2’s and 1's Complement

Lecture 2 Exercise
9/2/15
2’s Complement

£ = 8 bits of memory (one byte)

Can represent numbers from 0 — 255 (00000000 —» 11111111)

Or can represent signed numbers from —128 - +127

Example: To represent —10, compute 2¢ — 10 = 256 — 10 = 100000000 — 1010 = 11110110

Represent 72 in binary:

Represent -35 in 2’s complement:

What is a quick way to tell whether a number is positive or negative?
Use 2’s complement to compute 72-35 by computing 72 + (-35):

What happens to the highest order carry?

1’s Complement

£ = 8 bits of memory (one byte)
Can represent numbers from 0 — 255 (00000000 —» 11111111)

Or can represent signed numbers from —127 — +127 (there are 2 ways to represent 0—what are
they?)

Example: To represent —10, compute 10 in binary: 1010. To compute —10, flip the bits: 11110101

Represent 72 in binary:
Represent -35 in 1’s complement:
What is a quick way to tell whether a number is positive or negative?

Use 1’s complement to compute 72-35 by computing 72 + (-35) (note there is an extra step that
must be done during subtraction—what is it?):

Is an extra step during subtraction necessary when computing 35 + (-72)?



2’s and 1's Complement

Lecture 2 Exercise
9/2/15

Discussion

Which is easier—computing the 2’s complement or 1’s complement?
Which is easier—subtraction using 2’s complement or 1’s complement?
How can we use the 1’s complement to compute the 2’s complement?
Which do you think should be the preferred choice?



