Digital Logic Design ENEE 244-010x

Lecture 24

Announcements

- Homework 9 due today
- Thursday Office Hours $(12 / 10)$ from $2: 30-4 \mathrm{pm}$
- Course Evaluations at the end of class today.
- https://www.courseevalum.umd.edu/
- Log in with directory id and password
- Final exam info:
- Wednesday, Dec. 16 1:30-3:30pm in EGR 1108 (our regular classroom).
- Review session next class and during Thursday's recitation
- Information about final exam and review problems for the review sessions will be up on course webpage by tonight.

Agenda

- Last Time:
- The State Assignment Problem (7.5)
- Completing the Design of Clocked Synchronous Sequential Networks (7.6)
- This Time:
- Synchronous Sequential network design using PLDs (7.6)
- Algorithmic State Machines (8.1-8.2)

Realizations of Synchronous Sequential Networks using PLDs

Figure 7.31 General structure of a clocked sequential network realization using a PLD and clocked D flip-flops.

PROM Realization

PROM Realization

Table 7.19 Excitation table involving D flip-flops corresponding to the transition table of Fig. 7.25b

Present state $\left(Q_{1} Q_{2} Q_{3}\right)$	Excitation $\left(D_{1} D_{2} D_{3}\right)$		Output (z)	
	Input (\boldsymbol{x})		$\mathbf{1}$	$\mathbf{0}$
000	0	001	0	$\mathbf{1}$
001	000	011	1	0
010	010	011	0	1
011	000	000	1	1
100	100	001	0	0

Table 7.22 Truth table corresponding to the transition table of Fig. 7.25 b

\boldsymbol{x}	Q_{1}	Q_{2}	Q_{3}	\boldsymbol{D}_{1}	\boldsymbol{D}_{2}	\boldsymbol{D}_{3}	\boldsymbol{z}
0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	1
0	0	1	0	0	0	0	0
0	0	1	1	1	0	0	1
0	1	0	0	0	1	0	0
0	1	0	1	-	-	-	-
0	1	1	0	-	-	-	-
0	1	1	1	-	-	-	-
1	0	0	0	0	0	1	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	0
1	1	0	1	-	-	-	-
1	1	1	0	-	-	-	-
1	1	1	1	-	-	-	-

PLA Realization

Figure 5.59 General structure of a PLA having true and complemented output capability.

Product term	Inputs			Outputs	
	\boldsymbol{x}	y	z	f_{1}	f_{2}
- $x \bar{y}$	1	0	-	1	1
$x \bar{z}$	1	-	0	1	-
$\bar{y} \bar{z}$	-	0	0	1	-
$y z$	-	1	1	-	1
			T/C	C	C

PLA Realization

$$
\begin{gathered}
D_{1}=Q_{2} Q_{3} \bar{x} \\
D_{2}=\bar{Q}_{2} Q_{3}+Q_{1} \bar{x}+Q_{2} \bar{Q}_{3} x \\
D_{3}=\bar{Q}_{3} x+\bar{Q}_{2} x \\
z=Q_{2} x+Q_{3} \bar{x}
\end{gathered}
$$

Table 7.23 PLA table for Eqs. (7.24) to (7.27)

Product term	Inputs				Outputs			
	Q_{1}	Q_{2}	Q_{3}	x	D_{1}	D_{2}	D_{3}	z
$Q_{2} Q_{3} \bar{x}$	-	1	1	0	1	-	-	-
$\bar{Q}_{2} Q_{3}$	-	0	1	-	-	1	-	-
$Q_{1} \bar{x}$	1	-	-	0	-	1	-	-
$Q_{2} \bar{Q}_{3} x$	-	1	0	1	-	1	-	-
$\bar{Q}_{3} x$	-	-	0	1	-	-	1	-
$\bar{Q}_{2} x$	-	0	-	1	-	-	1	-
$Q_{2} x$	-	1	-	1	-	-	-	1
$Q_{3} \bar{x}$	-	-	1	0	-	-	-	1

PLA Realization

Final Topic:

Algorithmic State Machines

- Previous chapter dealt with the classical approach to clocked synchronous sequential network design
- Used models of Mealy and Moore
- Also called Finite State Machines
- Algorithmic State Machines (ASM)
- Different approach to clocked synchronous network design
- Approach is higher-level
- Uses flow-charts as in high-level programming
- We explicitly name and use variables!
- Capable of handling more complex systems

