ENEE244-010x
 Digital Logic Design

Lecture 4

Announcements

- HW 2 up on course webpage, due on Monday, Sept. 21.

Agenda

- Last time:
- Error Detecting and Correcting Codes (2.11, 2.12)
- This time:
- Boolean Algebra axioms and theorems (3.1, 3.2)

Boolean Algebra

Definition of a Boolean Algebra

- A mathematical system consisting of:
- A set of elements B [0/1 or T/F]
- Two binary operators (+) and (•) [OR/AND]
- = for equivalence, () indicating order of operations

Where the following axioms/postulates hold:

- P1. Closure

For all $x, y \in B, x+y \in B, x \cdot y \in B$

- P2. Identity

There exist identity elements in B, denoted 0,1 relative to (+) and (\cdot), respectively.
For all $x \in B, 0+x=x+0=x, 1 \cdot x=x \cdot 1=x$.

Definition of Boolean Algebra

- P3. Commutativity

The operations $(+),(\cdot)$ are commutative
For all $x, y \in B x+y=y+x, x \cdot y=y \cdot x$

- P4. Distributivity
***Each operation (+), (•) is distributive over the other.
For all $x, y, z \in B$:

$$
\begin{aligned}
& x+(y \cdot z)=(x+y) \cdot(x+z)[x \text { OR }(y \text { AND } z)] \\
& x \cdot(y+z)=(x \cdot y)+(x \cdot z)[x \text { AND }(y \text { OR } z)]
\end{aligned}
$$

Definition of Boolean Algebra

- P5. Complement

For every element $x \in B$ there exists an element $\bar{x} \in B$ called the complement of x such that:

$$
\begin{aligned}
& x+\bar{x}=1 \\
& x \cdot \bar{x}=0
\end{aligned}
$$

- P6. Non-triviality

There exist at least two elements $x, y \in B$ such that $x \neq y$.

Principle of Duality

- (Except for P6), each postulate consists of two expressions s.t. one expression is transformed into the other by interchanging the operations (+) and (\cdot) as well as the identity elements 0 and 1.
- Such expressions are known as duals of each other.
- If some equivalence is proved, then its dual is also immediately true.
- E.g. If we prove: $(x \cdot x)+(\bar{x} \cdot \bar{x})=1$, then we have by duality: $(x+x) \cdot(\bar{x}+\bar{x})=0$

Theorems of Boolean Algebra

Theorem 3.2: Null elements:
For each element x in a Boolean algebra:

$$
\begin{aligned}
& x+1=1 \\
& x \cdot 0=0
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& x+1=1 \cdot(x+1) \\
& =(x+\bar{x}) \cdot(x+1) \\
& =x+(\bar{x} \cdot 1) \\
& =x+\bar{x} \\
& =1
\end{aligned}
$$

Second part follows from principle of duality.

Theorems of Boolean Algebra

Theorem 3.4: The Idempotent law
For each element x in a Boolean algebra:

$$
\begin{aligned}
& x+x=x \\
& x \cdot x=x
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& x+x=1 \cdot(x+x) \\
& =(x+\bar{x}) \cdot(x+x) \\
& =x+(x \cdot \bar{x}) \\
& =x+0 \\
& =x .
\end{aligned}
$$

Second part follows from principle of duality.

Theorems of Boolean Algebra

Theorem 3.5: The Involution Law
For every x in a Boolean algebra, $\overline{(\bar{x})}=x$.
Proof. We will use the fact that the complement is unique
(Theorem 3.1 in textbook).

$$
\begin{gathered}
x+\bar{x}=1 \\
\bar{x}+x=1
\end{gathered}
$$

$x=\bar{x}$ by uniqueness.
Moreover,

$$
\begin{aligned}
& x \cdot \bar{x}=0 \\
& \bar{x} \cdot x=1 \\
& x=\bar{x} \text { by uniqueness. }
\end{aligned}
$$

Theorems of Boolean Algebra

Theorem 3.6: The absorption law
For each pair of elements x, y in a Boolean algebra:

$$
\begin{array}{r}
x+x \cdot y=x \\
x \cdot(x+y)=x
\end{array}
$$

Proof:

$$
\begin{aligned}
& x+x \cdot y=(x \cdot 1)+(x \cdot y) \\
& =x \cdot(1+y) \\
& =x \cdot 1 \\
& =x
\end{aligned}
$$

Second part follows from principle of duality.

Theorems of Boolean Algebra

Theorem 3.7: DeMorgan's Law
For each pair of elements x, y in a Boolean algebra:

$$
\begin{aligned}
& \overline{(x+y)}=\bar{x} \cdot \bar{y} \\
& \overline{(x \cdot y)}=\bar{x}+\bar{y}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& (x+y)+\bar{x} \cdot \bar{y}=(x+y+\bar{x}) \cdot(x+y+\bar{y}) \\
& =(x+\bar{x}+y) \cdot(y+\bar{y}+x) \\
& =(1+y) \cdot(1+x) \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Analogous for multiplicative case.
Second part follows from principle of duality.

In Class Activity

