Class Exercise

9/14/15

Axioms and Theorems:

P1. Closure

For all $x, y \in B, x + y \in B, x \cdot y \in B$

P2. Identity

There exist identity elements in B, denoted 0,1 relative to (+) and (·), respectively.

For all $x \in B$, 0 + x = x + 0 = x, $1 \cdot x = x \cdot 1 = x$.

P3. Commutativity

The operations (+), (\cdot) are commutative

For all $x, y \in B$ x + y = y + x, $x \cdot y = y \cdot x$

P4. Distributivity

Each operation (+), (\cdot) is distributive over the other.

For all $x, y, z \in B$:

$$x + (y \cdot z) = (x + y) \cdot (x + z) [x \ OR \ (y \ AND \ z)]$$

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z) [x \ AND \ (y \ OR \ z)]$$

P5. Complement

For every element $x \in B$ there exists an element $\overline{x} \in B$ called the complement of x such that:

$$x + \overline{x} = 1$$
$$x \cdot \overline{x} = 0$$

P6. Non-triviality

There exist at least two elements $x, y \in B$ such that $x \neq y$.

Theorem 3.2: Null elements:

For each element x in a Boolean algebra:

$$x + 1 = 1$$
$$x \cdot 0 = 0.$$

Theorem 3.4: The Idempotent law

For each element \boldsymbol{x} in a Boolean algebra:

$$x + x = x$$
$$x \cdot x = x$$

Theorem 3.5: The Involution Law

For every x in a Boolean algebra, $(\overline{x}) = x$.

Theorem 3.6: The absorption law

For each pair of elements x, y in a Boolean algebra:

$$x + x \cdot y = x$$
$$x \cdot (x + y) = x$$

Theorem 3.7: DeMorgan's Law

For each pair of elements x, y in a Boolean algebra:

$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$
$$\overline{(x\cdot y)} = \overline{x} + \overline{y}$$

Class Exercise

9/14/15

1. Prove
$$x + \overline{x}y = x + y$$

$$x + \overline{x}y$$

$$= (x + \overline{x})(x + y) \text{ (by P4)}$$

$$= 1 \cdot (x + y) \text{ (by P5)}$$

$$= x + y \text{ (by P2)}$$

2. Prove
$$\overline{x} \overline{y} + xy + \overline{x}y = \overline{x} + y$$

$$\overline{x} \, \overline{y} + xy + \overline{x}y$$

$$= \overline{x} \, \overline{y} + y(x + \overline{x}) \text{ (by P4)}$$

$$= \overline{x} \, \overline{y} + y \cdot 1 \text{ (by P5)}$$

$$= \overline{x} \, \overline{y} + y \text{ (by P2)}$$

$$= y + \overline{y} \, \overline{x} \text{ (by P3)}$$

$$= y + \overline{x} \text{ (by P73)}$$

3. Prove that no Boolean algebra has exactly three distinct elements.

Assume towards contradiction there are three elements, $0, 1, \alpha$. (Note that 0,1 must be elements of the Boolean algebra due to P2).

By P5, α must have a complement, $\overline{\alpha}$ such that: $\alpha \cdot \overline{\alpha} = 0$ and $\alpha + \overline{\alpha} = 1$. There are three cases:

Case 1: $\overline{\alpha}=0$. In this case, we have $\alpha+0=\alpha$ (by P2) and $\alpha+0=\alpha+\overline{\alpha}=1$ (by above). But now combining the above, we get that $\alpha=1$, so it is not a distinct element.

Case 2: $\overline{\alpha}=1$. In this case, we have $\alpha\cdot 1=\alpha$ (by P2) and $\alpha\cdot 1=\alpha\cdot \overline{\alpha}=0$ (by above). But now combining the above, we get that $\alpha=0$, so it is not a distinct element.

Case 3: $\overline{\alpha}=\alpha$. In this case, we have $\alpha+\alpha=\alpha$ (by Th 3.4) and $\alpha+\alpha=\alpha+\alpha=\alpha=0$. Combining the above, we get that $\alpha=1$. We also have $\alpha\cdot\alpha=\alpha=\alpha=0$ (by Th 3.4) and $\alpha\cdot\alpha=\alpha\cdot\overline{\alpha}=0$. Combining the above, we get that $\alpha=0$. Contradiction.