Hamming Codes

Lecture 3
9/9/15

Recall the following parity check matrix for Hamming Codes:

$$
H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

1. Encode message $\vec{m}=1011$
2. Decode $\vec{s}=1011000$

What if we use the following parity check matrix to construct a Hamming Code:

$$
\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

1. Encode message $\vec{m}=1011$
2. Apply error correction and decode $\vec{s}=0111100$

Hamming Codes

Lecture 3
9/9/15

Discussion:

- What happens if we want to encode a 3-bit message? A 5-bit message?

An 11 bit message?

- What is the rate of the Hamming code?
- How many errors can be detected with the Hamming code?

Challenge: Construct a Hamming Code for encoding messages of length 5

- What is the parity check matrix?
- Show how to encode the message $\vec{m}=10101$
- Apply error correction and decode $\vec{s}=110010001$

