Digital Logic Design ENEE 244-010x

Lecture 15

Announcements

- Homework 7 due Wednesday 11/4
- Coming up: Midterm on 11/11
 - Topics for Midterm posted online
 - Review problems will be posted by Tuesday night

Agenda

- Last time:
 - Decimal Adders (5.2)
 - Comparators (5.3)
 - Decoders (5.4)
 - Encoders (5.5)
 - Multiplexers (5.6)
- This time:
 - Logic Design with Decoders and Multiplexers (5.4, 5.6)
 - Start Programmable Logic Devices (PLD) (5.7)

Logic Design Using Decoders

Symbol

Inputs	Outputs							
$x_2 \ x_1 \ x_0$	z_0	z_1	z_2	z_3	z_4	z_5	z ₆	Z7
0 0 0	1	0	0	0	0	0	0	0
0 0 1	0	1	0	0	0	0	0	0
0 1 0	0	0	1	0	0	0	0	0
0 1 1	0	0	0	1		0	0	0
1 0 0	0	0	0	0	1	0	0	0
1 0 1	0	0	0	0	0	1	0	0
1 1 0	0	0	0	0	0	0	1	0
1 1 1	0	0	0	0	0	0	0	1
Truth Tabla								

Truth Table

Logic Design Using Decoders

- An n-to- 2^n line decoder is a minterm generator.
- By using or-gates in conjunction with an *n*-to-2^{*n*} line decoder, realizations of Boolean functions are possible.
- Do not correspond to minimal sum-of-products.
- Are simple to produce. Particularly convenient when several functions of the same variable have to be realized.

Minterms using OR Gates

Figure 5.19 Realization of the Boolean expressions $f_1(x_2, x_1, x_0) = \Sigma m(1, 2, 4, 5)$ and $f_2(x_2, x_1, x_0) = \Sigma m(1, 5, 7)$ with a 3-to-8-

Minterms using NOR Gates

X	у	Z	f
0	0	0	f_0
0	0	1	f_1
0	1	0	f_2
0	1	1	f_3
1	0	0	f_4
1	0	1	f_5
1	1	0	f_6
1	1	1	f_7

The Boolean expression corresponding to this truth table can be written as:

$$f(x, y, z) = f_0 \cdot \overline{x} \, \overline{y} \, \overline{z} + f_1 \cdot \overline{x} \, \overline{y} \, z + f_2 \cdot \overline{x} y \overline{z} + f_3 \cdot \overline{x} y z + f_4 \cdot x \overline{y} \, \overline{z} + f_5 \cdot x \overline{y} z + f_6 x y \overline{z} + f_7 \cdot x y z.$$

• The Boolean expression corresponding to this truth table can be written as:

 $f(x, y, z) = f_0 \cdot \overline{x} \, \overline{y} \, \overline{z} + f_1 \cdot \overline{x} \, \overline{y} \, z + f_2 \cdot \overline{x} \, \overline{y} \, \overline{z} + f_3 \cdot \overline{x} \, \overline{y} \, z + f_4 \cdot x \, \overline{y} \, \overline{z} + f_5 \cdot x \, \overline{y} \, z + f_6 \, x \, \overline{y} \, \overline{z} + f_7 \cdot x \, \overline{y} \, z.$

• The Boolean expression for an 8-to-1-line multiplexer is:

$$f = (I_0 \overline{S}_2 \overline{S}_1 \overline{S}_0 + I_1 \overline{S}_2 \overline{S}_1 S_0 + I_2 \overline{S}_2 S_1 \overline{S}_0 + I_3 \overline{S}_2 S_1 S_0 + I_4 S_2 \overline{S}_1 \overline{S}_0 + I_5 S_2 \overline{S}_1 S_0 + I_6 S_2 S_1 \overline{S}_0 + I_7 S_2 S_1 S_0).$$

- If E is logic-1 then the latter is transformed into the former by replacing I_i with f_i , S_2 with x, S_1 with y, and S_0 with z.
- Placing x, y, z on the select lines S_2, S_1, S_0 , respectively and placing the functional values f_i on data input lines I_i .

