
ENEE244-010x
Digital Logic Design

Lecture 2

Announcements

• Check updated UTF Office Hours on
Syllabus/Webpage

• First homework assigned (see course
webpage). Due date: Sept. 9 in class.

• Readings now up on course webpage

• First recitation is tomorrow (Thursday)!

Agenda

• Last time:
– Positional Number Systems (2.1)

– Basic Arithmetic Operations (2.3)

– Polynomial Method of Number Conversion (2.4)

• This time:
– Polynomial Method of Number Conversion (2.4)

– Iterative Method of Number Conversion (2.5)

– Special Conversion Procedures (2.6)

– Signed numbers and Complements

– Addition and Subtraction with Complements

Polynomial method of number
conversion

• Convert from base 𝑟1 to base 𝑟2

• Express number as polynomial in base 𝑟1

– 𝑁 = 𝑑2 × 𝑟1
2 + 𝑑1 × 𝑟1

1 + 𝑑0 × 𝑟1
0

• Switch each digit symbol 𝑑𝑖 to its base
𝑟2representation and each base symbol 𝑟1to
its base 𝑟2 representation.

• Evaluate the polynomial in base 𝑟2.

Polynomial Method of Number
Conversion

• Example: convert from hexadecimal to decimal

• Hexadecimal number: C53B

– 𝐶53𝐵 = 𝐶 × 10 16
3

+ 5 × 10 16
2

+ 3 × 10 16
1

+

𝐵 × 10 16
0

– 𝐶53𝐵 = 12 × 16 3 + 5 × 16 2 + 3 × 16 1 +
11 × 16 0

– 𝐶53𝐵 = 50491

• **Use this method when converting a number into
decimal form (e.g. binary to decimal)

• Why?

Iterative Method of Number
Conversion

• Convert from base 𝑟1to base 𝑟2.
• Perform repeated division by 𝑟2. The remainder is the digit

of the base 𝑟2 number.
• Example: Convert 50 from decimal to binary

– Divide 50 by 2, get 25 remainder 0
– Divide 25 by 2, get 12 remainder 1
– Divide 12 by 2, get 6 remainder 0
– Divide 6 by 2, get 3 remainder 0
– Divide 3 by 2, get 1 remainder 1
– Divide 1 by 2, get 0 remainder 1

• Answer is: 110010
• Can verify using the polynomial method
• **Use when converting from decimal to another base. (e.g.

decimal to binary)
• Why?

Iterative Method for Converting
Fractions

• Convert from base 𝑟1to base 𝑟2.
• Perform repeated multiplication by 𝑟2. The

integer part is the digit of the base 𝑟2 number.
• Ex: Convert .40625 from decimal to binary

– Multiply .40625 by 2, get 0 + .8125
– Multiply .8125 by 2, get 1 + .625
– Multiply .625 by 2, get 1 + .25
– Multiply .25 by 2, get 0 + .5
– Multiply .5 by 2, get 1 + 0

• Answer is: .01101
• Can verify using the polynomial method

Special Conversion Procedures

• When converting between two bases in which
one base is a power of the other, conversion is
simplified.

• Ex: Convert from 1101 0110 1111 1001 from
binary to hexadecimal:
– 1101 = 13 = D

– 0110 = 6

– 1111 = 15 = F

– 1001 = 9

• Answer: D6F9

Signed Numbers and Complements

Range of represented numbers

• Let ℓ be the number of binary digits that can
be stored.

• Example: Store data in a single byte (8 bits).

• Using a single byte can represent unsigned
numbers from 0 to 255 (28 = 256 different
values).

• Alternatively, can represent the signed
numbers from -128 to 127 in same amount of
space (27 = 128).

Signed Numbers and Complements

• How to denote if a number is positive or negative?
– Use a sign bit: 0𝑠1001 denotes positive 9, 1𝑠1001 denotes

negative 9. This representation is called the sign-
magnitude representation.

– This works, but it will be convenient to use a different
representation of negative numbers.

• Two methods: 2’s complement and 1’s complement.
– Idea: Subtraction is hard! Addition is easy!

– Convert every subtraction problem to an addition problem
• Example: Instead of computing 01000101 − 00110100, instead

compute 01000101 + (−00110100).

2’s Complement

• 2’s complement of 𝑁 = 2ℓ − 𝑁 = 10 2
ℓ

− 𝑁

• In our example (one byte of memory), to
represent -9, (where 9 = 1001 in binary),
compute 102

8 − 1001 = 100000000 −
1001 = 11110111

1’s Complement

• 1’s complement of 𝑁 = 2ℓ − 1 − 𝑁 =
(102)ℓ−1 − 𝑁

• In our example, to represent -9, (where 9 =
1001 in binary), compute 102

8 − 1 −
1001 = 11111111 − 1001 = 11110110

• This corresponds to flipping the bits of
00001001.

In-Class Exercise

• Subtraction using 2’s complement, 1’s
complement

2’s Complement

• Notice for negative numbers, most significant
bit is always 1. For positive numbers, most
significant bit is always 0.

• This bit is therefore called the sign bit.

Subtraction Using 2’s Complement

• Just do addition as usual

• Ignore highest order carry

• Aside: This is equivalent to doing arithmetic

modulo 2ℓ.

1’s Complement

• Again, for negative numbers, nth digit is
always 1. For positive numbers, nth digit is
always 0.

• There are now two ways to represent 0:
00000000 or 11111111

Subtraction using
1’s complement

• Do addition as usual

• If there is an end carry, add it to the least
significant bit.

• Most significant bit tells you the sign.

Fast(er) way to compute 2’s
complement

• To form the 2’s complement of 0110 1010:

– Take the 1s complement: 1001 0101

– Then add 1: 1001 0110

Advantages/Disadvantages of
1’s vs. 2’s complement

1s complement 2s complement

Easy to compute
(just flip bits)

Harder to compute
(flip bits and add one)

Harder to manipulate
(e.g., for subtraction, need to

add in extra carry.)

Easy to manipulate
(e.g., subtraction is the same

as addition—no extra
hardware needed)

