Digital Logic Design ENEE 244-010x

Lecture 18

Announcements

- Homework 8 up on course webpage. Due Monday, 11/23

Agenda

- Last time:
- The Basic Bistable Element (6.1)
- Latches (6.2)
- Timing Considerations (6.3)
- This time:
- Review of 6.2-6.3
- Master-Slave Flip-Flops (6.4)
- Edge-Triggered Flip-Flops (6.5)
- Characteristic Equations (6.6)

Review--The SR Latch

(a)

Inputs		Outputs	
S	R	Q^{+}	\bar{Q}^{+}
0	0	Q	\bar{Q}
0	1	0	1
1	0	1	0
1	1	0^{*}	0^{*}
*Unpredictable behavior			
Will result if inputs			
return to 0 simultaneously			

$$
-\begin{array}{ll}
S & Q
\end{array}
$$

Review--The Gated SR Latch

(a)

Inputs			Outputs	
S	R	C	Q^{+}	\bar{Q}^{+}
0	0	1	Q	\bar{Q}
0	1	1	0	1
1	0	1	1	0
1	1	1	1^{*}	1^{*}
X	X	0	Q	\bar{Q}

*Unpredictable behavior will result if S and R return to 0 simultaneously or C returns to 0 while S and R are 1
(b)

(c)

Review--The Gated D Latch

(a)

Inputs		Outputs	
D	C	Q^{+}	\bar{Q}^{+}
0	1	0	1
1	1	1	$\frac{a}{2}$
X	0	Q	\bar{Q}

(b)

(c)

Propagation Delays

- The propagation delay is the time it takes a change in an input signal to produce a change in an output signal.
- Propagation delay from low to high: $t_{p L H}$
- Propagation delay from high to low: $t_{p H L}$

In general, these may be different.

Figure 6.7 Propagation delays in an SR latch.

Timing Diagram

- Propagation delays from high-low, low-high assumed equal.
- When $\mathrm{S}=\mathrm{R}=1$, both Q, \bar{Q} become 0 .
- t_{15}, signals on S, R are simultaneously changed from 1 to 0 .
- Response of latch is unpredictable. Can be in 0-state, 1 -state or metastable state.
- Application of 1 on the set input terminal returns the latch to predictable.

Figure 6.8 Timing diagram for an SR latch.

Minimum Pulse Width

- Another specification stated by the manufacturers of latches is that of a minimum pulse width $t_{w(\text { min })}$.
- Minimum amount of time a signal must be applied in order to produce a desired result.
- Failure to satisfy the constraint may cause unintended change or have the latch enter its metastable state.

Setup and Hold Times

- Consider timing diagram for a gated D latch
- Q-output follows the input signal at D whenever the enable signal $C=1$.
- When $\mathrm{C}=0$, changes are ignored.

- Consider times $t_{3}, t_{6}, t_{11}, t_{14}$.
- C is returned to 0 . Output latches onto its current state.
- To guarantee latching action: constraint is placed on D signal. Must not change right before and after C goes from 1 to 0 .
- Setup time: minimum time $t_{s u}$ that D signal must be held fixed before the latching action.
- Hold time: minimum time t_{h} that D signal must be held fixed after the latching action.

Unpredictable Response in a gated D latch

Figure 6.11 Illustration of an unpredictable response in a gated D latch.

Master-Slave Flip-Flops (Pulse Triggered Flip-Flops)

- Aside from latches, two categories of flip-flops.
- Master-slave flip-flops (pulse-triggered flip-flops)
- Edge-triggered flip-flops
- Latches have immediate output response (known as transparency)
- May be undesirable:
- May be necessary to sense the current state of a flipflop while allowing new state information to be entered.

Master-Slave SR Flip-Flop

- Two sections, each capable of storing a binary symbol.
- First section is referred to as the master and the second section as the slave.
- Information is entered into the master on one edge or level of a control signal and is transferred to the slave on the next edge or level of the control signal.
- Each section is a latch.

Master-Slave SR Flip-Flop

- $\mathrm{C}=0$:
- Master is disabled. Any changes to S,R ignored.
- Slave is enabled. Is in the same state as the master.
- $C=1$:
- Slave is disabled (retains state of master)
- Master is enabled, responds to inputs. Changes in state of master are not reflected in disabled slave.
- $\mathrm{C}=0$:
- Master is disabled.
- Slave is enabled and takes on new state of the master.
- Important: For short periods during rising and falling edges, both master and slave are disabled.

Master-Slave SR Flip-Flop

(a)

Timing Diagram for Master-Slave SR flip-flop

Master-Slave JK Flip-Flop

- The output state of a master-slave SR flip-flop is undefined upon returning the control input to 0 when $\mathrm{S}=\mathrm{R}=1$.
- Necessary to avoid this condition.
- Master-slave JK flip-flop allows its two information input lines to be simultaneously 1.
- Results in toggling the output of the flip flop.

Master-Slave JK Flip-Flop

- Assume in 1-state, $\mathrm{C}=0, \mathrm{~J}=\mathrm{K}=1$.
- Due to feedback, the output of the J-gate is 0 , output of K -gate is 1 .
- If clock is changed to $\mathrm{C}=1$ then master is reset.
- Assume in 0 -state, $\mathrm{C}=0, \mathrm{~J}=\mathrm{K}=1$.
- Due to feedback, the output of the J-gate is 1 , output of K -gate is 0 .
- If clock is changed to $\mathrm{C}=1$ then master is set.
- 1 on J input line, 0 on K input line sets the flip-flop.
- If in 1-state, unchanged b/c S, R set to 0 .
- If in 0 -state, S set to $1, R$ set to 0 .
- 0 on J input, 1 on K input line resets the flip-flop. Why?

Master-Slave JK Flip-Flop

(a)

Inputs		Outputs		
J	K	C	Q^{+}	\bar{Q}^{+}
0	0	$\sqrt{ }$	Q	\bar{Q}
0	1	\boxed{L}	0	1
1	0	$\boxed{\square}$	1	0
1	1	$\sqrt{ }$	\bar{Q}	Q
x	x	0	Q	\bar{Q}

(b)

(c)

Timing Diagram for Master-Slave JK Flip-Flop

0's and 1's Catching

- The master is enabled during the entire period the control-signal is 1.
- If the slave latch is in its 1 -state, then a logic-1 on K-input line causes the master-latch to reset. Slave becomes reset when control signal returns to 0 .
- This is known as 0 's catching ($2^{\text {nd }}$ pulse).
- Note: if a subsequent 1 -signal on J input line and C is still 1 , master does not become set again (due to feedback not changing).
- If slave latch is in 0 -state, logic-1 on J input line while control signal is 1 causes the master latch to be set and slave will be set upon occurrence of the falling edge.
- This is known as 1 's catching ($3^{\text {rd }}$ pulse).
- In many applications, 0's and 1's catching behavior is undesirable. Normally recommended that the J and K input values should be held fixed during the entire interval the master is enabled.
- Any changes in J, K must occur while the control signal is 0 .

0's Catching

- Assume in 1-state $(Q=1, \bar{Q}=0), \mathrm{C}=1, \mathrm{~J}=0, \mathrm{~K}=0$
- K gets set to 1 briefly.
- Master gets reset, Slave will become reset when Clock goes to 0 .
- K goes to 0 .
- J goes to 1. What happens?
- Nothing! Slave will still become reset when Clock goes to 0 .
- Why?

