Digital Logic Design ENEE 244-010x

Lecture 23

Announcements

 Homework 9 up on course webpage, due on Monday, 12/7

- Final homework assignment

- Please fill out Course Evaluations online.
 - Class time on Monday, 12/7
 - Make sure to bring in laptop, phone, etc.

Agenda

- Last Time:
 - State Table Reduction (7.4)
 - The State Assignment Problem (7.5)
- This Time:
 - Finish The State Assignment Problem (7.5)
 - Completing the Design of Clocked Synchronous Sequential Networks (7.6)

Modeling clocked synchronous sequential network behavior

- Approach for the synthesis of clocked synchronous sequential networks:
 - State table/state diagram is constructed from word specifications.
 - State reduction technique to obtain a state table with minimum number of states.
 - Transition table is formed by coding the states of the state table.
 - Excitation table is constructed based on the flip-flop types to be used.
 - From the excitation table, the excitation and output expressions for the network are determined.
 - Finally, the logic diagram is drawn.

Last time we left off. . .

Table 7.17	Illustrations of state assignments. (a) State table. (b) Transition table for
	state assignment in binary order. (c) Transition table for state assignment
	based on guidelines

Present state	Next	state	Out	put (z)	
	Inpu	t (x)	Inp	ut (x)	an and
	0	1	0	1	
*A	Α	В	0	0	
В	В	С	0	0	
С	D	E	0	0	
D	F	G	1	0	
Ε	С	В	0	1	
F	D	H	1	0	
G	В	С	0	1	
H	F	G	0	0	

Next Step:

Constructing Transition Table from State Table

- A binary code representation for the states of the state table is selected.
- This is referred to as the state-assignment problem.
- Different state assignments result in realizations of different costs.
 - We want to find a state assignment that minimizes the cost of the network realization.

State Assignment

- If there are s states to be coded, the minimum number of binary digits p required is the smallest integer greater than or equal to the base-2 logarithm of s.
- This guarantees minimal number of flip-flops but not necessarily minimum cost realization.
- Even using the minimum binary digits the state assignment problem is not necessarily simple.
 - There are $2^{p}!/(2^{p} s)!$ Ways of assignming a unique binary code of p digits to the s states.
 - For a six-row state table in which 3 binary digits are used to code each state, there are 20,160 different state assignemnts.

Simplest Approach

 Use the first s binary integers as the binary-code representation of the s states.

Table 7.17	Illustrations of state assignments. (a) State table. (b) Transition table for
	state assignment in binary order. (c) Transition table for state assignment
	based on guidelines

Present state	Next	state	Out	put (z)	
	Inpu	it (x)	Inp	ut (x)	
	0	1	0	1	
*A	Α	В	0	0	
В	В	С	0	0	
C	D	E	0	0	
D	F	G	1	0	
E	С	В	0	1	
F	D	Н	1	0	
G	В	С	0	1	
H	F	G	0	0	

Present state $(Q_1Q_2Q_3)$	Next $(Q_1^+Q_2^+)$	state $Q_2^+Q_3^+$)	Ou	tput (z)
	Inpu	tt (x)	Inp	ut (x)
	0	1	0	1
$*A \rightarrow 000$	000	001	0	0
$B \rightarrow 001$	001	010	0	0
$C \rightarrow 010$	011	100	0	0
$D \rightarrow 011$	101	110	1	0
$E \rightarrow 100$	010	001	0	1
$F \rightarrow 101$	011	111	1	0
$G \rightarrow 110$	001	010	0	1
$H \rightarrow 111$	101	110	0	0

Guidelines for Obtaining State Assignments

- Define two states as being adjacent if their binary codes differ in exactly one bit.
- Two input combinations are adjacent if they differ in exactly one bit.

Guidelines for Obtaining State Assignments

- Rule I: Two or more present states that have the same next state for a given input combination should be made adjacent.
- Rule II: For any present state and two adjacent input combinations, the two next states should be made adjacent.
- Rule III: Two or more present states that produce the same output symbol, for a given input combination should be made adjacent (only needs to be done for one of the two output symbols).

