Hamming Codes Lecture 3 9/9/15

Recall the following parity check matrix for Hamming Codes:

	/0	0	0	1	1	1	1\
H =	0	1	1	0	0	1	1
	\1	0	1	0	1	0	1/

- 1. Encode message $\vec{m} = 1011$
- 2. Decode $\vec{s} = 1011000$

What if we use the following parity check matrix to construct a Hamming Code:

/0	1	1	1	0	0	1\
1	0	1	1	0	1	0
\backslash_1	1	0	1	1	0	0/

- 1. Encode message $\vec{m} = 1011$
- 2. Apply error correction and decode $\vec{s} = 0111100$

Hamming Codes Lecture 3 9/9/15

Discussion:

- What happens if we want to encode a 3-bit message? A 5-bit message? An 11 bit message?
- What is the rate of the Hamming code?
- How many errors can be detected with the Hamming code?

Challenge: Construct a Hamming Code for encoding messages of length 5

- What is the parity check matrix?
- Show how to encode the message $\vec{m} = 10101$
- Apply error correction and decode $\vec{s} = 110010001$