ENEE244-010x
 Digital Logic Design

Lecture 3

Announcements

- Homework 1 due today.
- Homework 2 will be posted by tonight, due Monday, 9/21.
- First recitation quiz will be tomorrow on the material from Lectures 1 and 2.
- Lecture notes are on course webpage.
- Substitute next time.
- Will cover the basics of Boolean Algebra

Agenda

- Last time:
- Signed numbers and Complements (2.7)
- Addition and Subtraction with Complements (2.8-2.9)
- This time:
- Overflow in 2's Complement
- Parity and Arithmetic Modulo 2
- Error detecting/correcting codes
- Not following presentation in textbook.

Example of Overflow in 2's complement

- Assume $\ell=8$
- Compute:
$01110000+01011100$
- Compute
-01110000-01011100
$(10001111+1)+(10100011+1)$
$10010000+10100100$

Overflow in 2's complement

- Overflow occurs in the following cases:

Operation	Operand A	Operand B	Result
A + B	≥ 0	≥ 0	<0
$A+B$	<0	<0	≥ 0
A-B	≥ 0	<0	<0
A-B	<0	≥ 0	≥ 0

- These conditions are the same as:

Carry-In to sign position \neq Carry-Out from sign position

Aside: Please Read 2.10.1, 2.10.2 in Textbook

- Binary-Coded Decimal (BCD) Schemes
- Basic idea: Encode decimal numbers by encoding each decimal digit by its binary representation
- E.g. $15_{10} \rightarrow 00010101$
- Look over Table 2.7, 2.8
- Unit distance codes
- Basic idea: Encode decimal numbers so that a single bit flips between two consecutive numbers:
- E.g. In binary, $1_{10}=0001_{2}, 2_{10}=0010_{2}$. Note that 2 bits flip.
- In Gray code: $1_{10}=0001,2_{10}=0011$. Note that a single bit flips.
- Look over Table 2.9
- You will not be tested or quizzed on this (at this point), but these codes will come up again later in the course.

Parity and Arithmetic Mod 2

Parity

- Parity 0: A 0/1 string has an even number of 1's.
- Example: 001011100
- Parity 1: A $0 / 1$ string has an odd number of 1's.
- Example: 101010000
- Given a string, can also ask about the parity of a subset of positions
- Example: Parity of positions 1, 3, 5, 6 in the string 001011100 is 1.

Mod 2 Arithmetic

- ($\mathrm{N} \bmod 2$) is the remainder when dividing N by 2
-0 when N is even
- 1 when N is odd
- Parity of a string is the sum of the bits modulo 2
- Example: $001011100=0+0+1+0+1+1+1+0+$ $0=4=0 \bmod 2=0$.
- Parity of a subset of a string is exactly the dot-product mod 2.
- Example: Parity of positions 1, 3, 5, 6 in the string 001011100 is the dot product $101011000 \cdot 001011100=1 \cdot 0+0 \cdot 0+1 \cdot 1+0 \cdot 0+$ $1 \cdot 1+1 \cdot 1+0 \cdot 1+0 \cdot 0+0 \cdot 0=3 \bmod 2=1$.

Codes for Error Detection and Correction

Codes

- Encode algorithm $\operatorname{Enc}(\vec{m})=\vec{c} . \vec{m}$ is the message, \vec{c} is the codeword.
- Decode algorithm $\operatorname{Dec}(\vec{c})=\vec{m}$
- Typically, \vec{c} will be longer than \vec{m} and will include redundant information.
- Redundancy is useful for detecting and/or correcting errors introduced during transmission.
- Assume \vec{m}, \vec{c} are in binary.
- Would like to detect and/or correct the flipping of one or multiple bits.

Error Detection/Correction

- Basic properties:
- Distance of a code: minimum distance between any two codewords (number of bits that need to be flipped to get from one codeword to another)
- Rate of a code: $\frac{|\vec{m}|}{|\vec{c}|}$ (length of \vec{m} / length of \vec{c})
- Distance determines the maximum number of errors that can be detected/corrected.
- Goal of coding theory is to construct codes with optimal tradeoff between distance and rate.
- Must also have efficient encoding, decoding and error correcting procedures.

Error Detection/Correction

- Error detection: can detect at most dist-1 errors, where dist is the minimum distance of the code.
- Error correction: can correct at most (dist - 1)/2 errors

Error Detection: Parity Check

- Encode: On input $\vec{m}=11001010$
- Output $\vec{c}=11001010 \mid b$, where b is the parity of \vec{m}. $b=1+1+0+0+1+0+1+0=4 \bmod 2=0$
- Decode: On input $\vec{c}=11001010 \mid b$, output 11001010
- Error detection:
- If a non-parity bit is flipped
- If the parity bit is flipped
- Can detect only one error. Why?

Error Correction for 1 Error: The Hamming Code

- View codeword as a vector $\left(c_{1}, c_{2}, \ldots, c_{7}\right)$
- Some bits will be information bits, some bits will be parity-check bits.
- Parity-check matrix H:

Property of the Hamming Code

- For any codeword $\vec{c}, H \cdot \vec{c}=\overrightarrow{0}$.
- Parity-check matrix H :
$\left(\begin{array}{lllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$

Property of the Hamming Code

- To encode a message $\vec{m}=m_{1}, m_{2}, m_{3}, m_{4}$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Property of the Hamming Code

- To encode a message $\vec{m}=m_{1}, m_{2}, m_{3}, m_{4}$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

$$
\begin{array}{|l|l|}
\hline 0 & 0 \\
0 & 1 \\
1 & 0 \\
\hline
\end{array}
$$

Parity bit positions

$\left.\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \text { Put in a value in } c_{4} \text { so that } \\
& 0 \cdot c_{1}+0 \cdot c_{2}+0 \cdot 0+1 \cdot c_{4}+ \\
& 1 \cdot 1+1 \cdot 1+1 \cdot 0 \\
& =c_{4}+0=0 \bmod 2
\end{aligned}
$$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

0	0
0	1
1	0

Parity bit positions
$\left.\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& \text { Put in a value in } c_{4} \text { so that } \\
& 0 \cdot c_{1}+0 \cdot c_{2}+0 \cdot 0+1 \cdot c_{4}+ \\
& 1 \cdot 1+1 \cdot 1+1 \cdot 0 \\
& =c_{4}+0=0 \bmod 2
\end{aligned}
$$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Put in a value in c_{2} so that

Parity bit positions

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

$$
\left\{\begin{array}{c}
\text { Put in a value in } c_{2} \text { so that } \\
0 \cdot c_{1}+1 \cdot c_{2}+1 \cdot 0+0 \cdot c_{4}+ \\
0 \cdot 1+1 \cdot 1+1 \cdot 0 \\
=c_{2}+1=0 \bmod 2
\end{array}\right.
$$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$
$\left(\begin{array}{l|l|}\hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \hline\end{array}\right.$

\section*{| 0 | 1 |
| :--- | :--- |
| 1 | 0 |
| 1 | 0 |}

$\left.\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

Parity bit positions

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Put in a value in c_{1} so that
$1 \cdot c_{1}+0 \cdot c_{2}+1 \cdot 0+0 \cdot c_{4}+$
$1 \cdot 1+0 \cdot 1+1 \cdot 0$
$=\mathrm{c}_{1}+1=0 \bmod 2$
$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$\left[\begin{array}{|c|}0 \\ 1 \\ 0\end{array}\right.$

Parity bit positions

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

Property of the Hamming Code

- To encode a message $\vec{m}=0,1,1,0$