Rationale for Guidelines

- *n* input variables *p* state variables.
- Consider (n + p)-variable K-maps for each bit of next state and output.
- Rule I: provide for large subcubes on K-map by causing identical entries to appear in adjacent cells.
- Rule II: Cells in K-map will be the same for p-1 of the maps corresponding to bits of the state.
- Rule III: Does to the output maps what Rule I does to the next-state maps.

Example

Table 7.17	Illustrations of state assignments. (a) State table. (b) Transition table for
	state assignment in binary order. (c) Transition table for state assignment
	based on guidelines

Present state	e Next state		Out	put (z)	
	Inpu	nt (x)	Inp	ut (x)	
	0	1	0	1	
*A	Α	В	0	0	
В	В	С	0	0	
С	D	E	0	0	
D	F	G	1	0	
Ε	С	B	0	1	
F	D	H	1	0	
G	В	С	0	1	
Н	F	G	0	0	
	1	(a)	. 5	3	

State B is the next state
for both present states
B, G when x = 0. Rule 1:
B, G should be adjacent.

- States *C*, *F* should be coded as adjacent states since their next states are both state *D*.
- States *D*, *H* should be coded as adjacent states since their next states are both *F*.

Rule I: $(B, G)(2 \times), (C, F), (D, H)(2 \times), (A, E)$

 $(2 \times)$ indicates that the recommended adjacency conditions appear twice and should be given higher priority than those that appear only once.

Example

Table 7.17 Illustrations of state assignments. (a) State table. (b) Transition table for state assignment in binary order. (c) Transition table for state assignment based on guidelines

Present state	Next	state	Out	put (z)	
	Inpu	it (x)	Inp	ut (x)	1
	0	1	0	1	
*A	Α	В	0	0	
В	В	С	0	0	
С	D	E	0	0	
D	F	G	1	0	
Ε	С	В	0	1	
F	D	H	1	0	
G	В	С	0	1	
Н	F	G	0	0	
		(a)			

Next consider Rule II:

 Since x = 0, x = 1 are adjacent, the next-state pair for each present state should be made adjacent according to Rule II.

Rule II: $(A, B), (B, C)(3 \times), (D, E), (F, G)(2 \times), (D, H)$

Example

Table 7.17 Illustrations of state assignments. (a) State table. (b) Transition table for state assignment in binary order. (c) Transition table for state assignment based on guidelines

Present state	resent state Next st		Out	put (z)	
	Inpu	nt (x)	Inp	ut (x)	1-1-4
	0	1	0	1	
*A	Α	В	0	0	
В	В	С	0	0	
С	D	E	0	0	
D	F	G	1	0	
E	С	B	0	1	
F	D	H	1	0	
G	В	С	0	1	
Н	F	G	0	0	

Next consider Rule III: Look at present states that produce output symbol 1 on the same input.

Rule III: (D, F), (E, G)

 K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

I.S.

• (E,G)

 K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

Ι.				
	А	В	С	
		G		

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

	-	-	
A	В	C	
E	G		

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

Ι.				
	А	В	С	
	E	G		D

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

Ι.				
	А	В	С	
	E	G	F	D

K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

A	В	С	Н
E	G	F	D

 K-map for the state variables in which each cell of the map denotes a combination of the binary digits that can be assigned to a state of the sequential network.

Transition Table

• Using the state assignment map and state table, a transition table is constructed.

A state-assignment map for the state table of Table 7.17*a*.
 Table 7.17
 Illustrations of state assignments. (a) State table. (b) Transition table for state assignment in binary order. (c) Transition table for state assignment based on guidelines

Present state	Next	state	Out	put (z)	
	Inpu	t (x)	Input	ut (x)	
	0	1	0	1	
*A	A	В	0	0	
В	В	С	0	0	
C	D	E	0	0	
D	F	G	1	0	
E	С	В	0	1	
F	D	H	1	0	
G	В	С	0	1	
H	F	G	0	0	

