ENEE244-010x
 Digital Logic Design

Lecture 2

Announcements

- Check updated UTF Office Hours on Syllabus/Webpage
- First homework assigned (see course webpage). Due date: Sept. 9 in class.
- Readings now up on course webpage
- First recitation is tomorrow (Thursday)!

Agenda

- Last time:
- Positional Number Systems (2.1)
- Basic Arithmetic Operations (2.3)
- Polynomial Method of Number Conversion (2.4)
- This time:
- Polynomial Method of Number Conversion (2.4)
- Iterative Method of Number Conversion (2.5)
- Special Conversion Procedures (2.6)
- Signed numbers and Complements
- Addition and Subtraction with Complements

Polynomial method of number conversion

- Convert from base r_{1} to base r_{2}
- Express number as polynomial in base r_{1}

$$
-N=d_{2} \times r_{1}^{2}+d_{1} \times r_{1}^{1}+d_{0} \times r_{1}^{0}
$$

- Switch each digit symbol d_{i} to its base r_{2} representation and each base symbol r_{1} to its base r_{2} representation.
- Evaluate the polynomial in base r_{2}.

Polynomial Method of Number Conversion

- Example: convert from hexadecimal to decimal
- Hexadecimal number: C53B

$$
\begin{aligned}
- & C 53 B=C \times\left(10_{(16)}\right)^{3}+5 \times\left(10_{(16)}\right)^{2}+3 \times\left(10_{(16)}\right)^{1}+ \\
& B \times\left(10_{(16)}\right)^{0} \\
- & C 53 B=(12) \times(16)^{3}+(5) \times(16)^{2}+(3) \times(16)^{1}+ \\
& (11) \times(16)^{0} \\
- & C 53 B=50491
\end{aligned}
$$

- **Use this method when converting a number into decimal form (e.g. binary to decimal)
- Why?

Iterative Method of Number

Conversion

- Convert from base r_{1} to base r_{2}.
- Perform repeated division by r_{2}. The remainder is the digit of the base r_{2} number.
- Example: Convert 50 from decimal to binary
- Divide 50 by 2, get 25 remainder 0
- Divide 25 by 2, get 12 remainder 1
- Divide 12 by 2 , get 6 remainder 0
- Divide 6 by 2 , get 3 remainder 0
- Divide 3 by 2 , get 1 remainder 1
- Divide 1 by 2 , get 0 remainder 1
- Answer is: 110010
- Can verify using the polynomial method
- **Use when converting from decimal to another base. (e.g. decimal to binary)
- Why?

Iterative Method for Converting Fractions

- Convert from base r_{1} to base r_{2}.
- Perform repeated multiplication by r_{2}. The integer part is the digit of the base r_{2} number.
- Ex: Convert . 40625 from decimal to binary
- Multiply .40625 by 2 , get $0+.8125$
- Multiply .8125 by 2 , get $1+.625$
- Multiply .625 by 2 , get $1+.25$
- Multiply .25 by 2 , get $0+.5$
- Multiply .5 by 2, get $1+0$
- Answer is: . 01101
- Can verify using the polynomial method

Special Conversion Procedures

- When converting between two bases in which one base is a power of the other, conversion is simplified.
- Ex: Convert from 1101011011111001 from binary to hexadecimal:
$-1101=13=\mathrm{D}$
$-0110=6$
$-1111=15=F$
$-1001=9$
- Answer: D6F9

Signed Numbers and Complements

Range of represented numbers

- Let ℓ be the number of binary digits that can be stored.
- Example: Store data in a single byte (8 bits).
- Using a single byte can represent unsigned numbers from 0 to $255\left(2^{8}=256\right.$ different values).
- Alternatively, can represent the signed numbers from -128 to 127 in same amount of space ($2^{7}=128$).

Signed Numbers and Complements

- How to denote if a number is positive or negative?
- Use a sign bit: $0_{s} 1001$ denotes positive $9,1_{s} 1001$ denotes negative 9. This representation is called the signmagnitude representation.
- This works, but it will be convenient to use a different representation of negative numbers.
- Two methods: 2's complement and 1's complement.
- Idea: Subtraction is hard! Addition is easy!
- Convert every subtraction problem to an addition problem
- Example: Instead of computing 01000101 - 00110100, instead compute $01000101+(-00110100)$.

2's Complement

- 2's complement of $N=2^{\ell}-N=(10)_{2}{ }^{\ell}-N$
- In our example (one byte of memory), to represent -9 , (where $9=1001$ in binary), compute $\left(10_{2}\right)^{8}-1001=100000000-$ $1001=11110111$

1's Complement

- 1 's complement of $N=2^{\ell}-1-N=$ $\left(10_{2}\right)^{\ell}-1-N$
- In our example, to represent -9 , (where $9=$ 1001 in binary), compute $\left(10_{2}\right)^{8}-1-$ $1001=11111111-1001=11110110$
- This corresponds to flipping the bits of 00001001.

In-Class Exercise

- Subtraction using 2's complement, 1's complement

2's Complement

- Notice for negative numbers, most significant bit is always 1 . For positive numbers, most significant bit is always 0 .
- This bit is therefore called the sign bit.

Subtraction Using 2's Complement

- Just do addition as usual
- Ignore highest order carry
- Aside: This is equivalent to doing arithmetic modulo 2^{ℓ}.

1's Complement

- Again, for negative numbers, nth digit is always 1. For positive numbers, nth digit is always 0.
- There are now two ways to represent 0: 00000000 or 11111111

Subtraction using 1's complement

- Do addition as usual
- If there is an end carry, add it to the least significant bit.
- Most significant bit tells you the sign.

Fast(er) way to compute 2's complement

- To form the 2's complement of 0110 1010:
- Take the 1s complement: 10010101
- Then add 1: 10010110

Advantages/Disadvantages of 1's vs. 2's complement

1s complement	2s complement
Easy to compute (just flip bits)	Harder to compute (flip bits and add one)
Harder to manipulate (e.g., for subtraction, need to add in extra carry.)	Easy to manipulate (e.g., subtraction is the same as addition-no extra hardware needed)

