Class Exercise

9/14/15

Axioms and Theorems:

P1. Closure For all $x, y \in B, x + y \in B, x \cdot y \in B$ P2. Identity There exist identity elements in B, denoted 0,1 relative to (+) and (\cdot) , respectively. For all $x \in B$, 0 + x = x + 0 = x, $1 \cdot x = x \cdot 1 = x$. P3. Commutativity The operations (+), (\cdot) are commutative For all $x, y \in B$ x + y = y + x, $x \cdot y = y \cdot x$ P4. Distributivity Each operation (+), (\cdot) is distributive over the other. For all $x, y, z \in B$: $x + (y \cdot z) = (x + y) \cdot (x + z) [x \text{ OR } (y \text{ AND } z)]$ $x \cdot (y + z) = (x \cdot y) + (x \cdot z) [x \text{ AND } (y \text{ OR } z)]$ P5. Complement For every element $x \in B$ there exists an element $\overline{x} \in B$ called the complement of x such that: $x + \overline{x} = 1$ $x \cdot \overline{x} = 0$ P6. Non-triviality There exist at least two elements $x, y \in B$ such that $x \neq y$. Theorem 3.2: Null elements: For each element x in a Boolean algebra: x + 1 = 1 $x \cdot 0 = 0.$ Theorem 3.4: The Idempotent law

For each element x in a Boolean algebra:

$$x + x = x$$
$$x \cdot x = x$$

Theorem 3.5: The Involution Law

For every x in a Boolean algebra, $\overline{(\overline{x})} = x$.

Theorem 3.6: The absorption law

For each pair of elements *x*, *y* in a Boolean algebra:

 $\begin{aligned} x + x \cdot y &= x \\ x \cdot (x + y) &= x \end{aligned}$

Theorem 3.7: DeMorgan's Law

For each pair of elements x, y in a Boolean algebra:

$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$
$$\overline{(x \cdot y)} = \overline{x} + \overline{y}$$

Class Exercise 9/14/15

1. Prove $x + \overline{x}y = x + y$

2. Prove $\overline{x} \ \overline{y} + xy + \overline{x}y = \overline{x} + y$

3. Prove that no Boolean algebra has exactly three distinct elements.