Present state $(Q_1Q_2Q_3)$	Next $(Q_1^+Q_2^+)$	state $Q_2^+Q_3^+$)	Ou	itput (z)
	Input (x)		Input (x)	
	0	1	0	1
$*A \rightarrow 000$	000	001	0	0
$B \rightarrow 001$	001	011	0	0
$C \rightarrow 011$	110	100	0	0
$D \rightarrow 110$	111	101	1	0
$E \rightarrow 100$	011	001	0	1
$F \rightarrow 111$	110	010	1	0
$G \rightarrow 101$	001	011	0	1
$H \rightarrow 010$	111	101	0	0

Unused States

- With p bits, the number of states s that can be coded is given by $2^{p-1} < s \leq 2^p$
- In general, when coding s states with p bits some binary combinations are not assigned to any state.

Unused States

- Approach 1:
 - The corresponding entries in the K-maps are don't cares.
 - This provides greater flexibility when obtaining minimal expressions for next-state and output functions.
- Approach 2:
 - The network may enter one of the unused states (when first turned on, due to noise, hardware failure, etc.)
 - It may be desirable that the network go to some welldefined state at the end of the clock period.
 - Next state entries for each of the unused states should be specified.

Illustrating Approach 1

Present state	Next	t state	Out	put (2
	Inpu	ut (x)	Inp	ut (x)
	0	1	0	1
*A	A	В	0	0
В	C	D	1	0
С	A	D	0	1
D	E	Α	1	1
Е	C	В	0	0
	(<i>a</i>)		
Present state $(Q_1 Q_2 Q_3)$	Next $(Q_1^+Q_2^+)$	state $2^+_2Q^+_3$)	Outr (z)	out)
Present state $(Q_1Q_2Q_3)$	Next (Q ⁺ ₁ Q Inpu 0	state $\frac{2}{2}Q_3^+$ at (x) 1	Outr (z) Inpu 0	out) ut (<i>x</i>) 1
Present state $(Q_1Q_2Q_3)$ $A \longrightarrow 000$	Next (Q1Q Inpu 0 000	state $\frac{2}{2}Q_3^+$) at (x) 1 001	Outp (z) Inpt 0	ut(x)
Present state $(Q_1Q_2Q_3)$ $A \longrightarrow 000$ $B \longrightarrow 001$	Next (Q1Q Inpu 0 000 010	state $P_2^+Q_3^+)$ at (x) 1 001 011	Outp (z) Inpt 0 1	out ut (<i>x</i>) 1 0 0
Present state $(Q_1Q_2Q_3)$ $A \longrightarrow 000$ $B \longrightarrow 001$ $C \longrightarrow 010$	Next (Q1Q 0 000 010 000	state $2^{2}Q_{3}^{+})$ at (x) 1 001 011 011	Outr (z) Inpu 0 1 0	out) 1 0 0 1
Present state $(Q_1Q_2Q_3)$ $A \rightarrow 000$ $B \rightarrow 001$ $C \rightarrow 010$ $D \rightarrow 011$	Next (Q ⁺ _I Q Inpu 0 000 010 000 100	state $p_2^+Q_3^+)$ at (x) 1 001 011 011 000	Outr (z) Inpu 0 1 0 1 0	out 1 0 0 1 1
Present state $(Q_1Q_2Q_3)$ $A \rightarrow 000$ $B \rightarrow 001$ $C \rightarrow 010$ $D \rightarrow 011$ $E \rightarrow 100$	Next (Q ⁺ ₁ Q 000 010 000 100 010	state $P_2^+Q_3^+)$ at (x) 1 001 011 011 011 000 001	Cutp (z) Inpu 0 1 0 1 0	out 1 0 0 1 1 0
Present state $(Q_1Q_2Q_3)$ $A \rightarrow 000$ $B \rightarrow 001$ $C \rightarrow 010$ $D \rightarrow 011$ $E \rightarrow 100$ 101	Next (Q ⁺ ₁ Q 000 010 000 100 010 -	state $P_2^+Q_3^+)$ at (x) 1 001 011 011 000 001 -	Outr (z) Inpr 0 1 0 1 0 -	but (x) 1 0 0 1 1 0 -
Present state $(Q_1Q_2Q_3)$ $A \rightarrow 000$ $B \rightarrow 001$ $C \rightarrow 010$ $D \rightarrow 011$ $E \rightarrow 100$ 101 110	Next (Q ⁺ ₁ Q 0 000 010 000 100 010 -	state $\frac{y_2^*Q_3^*)}{1}$ $\frac{1}{001}$ 011 000 001 - -	Outr (z) Inpu 0 1 0 1 0 -	out 1 0 0 1 1 0 -
Present state $(Q_1Q_2Q_3)$ $A \rightarrow 000$ $B \rightarrow 001$ $C \rightarrow 010$ $D \rightarrow 011$ $E \rightarrow 100$ 101 110 111	Next (Q1+Q 0 000 010 000 100 010 	state $P_2^+Q_3^+)$ at (x) 1 001 011 011 000 001 - - - -	Outp (z) Inpu 0 1 0 1 0 - - -	but (x) 1 0 0 1 1 0 - - -