Algorithmic State Machine

- Partitions the system into two entities:
- Controller
- Controlled architecture (data processor)
- Data processor includes:
- Flip-flops, shift registers, counters, adders/subtractors, comparators, etc.
- Controller supplies a time sequence of commands to the devices of the data processer
- E.g. shift left, shift right, add, subtract, increment, reset.
- Data processor supplies information about the status of its various devices.
- The controller is a hardware algorithm (thus is called an algorithmic state machine (ASM).

Figure 8.1 Partitioning of a digital system.

Model of an ASM

Mealy

ASM Charts
 Components

- State Box:

Figure 8.4 The state box.

The state output list contains output variables that are only a function of the state. Such variables that have logic-1 value are placed in this box.

- Decision Box

ASM Charts
 Components

- Conditional Output Box:

The conditional output list contains output variables that are a function of the state and external inputs. Such variables that have logic-1 value are placed in this box.

ASM Blocks

- Consists of the interconnection of a single state box along with a collection of decision and conditional output boxes.
- One entry path, one or more exit paths leading to another state box.
- A path through an ASM block from its state box to an exit path is called a link path.

Figure 8.7 Example of an ASM block and its link paths.

Rules for ASM blocks

- For any valid combination of values to the decision-box variables, all simultaneously selected link paths must lead to the same exit path.
- i.e. next state is uniquely determined
- There can be no closed loops that do not contain at least one state box
- State box is the only component that is time dependent.

Simple ASM Charts

Figure 8.13 ASM chart for a mod-8 binary counter.

From State Diagram to ASM Chart

Figure 8.15 Moore sequential network. (a) State diagram. (b) ASM chart.

From State Diagram to ASM Chart

Figure 8.16 Mealy sequential network. (a) State diagram. (b) ASM chart

Material after this slide is NOT on the
Final Exam

Examples of ASM Charts

A Sequence Recognizer

- Recognize input sequence of pairs

$$
x_{1} x_{2}=01,01,11,00
$$

- An output z is to be 1 when $x_{1} x_{2}=00$ if and only if the three preceding pairs of inputs are

$$
x_{1} x_{2}=01,01,11
$$

in that order.

A Sequence Recognizer

Figure 8.17 ASM chart to recognize the sequence $x_{1} x_{2}=01,01,11,00$

A Parallel Binary Multiplier

Figure 8.18 Binary multiplication. (a) Pencil-and-paper approach. (b) Add-shift approach.

A Parallel Binary Multiplier

> Variables:
> $S=1$ indicates the multiplication is to start M_{1} is the multiplier bit appearing at the rightmost end of register M. $Z=1$ indicates the content of the counter is 0 .
INIT = 1 indicates initialization should be performed:

1. Setting flip-flop C and register A to 0
2. Setting counter to the number of bits in the multiplier, N
3. Parallel loading the multiplier and multiplicand into registers M, B.

DECREM = 1 enables the counter for decrementing
ADD $=1$ indicates A and B should be added and resulting $N+1$ bits
entered into register A and flip-flop C
SR = 1 indicates the contents of flip-flop C, register A and register M should be shifted one bit position to the right while entering a 0 into flip-flop C.
COMPLETE $=1$ indicates the multiplication process is complete.

A Parallel Binary Multiplier

Variables:

$S=1$ indicates the multiplication is to start M_{1} is the multiplier bit appearing at the rightmost end of register M.
$Z=1$ indicates the content of the counter is 0 .
INIT = 1 indicates initialization should be performed:

1. Setting flip-flop C and register A to 0
2. Setting counter to the number of bits in the multiplier,

N
3. Parallel loading the multiplier and multiplicand into registers M, B.
DECREM = 1 enables the counter for decrementing ADD $=1$ indicates A and B should be added and resulting
$\mathrm{N}+1$ bits entered into register A and flip-flop C
SR = 1 indicates the contents of flip-flop C, register A and register M should be shifted one bit position to the right while entering a 0 into flip-flop C.
COMPLETE $=1$ indicates the multiplication process is complete.

