Digital Logic Design ENEE 244-010x

Lecture 20

Announcements

- HW8 due today
- Please read Section 6.8.3 in Textbook
 Additional types of counters
- Next class: State diagrams, State reduction
 - Notes and class exercise (as always) will be posted online

Agenda

- New topic: Synchronous Sequential Networks
 - Structure and Operation of Clocked Synchronous
 Sequential Networks (7.1)
 - Analysis of Clocked Synchronous Sequential Networks (7.2)
 - Modeling Clocked Synchronous Sequential Network Behavior (7.3)

Clocked Synchronous Sequential Networks

Figure 7.2 Structure of a clocked synchronous sequential network.

 Network behavior is defined at specific instants of time associated with a clock signal.

- Usually a master clock that appears at the control inputs of all the flip-flops.
- Combinational logic is used to generate the next-state and output signals.

Clocked Synchronous Sequential Networks

- Input and new present state signals are applied to the combinational logic.
- Effects of the signals must propagate through the network.
 - Final values at the flip-flop inputs occur at different times depending upon the number of gates involved in the signal paths.
- Only after final values are reached, active time of the clock signal is allowed to occur and cause any state changes.
- All state changes of the flip-flops occur at the same time.

Clocked Synchronous Sequential Networks

- Next state of the network: $Q^+ = f(X, Q)$
 - -X denotes the collective external input signals
 - Q denotes the collective present states of the flipflops.
- Z denotes the collective output signals of the network: Z = g(X, Q).

Mealy model

• The general structure of a clocked synchronous sequential network.

Moore Model

• Variation of Mealy model when the outputs are only a function of the present state and not of the external inputs: Z = g(Q).

Figure 7.4 Moore model of a clocked synchronous sequential network.

Analysis of clocked Synchronous Sequential Network

Two Examples

Figure 1: Mealy network

Two Examples

Figure 2: Moore network

Excitation and Output Expressions

- Assign variables to flip flop-states $Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$
- Assign excitation variables to flip-flop inputs $D_1, D_2, J_1, K_1, J_2, K_2$

Excitation and output expressions for Fig. 1:

- $D_1 = \overline{x}\overline{Q}_2 + \overline{Q}_1Q_2$
- $D_2 = x\overline{Q}_1 + \overline{Q}_1Q_2$
- $z = \overline{x}Q_1 + x\overline{Q}_1\overline{Q}_2$

Excitation and output expressions for Fig 2:

- $J_1 = y$
- $K_1 = y + x\overline{Q}_2$
- $J_2 = x\overline{Q}_1 + \overline{x}yQ_1$
- $K_2 = x\overline{y} + yQ_1$
- $z_1 = Q_1 \overline{Q}_2$
- $z_2 = Q_1 + \overline{Q}_2$

Transition Equations

Transition Equations for Figure 1:

- $Q^{+}_{1} = D_{1}$
- $Q^+_2 = D_2$
- $Q_{1}^{+} = \overline{x}\overline{Q}_{2} + \overline{Q}_{1}Q_{2}$
- $Q_2^+ = x\overline{Q}_1 + \overline{Q}_1Q_2$

Transition Equations for Figure 2:

- $Q_1^+ = J_1 \overline{Q}_1 + \overline{K}_1 Q_1$
- $Q_2^+ = J_2 \overline{Q}_2 + \overline{K}_2 Q_2$
- $Q_1^+ = y\overline{Q}_1 + \overline{(y + x\overline{Q}_2)}Q_1 = y\overline{Q}_1 + \overline{x}\overline{y}Q_1 + \overline{y}Q_1Q_2$
- $Q_{2}^{+} = (x\overline{Q}_{1} + \overline{x}yQ_{1})\overline{Q}_{2} + \overline{(x\overline{y} + yQ_{1})}Q_{2} = x\overline{Q}_{1}\overline{Q}_{2} + \overline{x}yQ_{1}\overline{Q}_{2} + \overline{x}\overline{y}Q_{2} + \overline{x}\overline{Q}_{1}Q_{2} + y\overline{Q}_{1}Q_{2}$

Excitation Table

- Excitation table consists of three parts:
 - Present-state section
 - Excitation section
 - Output section

Excitation Tables

Present state (Q_1Q_2)	Excit (D)	tation (D_2)	Ou (tput z)
	Inpu	ut (x)	Inp	ut (x)
	0	1	0	1
00	10	01	0	1
01	11	11	0	0
10	10	00	1	0
11	00	00	1	0

Present state (Q_1Q_2)	Excitation (J_1K_1, J_2K_2)					
		Input	s (xy)			
	00	01	10	11		
00	00,00	11,00	01,11	11,10	01	
01	00,00	11,00	00,11	11,10	00	
10	00,00	11,11	01,01	11,01	11	
11	00,00	11,11	00,01	11.01	01	

Transition Tables

Rather than using algebraic descriptions can express the information in tabular form.

