
2’s Complement

ℓ = 8 bits of memory (one byte)

Can represent numbers from 0 → 255 (00000000 → 11111111)

Or can represent signed numbers from −128 →	+127

Example:  To represent −10, compute 2ℓ 	− 10 = 256 − 10 = 100000000 − 1010 = 	11110110

Represent 72 in binary:

Represent -35 in 2’s complement:

What is a quick way to tell whether a number is positive or negative?

Use 2’s complement to compute 72-35 by computing 72 + (-35):

What happens to the highest order carry? 

2’s and 1’s Complement

Lecture 2 Exercise

9/2/15

1’s Complement

ℓ = 8 bits of memory (one byte)

Can represent numbers from 0 → 255 (00000000 → 11111111)

Or can represent signed numbers from −127 →	+127 (there are 2 ways to represent 0—what are 

they?)

Example:  To represent −10, compute 10 in binary:  1010.  To compute −10, flip the bits: 11110101

Represent 72 in binary:

Represent -35 in 1’s complement:

What is a quick way to tell whether a number is positive or negative?

Use 1’s complement to compute 72-35 by computing 72 + (-35) (note there is an extra step that 
must be done during subtraction—what is it?):

Is an extra step during subtraction necessary when computing 35 + (-72)?



Discussion

• Which is easier—computing the 2’s complement or 1’s complement?

• Which is easier—subtraction using 2’s complement or 1’s complement?

• How can we use the 1’s complement to compute the 2’s complement?

• Which do you think should be the preferred choice?

2’s and 1’s Complement

Lecture 2 Exercise

9/2/15


