Design with Multiplexers

$f(x, y, z)$

$$
\begin{aligned}
& =\left(f_{0} \cdot \bar{z}+f_{1} \cdot z\right) \bar{x} \bar{y}+\left(f_{2} \cdot \bar{z}+f_{3} \cdot z\right) \bar{x} y \\
& +\left(f_{4} \cdot \bar{z}+f_{5} \cdot z\right) x \bar{y}+\left(f_{6} \cdot \bar{z}+f_{7} \cdot z\right) x y
\end{aligned}
$$

4-to-1 Multiplexer has the form

$$
f=I_{0} \bar{S}_{1} \bar{S}_{0}+I_{1} \bar{S}_{1} S_{0}+I_{2} S_{1} \bar{S}_{0}+I_{3} S_{1} S_{2}
$$

- Realization of $f(x, y, z)$ is obtained by placing the x and y variables on the S_{1}, S_{0} select lines, the single variable functions $f_{i} \cdot \bar{z}+f_{j} \cdot z$ on the data input lines and let $E=1$.
- Note: $f_{i} \cdot \bar{z}+f_{j} \cdot z$ reduce to $0,1, z$ or \bar{z}.

Example

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Example

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Logic Design with Multiplexers and K-

 maps- Consider 3-variable Karnaugh map. Assume x is placed on the S_{1} line and y is placed on the S_{0} line.
- We get that the output is: $I_{0} \bar{x} \bar{y}+I_{1} \bar{x} y+I_{2} x \bar{y}+I_{3} x y$
- $I_{0} \bar{x} \bar{y}$ corresponds to those cells in which $x=0, y=0$
- $I_{1} \bar{x} y$ corresponds to those cells in which $x=0, y=1$
- $I_{2} x \bar{y}$ corresponds to those cells in which $x=1, y=0$
- $I_{3} x y$ corresponds to those cells in which $x=1, y=1$

K-map representation

Example

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Realization

x	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Alternative Structures

$$
\begin{gathered}
S_{1}=y, S_{0}=z \\
y z
\end{gathered}
$$

Note that order of variables on input lines matters!

8-to-1-line multiplexers and 4-variable Boolean functions

- Can do the same thing, three variables are placed on select lines, inputs to the data lines are single-variable functions.
- Example:

Figure 5.45 Realization of $f(w, x, y, z)=\Sigma m(0,1,5,6,7,9,12,15)$.
(a) Karnaugh map. (c) Multiplexer realization.

Can we do better?

- By allowing realizations of m-variable functions as inputs to the data input lines, 2^{n} -to-1-line multiplexers can be used in the realization of $(n+m)$-variable functions.
- E.g.: input variables w and x are applied to the S_{1}, S_{0} select inputs. Functions of the y and z variables appear at the data input lines.

K-map Structure

Figure 5.46 Using a four-variable Karnaugh map to obtain a Boolean function realization with a 4-to-1-line multiplexer.

Example:

$$
f(x, y, z)=\sum m(0,1,5,6,7,9,13,14)
$$

$w=1$
$x=1$

Example

$w=1$
$x=1$

$y z$			
00	$01^{y z}$	11	10
0	(1)	0	(1)

Example

