
ENEE244-010x 
Digital Logic Design 

Lecture 2 



Announcements 

• Check updated UTF Office Hours on 
Syllabus/Webpage 

• First homework assigned (see course 
webpage).  Due date:  Sept. 9 in class. 

• Readings now up on course webpage 

• First recitation is tomorrow (Thursday)! 



Agenda 

• Last time:   
– Positional Number Systems (2.1) 

– Basic Arithmetic Operations (2.3) 

– Polynomial Method of Number Conversion (2.4) 

• This time: 
– Polynomial Method of Number Conversion (2.4) 

– Iterative Method of Number Conversion (2.5) 

– Special Conversion Procedures (2.6) 

– Signed numbers and Complements  

– Addition and Subtraction with Complements  

 



Polynomial method of number 
conversion 

• Convert from base 𝑟1 to base 𝑟2 

• Express number as polynomial in base 𝑟1 

– 𝑁 = 𝑑2 × 𝑟1
2 + 𝑑1 × 𝑟1

1 + 𝑑0 × 𝑟1
0 

• Switch each digit symbol 𝑑𝑖  to its base 
𝑟2representation and each base symbol 𝑟1to 
its base 𝑟2 representation. 

• Evaluate the polynomial in base 𝑟2. 



Polynomial Method of Number 
Conversion 

• Example:  convert from hexadecimal to decimal 

• Hexadecimal number:  C53B 

– 𝐶53𝐵 = 𝐶 × 10 16
3

+ 5 × 10 16
2

+ 3 × 10 16
1

+

𝐵 × 10 16
0

 

– 𝐶53𝐵 = 12 × 16 3 + 5 × 16 2 + 3 × 16 1 +
11 × 16 0 

– 𝐶53𝐵 = 50491 

• **Use this method when converting a number into 
decimal form (e.g. binary to decimal) 

• Why? 



Iterative Method of Number 
Conversion 

• Convert from base 𝑟1to base 𝑟2. 
• Perform repeated division by 𝑟2.  The remainder is the digit 

of the base 𝑟2 number. 
• Example:  Convert 50 from decimal to binary 

– Divide 50 by 2, get 25 remainder 0 
– Divide 25 by 2, get 12 remainder 1 
– Divide 12 by 2, get 6 remainder 0 
– Divide 6 by 2, get 3 remainder 0 
– Divide 3 by 2, get 1 remainder 1 
– Divide 1 by 2, get 0 remainder 1 

• Answer is: 110010 
• Can verify using the polynomial method 
• **Use when converting from decimal to another base. (e.g. 

decimal to binary) 
• Why? 



Iterative Method for Converting 
Fractions 

• Convert from base 𝑟1to base 𝑟2. 
• Perform repeated multiplication by 𝑟2.  The 

integer part is the digit of the base 𝑟2 number. 
• Ex:  Convert .40625 from decimal to binary 

– Multiply .40625 by 2, get 0 + .8125  
– Multiply .8125 by 2, get 1 + .625 
– Multiply .625 by 2, get 1 + .25 
– Multiply .25 by 2, get 0 + .5 
– Multiply .5 by 2, get 1 + 0 

• Answer is: .01101 
• Can verify using the polynomial method 



Special Conversion Procedures 

• When converting between two bases in which 
one base is a power of the other, conversion is 
simplified. 

• Ex:  Convert from 1101 0110 1111 1001 from 
binary to hexadecimal: 
– 1101 = 13 = D 

– 0110 = 6 

– 1111 = 15 = F 

– 1001 = 9 

• Answer:  D6F9 



Signed Numbers and Complements 

 



Range of represented numbers 

• Let ℓ be the number of binary digits that can 
be stored. 

• Example:  Store data in a single byte (8 bits).   

• Using a single byte can represent unsigned 
numbers from 0 to 255 (28 = 256 different 
values). 

• Alternatively, can represent the signed 
numbers from -128 to 127 in same amount of 
space (27 = 128). 



Signed Numbers and Complements 

• How to denote if a number is positive or negative? 
– Use a sign bit: 0𝑠1001 denotes positive 9, 1𝑠1001 denotes 

negative 9.  This representation is called the sign-
magnitude representation. 

– This works, but it will be convenient to use a different 
representation of negative numbers.   

• Two methods:  2’s complement and 1’s complement. 
– Idea: Subtraction is hard!  Addition is easy!  

– Convert every subtraction problem to an addition problem 
• Example:  Instead of computing 01000101 − 00110100, instead 

compute 01000101 + (−00110100). 



2’s Complement 

• 2’s complement of 𝑁 = 2ℓ − 𝑁 = 10 2
ℓ

− 𝑁 

• In our example (one byte of memory), to 
represent -9, (where 9 = 1001 in binary), 
compute 102

8 − 1001 = 100000000 −
1001 = 11110111 



1’s Complement 

• 1’s complement of 𝑁 = 2ℓ − 1 −  𝑁 =
(102)ℓ−1 − 𝑁 

• In our example, to represent -9, (where 9 = 
1001 in binary), compute 102

8 − 1 −
1001 = 11111111 − 1001 = 11110110 

• This corresponds to flipping the bits of 
00001001. 



In-Class Exercise 

• Subtraction using 2’s complement, 1’s 
complement 



2’s Complement 

• Notice for negative numbers, most significant 
bit is always 1.  For positive numbers, most 
significant bit is always 0.  

• This bit is therefore called the sign bit. 

 



Subtraction Using 2’s Complement 

• Just do addition as usual  

• Ignore highest order carry 

• Aside:  This is equivalent to doing arithmetic 

modulo 2ℓ. 



1’s Complement 

• Again, for negative numbers, nth digit is 
always 1.  For positive numbers, nth digit is 
always 0.  

• There are now two ways to represent 0: 
00000000 or 11111111 

 



Subtraction using 
1’s complement 

• Do addition as usual 

• If there is an end carry, add it to the least 
significant bit. 

• Most significant bit tells you the sign. 



Fast(er) way to compute 2’s 
complement 

• To form the 2’s complement of 0110 1010: 

– Take the 1s complement:  1001 0101 

– Then add 1:  1001 0110 



Advantages/Disadvantages of  
1’s vs. 2’s complement 

1s complement 2s complement 

Easy to compute 
(just flip bits) 

Harder to compute 
(flip bits and add one) 

Harder to manipulate 
(e.g., for subtraction, need to 

add in extra carry.) 

Easy to manipulate 
(e.g., subtraction is the same 

as addition—no extra 
hardware needed) 


