
ENEE244-010x
Digital Logic Design

Lecture 3

Announcements

• Homework 1 due today.

• Homework 2 will be posted by tonight, due
Monday, 9/21.

• First recitation quiz will be tomorrow on the
material from Lectures 1 and 2.

• Lecture notes are on course webpage.

• Substitute next time.

– Will cover the basics of Boolean Algebra

Agenda

• Last time:

– Signed numbers and Complements (2.7)

– Addition and Subtraction with Complements (2.8-2.9)

• This time:

– Overflow in 2’s Complement

– Parity and Arithmetic Modulo 2

– Error detecting/correcting codes

– Not following presentation in textbook.

Example of Overflow in 2’s
complement

• Assume ℓ = 8

• Compute:

 01110000 + 01011100

• Compute

 -01110000 – 01011100

(10001111 + 1) + (10100011 +1)

10010000 + 10100100

Overflow in 2’s complement

• Overflow occurs in the following cases:

• These conditions are the same as:
Carry-In to sign position ≠ Carry-Out from sign position

Operation Operand A Operand B Result

A + B ≥ 0 ≥ 0 < 0

A+B < 0 < 0 ≥ 0

A-B ≥ 0 < 0 < 0

A-B < 0 ≥ 0 ≥ 0

Aside: Please Read
2.10.1, 2.10.2 in Textbook

• Binary-Coded Decimal (BCD) Schemes
– Basic idea: Encode decimal numbers by encoding each decimal

digit by its binary representation
– E.g. 1510 → 0001 0101
– Look over Table 2.7, 2.8

• Unit distance codes
– Basic idea: Encode decimal numbers so that a single bit flips

between two consecutive numbers:
– E.g. In binary, 110 = 00012, 210 = 00102. Note that 2 bits flip.
– In Gray code: 110 = 0001, 210 = 0011. Note that a single bit

flips.
– Look over Table 2.9

• You will not be tested or quizzed on this (at this point), but
these codes will come up again later in the course.

Parity and Arithmetic Mod 2

Parity

• Parity 0: A 0/1 string has an even number of
1’s.
– Example: 001011100

• Parity 1: A 0/1 string has an odd number of
1’s.
– Example: 101010000

• Given a string, can also ask about the parity of
a subset of positions
– Example: Parity of positions 1, 3, 5, 6 in the string

001011100 is 1.

Mod 2 Arithmetic

• (N mod 2) is the remainder when dividing N by 2
– 0 when N is even
– 1 when N is odd

• Parity of a string is the sum of the bits modulo 2
– Example: 001011100 = 0 + 0 + 1 + 0 + 1 + 1 + 1 + 0 +

0 = 4 = 0 mod 2 = 0.

• Parity of a subset of a string is exactly the dot-product
mod 2.
– Example: Parity of positions 1, 3, 5, 6 in the string

001011100 is the dot product
101011000 ⋅ 001011100 = 1 ⋅ 0 + 0 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 0 +
1 ⋅ 1 + 1 ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 0 + 0 ⋅ 0 = 3 𝑚𝑜𝑑 2 = 1.

Codes for Error Detection and
Correction

Codes

• Encode algorithm 𝐸𝑛𝑐(𝑚) = 𝑐 . 𝑚 is the
message, 𝑐 is the codeword.

• Decode algorithm 𝐷𝑒𝑐(𝑐) = 𝑚

• Typically, 𝑐 will be longer than 𝑚 and will include
redundant information.

• Redundancy is useful for detecting and/or
correcting errors introduced during transmission.

• Assume 𝑚, 𝑐 are in binary.

• Would like to detect and/or correct the flipping of
one or multiple bits.

Error Detection/Correction

• Basic properties:
– Distance of a code: minimum distance between any

two codewords (number of bits that need to be
flipped to get from one codeword to another)

– Rate of a code:
𝑚

𝑐
 (length of 𝑚 / length of 𝑐)

• Distance determines the maximum number of
errors that can be detected/corrected.

• Goal of coding theory is to construct codes with
optimal tradeoff between distance and rate.

• Must also have efficient encoding, decoding and
error correcting procedures.

Error Detection/Correction

• Error detection: can detect at most 𝑑𝑖𝑠𝑡-1
errors, where 𝑑𝑖𝑠𝑡 is the minimum distance of
the code.

• Error correction: can correct at most
(𝑑𝑖𝑠𝑡 − 1)/2 errors

Error Detection:
Parity Check

• Encode: On input 𝑚 = 11001010
– Output 𝑐 = 11001010|𝑏, where b is the parity of 𝑚.

𝑏 = 1 + 1 + 0 + 0 + 1 + 0 + 1 + 0 = 4 𝑚𝑜𝑑 2 = 0

• Decode: On input 𝑐 = 11001010|𝑏, output
11001010

• Error detection:
– If a non-parity bit is flipped

– If the parity bit is flipped

• Can detect only one error. Why?

Error Correction for 1 Error:
The Hamming Code

• View codeword as a vector (𝑐1, 𝑐2, … , 𝑐7)

• Some bits will be information bits, some bits
will be parity-check bits.

• Parity-check matrix H:

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

2𝑘 − 1 codeword length

𝑘 parity bits

Property of the Hamming Code

• For any codeword 𝑐 , 𝐻 ⋅ 𝑐 = 0.

• Parity-check matrix 𝐻:

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0

Property of the Hamming Code

• To encode a message 𝑚 = 𝑚1, 𝑚2, 𝑚3, 𝑚4

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0

Message bit positions

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2

0
𝑐4

1
1
0

= 0 0 0

Message bit positions

Property of the Hamming Code

• To encode a message 𝑚 = 𝑚1, 𝑚2, 𝑚3, 𝑚4

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2
𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

= 0 0 0

Parity bit positions

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2

0
𝑐4

1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐4 so that
0 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 0 ⋅ 0 + 1 ⋅ 𝑐4 +

1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0
= c4 + 0 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2

0
0
1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐4 so that
0 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 0 ⋅ 0 + 1 ⋅ 𝑐4 +

1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0
= c4 + 0 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
𝑐2

0
0
1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐2 so that
0 ⋅ 𝑐1 + 1 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0
= c2 + 1 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
1
0
0
1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐2 so that
0 ⋅ 𝑐1 + 1 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0
= c2 + 1 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

𝑐1
1
0
0
1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐1 so that
1 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0
= c1 + 1 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

1
1
0
0
1
1
0

= 0 0 0

Parity bit positions

Put in a value in 𝑐1 so that
1 ⋅ 𝑐1 + 0 ⋅ 𝑐2 + 1 ⋅ 0 + 0 ⋅ 𝑐4 +

1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0
= c1 + 1 = 0 𝑚𝑜𝑑 2

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

1
1
0
0
1
1
0

= 0 0 0

Parity bit positions

Codeword

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

1
1
0
1
1
1
0

= 0 0 0

Parity bit positions

Codeword

Error!

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

1
1
0
1
1
1
0

= 1 0 0

Parity bit positions

Corrupted Codeword

Property of the Hamming Code

• To encode a message 𝑚 = 0, 1,1,0

0 0 0
0 1 1
1 0 1

1 1 1
0 0 1
0 1 0

1
1
1

 ⋅

1
1
0
1
1
1
0

= 1 0 0

Parity bit positions

Corrupted Codeword