Illustrating Approach 2

Present state $(Q_1Q_2Q_3)$	Next (Q_1^+)	t state $Q_2^*Q_3^*$)	Out (;	tput z)
	Inpu 0	11 (x) 1	Inp 0	ut (x) 1
$A \rightarrow 000$	000	001	0	0
B → 001	010	011	1	0
C -+ 010	000	011	0	1
$D \rightarrow 011$	100	000	1	1
E → 100	010	001	0	0
101	000	000	0	0
110	000	000	0	0
111	000	000	0	0

(d)

Completing the Design

- Choose which type of clocked flip-flops should be used for memory.
- Depending on this choice, appropriate excitation signals must be generated by the combinational logic that precedes the input terminals of the flip-flops.
- Excitation table can be constructed from transition table once flip-flop type is selected.

Application tables for Flip-Flops

Q	Q^+	D	Q	Q^+	J	K
0	0	0	0	0	0	_
0	1	1	0	1	1	-
1	0	0	1	0	-	1
1	1	1	1	1	_	0
	<i>(a)</i>			(<i>b</i>)	
Q	Q^+	Т	Q	Q^+	S	R
0	0	0	0	0	0	_
0	1	1	0	1	1	0
1	0	1	1	0	0	1
1	1	0	1	1	_	0
	()			(

the second barries birth and the second state of the second state of the second state of the second state of the

From Transition Table to Excitation Table

Present state $(Q_1 Q_2 Q_3)$	Next $(Q_1^+Q_2^+)$	state $2^+_2Q^+_3$)	Outp (z)	put)
	Inpu 0	at (x) 1	Inp 0	ut (x) 1
A → 000	000	001	0	0
$B \longrightarrow 001$	010	011	1	0
$C \longrightarrow 010$	000	011	0	1
D → 011	100	000	1	1
<i>E</i> → 100	010	001	0	0
101	-		-	-
110	-	_	-	-
111	-	=	-	-
	(b))	5	

Q	Q^+	J	K	
0	0	0	-	
0	1	1	-	
1	0	-	1	
1	1	_	0	
	(<i>b</i>)		

Present state $(Q_1Q_2Q_3)$	Excita (J_1K_1, J_2)	Output (z)		
	Inpu	Input (x) Input		
	0	1	0	1
000	0-, 0-, 0-	0-, 0-, 1-	0	0
001	0-, 1-, -1	0-, 1-, -0	1	0
010	0-, -1, 0-	0-, -0, 1-	0	1
011	1-, -1, -1	0-, -1, -1	1	1
100	-1, 1-, 0-	-1, 0-, 1-	0	0

K-Maps for Excitation and Output

Completing the Design with D-flip-flops

$$J_1 = Q_2 Q_3 \overline{x}$$

$$K_1 = 1$$

$$J_2 = Q_3 + Q_1 \overline{x}$$

$$K_2 = Q_3 + \overline{x}$$

$$J_3 = x$$

$$K_3 = Q_2 + \overline{x}$$

$$z = Q_2 x + Q_3 \overline{x}$$