Example:

x	y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

- If at least one input variable of a Boolean function is available in both its complemented and uncomplemented form, any *n*-variable function is realizable with a 2^{n-1} -to-1-line multiplexer.
- For the case of a 3-variable function, only a 4-to-1 multiplexer is needed.

•
$$f(x, y, z) = f_0 \cdot \overline{x} \, \overline{y} \, \overline{z} + f_1 \cdot \overline{x} \, \overline{y} \, z + f_2 \cdot \overline{x} y \overline{z} + f_3 \cdot \overline{x} y z + f_4 \cdot x \overline{y} \, \overline{z} + f_5 \cdot x \overline{y} z + f_6 x y \overline{z} + f_7 \cdot x y z$$

$$= (f_0 \cdot \overline{z} + f_1 \cdot z) \overline{x} \, \overline{y} + (f_2 \cdot \overline{z} + f_3 \cdot z) \overline{x} y$$

$$+ (f_4 \cdot \overline{z} + f_5 \cdot z) x \overline{y} + (f_6 \cdot \overline{z} + f_7 \cdot z) x y$$

• When E = 1, 4-to-1 Multiplexer has the form $I_0\overline{S}_1\overline{S}_0 + I_1\overline{S}_1S_0 + I_2S_1\overline{S}_0 + I_3S_1S_2$

- $f(x, y, z) = (f_0 \cdot \overline{z} + f_1 \cdot z)\overline{x} \, \overline{y} + (f_2 \cdot \overline{z} + f_3 \cdot z)\overline{x}y + (f_4 \cdot \overline{z} + f_5 \cdot z)x\overline{y} + (f_6 \cdot \overline{z} + f_7 \cdot z)xy$ 4-to-1 Multiplexer has the form $f = I_0\overline{S}_1\overline{S}_0 + I_1\overline{S}_1S_0 + I_2S_1\overline{S}_0 + I_3S_1S_2$ Realization of f(x, y, z) is obtained by placing the x and y variables on the S_1, S_0 select lines, the
- single variable functions $f_i \cdot \overline{z} + f_j \cdot z$ on the data input lines and let E = 1.
- Note: $f_i \cdot \overline{z} + f_j \cdot z$ reduce to 0,1,*z* or \overline{z} .

Example

Example

x	y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Logic Design with Multiplexers and Kmaps

- Consider 3-variable Karnaugh map. Assume x is placed on the S₁ line and y is placed on the S₀ line.
- We get that the output is: $I_0 \overline{x} \overline{y} + I_1 \overline{x} y + I_2 x \overline{y} + I_3 x y$
- $I_0 \overline{x} \overline{y}$ corresponds to those cells in which x = 0, y = 0
- $I_1 \overline{x} y$ corresponds to those cells in which x = 0, y = 1
- $I_2 x \overline{y}$ corresponds to those cells in which x = 1, y = 0
- $I_3 xy$ corresponds to those cells in which x = 1, y = 1

K-map representation

Example

x	y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Realization

x	y	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Alternative Structures

Note that order of variables on input lines matters!

X

$$S_0 = z$$

8-to-1-line multiplexers and 4-variable Boolean functions

- Can do the same thing, three variables are placed on select lines, inputs to the data lines are single-variable functions.
- Example:

Can we do better?

- By allowing realizations of m-variable functions as inputs to the data input lines, 2^n to-1-line multiplexers can be used in the realization of (n + m)-variable functions.
- E.g.: input variables w and x are applied to the S₁, S₀ select inputs. Functions of the y and z variables appear at the data input lines.

K-map Structure

Figure 5.46 Using a four-variable Karnaugh map to obtain a Boolean function realization with a 4-to-1-line multiplexer.

Example:

 $f(x, y, z) = \sum m(0, 1, 5, 6, 7, 9, 13, 14)$

Example

Example

