Digital Logic Design ENEE 244-010x

Lecture 22

Announcements

- Make sure you are up-to-date with material covered last time (on 11/25).
- Homework 9 up on course webpage, due on Monday, 12/7

- Final homework assignment

- Please fill out Course Evaluations online.
 - Class time on Monday, 12/7
 - Make sure to bring in laptop, phone, etc.

Agenda

- Last Time:
 - Modeling Clocked Synchronous Sequential Network Behavior (7.3)
 - Started State Table Reduction (7.4)
- This time:
 - Quick review of state diagrams (7.3)
 - State Table Reduction (7.4)
 - The State Assignment (7.5)
 - Completing the Design of Clocked Synchronous Sequential Networks (7.6)

Modeling clocked synchronous sequential network behavior

- Approach for the synthesis of clocked synchronous sequential networks:
 - State table/state diagram is constructed from word specifications.
 - State reduction technique to obtain a state table with minimum number of states.
 - Transition table is formed by coding the states of the state table.
 - Excitation table is constructed based on the flip-flop types to be used.
 - From the excitation table, the excitation and output expressions for the network are determined.
 - Finally, the logic diagram is drawn.

Examples of Modeling Step

State Diagram for Mealy serial binary adder

Figure 7.12 Obtaining the state diagram for a Mealy serial binary adder. (a) Partial state diagram. (b) Completed state diagram.

- Network produces a 1 output iff the current input and the previous three inputs correspond to 010.
- 010 Sequence Recognizer
- The 1 output is to occur at the time of the third input of the recognized sequence. Outputs of 0 are to be produced at all other times.
- A Mealy network model is developed since the output is a function of the current input x.
- Network is not required to reset upon the occurrence of the fourth input.
- Sequences may overlap.

Determining Equivalent Pairs of States

Theorem:

Two states p and q of a clocked synchronous sequential network are equivalent iff for each combination of values of the input variables

- 1. Their outputs are identical
- 2. Their next states are equivalent

Algorithm for Determining Equivalent Pairs of States

• Uses an implication table

 q_1, \ldots, q_n are the states of the state table. There is one cell in the implication table for each pair of distinct cells.

Algorithm for Determining Equivalent Pairs of States

- 1. Place a \times in the (q_i, q_j) -cell if the outputs are contradictory for some input. If there are no contradictory outputs then enter the pair of next states for each input. If neither a \times nor pairs of states are entered in the cell, then a check mark is inserted (denoting equivalence of the two states).
- 2. All state pair entries are inspected by the following process:
 - If (q_a, q_b) is an entry in the (q_i, q_j) -cell and if the (q_a, q_b) -cell contains an \times then an \times is placed in the the (q_i, q_j) -cell and all other entries are ignored.
 - Otherwise, process is repeated on one of these other state pairs.
 - **Next-state pairs of the form $(q_i, q_j), (q_j, q_i)$ or (q_k, q_k) are not entered.
- 3. Repeat Step 2 until it is possible to make an entire pass of the implication table without any additional × being entered. If the (q_i, q_j) -cell has no × at this time, then $q_i \equiv q_j$.

Example of Algorithm

 Table 7.13
 Example of a state table in which state reduction can be performed

Present state	Next state Input (x)		Output (z) Input (x)		
	*A	A	В	0	0
В	D	С	0	1	
С	F	E	0	0	
D	D	F	0	0	
E	В	G	0	0	
F	G	С	0	1	
G	Α	F	0	0	

Example for Implication Table

1. (D,G) 2. (D,G),(B,F) 3. (A,D,G),(B,F) 4. (A,D,G),(B,F),(C),(E)

Constructing the Minimal State Table

Table 7.13	Example of a state table in which state reduction can be performed					
Present state	Next state Input (x)		Output (z) Input (x)			
						0
	*A	A	В	0	0	
В	D	С	0	1		
С	F	E	0	0		
D	D	F	0	0		
E	B	G	0	0		
F	G	C	0	1		
G	A	F	0	0		

Table 7.14 Minimal state table for Table 7.13

Present state	Next state Input (x)		Output (z) Input (x)		
		0	1	0	1
(A,D,G):	*α	α	β	0	0
(B,F):	β	α	γ	0	1
(C):	γ	β	δ	0	0
(E):	δ	β	α	0	0