2's and 1's Complement

Lecture 2 Exercise
9/2/15
2's Complement

$\ell=8$ bits of memory (one byte)
Can represent numbers from $0 \rightarrow 255(00000000 \rightarrow 11111111)$
Or can represent signed numbers from $-128 \rightarrow+127$
Example: To represent -10 , compute $2^{\ell}-10=256-10=100000000-1010=11110110$
Represent 72 in binary:

Represent -35 in 2's complement:

What is a quick way to tell whether a number is positive or negative?

Use 2's complement to compute 72-35 by computing $72+(-35)$:

What happens to the highest order carry?

1's Complement

$\ell=8$ bits of memory (one byte)
Can represent numbers from $0 \rightarrow 255(00000000 \rightarrow 11111111)$
Or can represent signed numbers from $-127 \rightarrow+127$ (there are 2 ways to represent $0-$ what are they?)
Example: To represent -10, compute 10 in binary: 1010. To compute -10, flip the bits: 11110101
Represent 72 in binary:

Represent -35 in 1's complement:
What is a quick way to tell whether a number is positive or negative?
Use 1's complement to compute $72-35$ by computing $72+(-35)$ (note there is an extra step that must be done during subtraction-what is it?):

Is an extra step during subtraction necessary when computing $35+(-72)$?

2's and 1's Complement

Lecture 2 Exercise 9/2/15

Discussion

- Which is easier-computing the 2's complement or 1's complement?
- Which is easier-subtraction using 2's complement or 1's complement?
- How can we use the 1's complement to compute the 2's complement?
- Which do you think should be the preferred choice?