- Table consists of three sections
 - Present state variables
 - Next-state variables
 - Output variables
- Present state variables:
 - Lists all the possible combinations of values for the state variables.
 - If there are p state variables, then 2^p rows.
- Next-state section
 - One column for each combination of values of the external input variables.
 - If there are n external input variables, then 2^n columns.
 - Each entry is a *p*-tuple corresponding to the next state for each combination of present state and external input.
- Mealy network outputs:
 - One column for each combination of values of the external input variables.
 - Entries within the section indicate the outputs for each present-state/input combination.
- Moore network outputs:
 - Output section has only a single column.

Transition Tables

Present state (Q_1Q_2)	Excit (D)	tation (D_2)	Ou	tput (z)
	Inpu	ut (x)	Inp	ut (x)
	0	1	0	1
00	10	01	0	1
01	11	11	0	0
10	10	00	1	0
11	00	00	1	0

Present state (Q_1Q_2)	Next (Q_1^+)	t state (Q_2^+)	Ou	tput z)
	Inpu	ut (x)	Inp	ut (x)
	0	1	0	1
00	10	01	0	1
01	11	11	0	(
10	10	00	1	0
11	00	00	1	0

Transition Tables

Present stateExcitation (Q_1Q_2) (J_1K_1, J_2K_2)					Output (z ₁ ,z ₂)
		Input	s (xy)		
	00	01	10	11	
00	00,00	11,00	01,11	11,10	01
01	00,00	11,00	00,11	11,10	00
10	00,00	11,11	01,01	11,01	11
11	00,00	11,11	00,01	11,01	01

Table 7.2	Transition	table	for	Exampl	e	7.2	2
-----------	------------	-------	-----	--------	---	-----	---

Present state (Q_1Q_2)		Output (z_1z_2)			
		Inputs (xy)			
	00	01	10	11	
00	00	10	01	11	01
01	01	11	00	11	00
10	10	01	00	00	11
11	11	00	10	00	01

Constructing Transition Tables from Excitation Tables

- The transition table is constructed as the result of substituting excitation expressions into the flip-flop characteristic equations.
- An alternative approach:
 - First construct the excitation table directly from the excitation and output expressions.

Constructing Transition Tables from Excitation Tables

- Consider entry in fourth column, first row of 7.2 excitation table:
 - $-J_1 K_1, J_2 K_2 = 11,10$

- Present state:
$$Q_1Q_2 = 00$$

- So due to behavior of JK-flip-flop next state is: $Q^{+}_{1} = 1, Q^{+}_{2} = 1.$

State Tables

- State table consists of three sections:
 - Present state
 - Next state
 - Output
- Actual binary codes used to represent the states are not important.
- Alphanumeric symbols can be assigned to represent these states.
- State table is essentially a relabeling of the transition table.

State Tables

Present state (Q_1Q_2)	Next (Q_1^+)	state Q_2^+)	Ou (tput z)
	Inpu	ut (x)	Inp	ut (x)
	0	1	0	1
00	10	01	0	1
01	11	11	0	0
10	10	00	1	0
11	00	00	1	θ

Table 7.5	State ta	ble for	Example	7.1
-----------	----------	---------	---------	-----

Present state	Next	state	Output (z)		
	Input (x)		Input (x)		
	0	1	0	1	
$00 \rightarrow A$	С	В	0	1	
$01 \rightarrow B$	D	D	0	0	
$10 \rightarrow C$	С	Α	1	0	
$11 \rightarrow D$	Α	Α	1	0	

State Tables

Present state (Q_1Q_2)		Nex (Q)	t state ${}^{+}Q_{2}^{+}$)		Output (z ₁ z ₂)
		Inpu	its (xy)		
	00	01	10	11	
00	00	10	01	11	01
01	01	11	00	11	00
10	10	01	00	00	11
11	11	00	10	00	01

Table 7.6	State	table	for	Example	7.2
-----------	-------	-------	-----	---------	-----

Present state	Next state				Output (z_1z_2)
		Inputs	(<i>xy</i>)		
	00	01	10	11	
$00 \rightarrow A$	A	С	В	D	01
$01 \rightarrow B$	В	D	Α	D	00
$10 \rightarrow C$	C	В	A	Α	11
$11 \rightarrow D$	D	A	С	Α	01

State Diagrams

- Graphical representation of the state table.
 - Each state is represented by a labeled node.
 - Directed branches connect the nodes to indicate transitions between states.
 - Directed branches are labeled according to the values of the external input variables.
 - Outputs of the sequential network are also entered on a state diagram.
- Mealy network:
 - Outputs appear on the directed branches along with the external inputs.
- Moore network:
 - Outputs are included within the nodes along with their associated states.

State Diagrams

