Class Exercise

9/14/15

Axioms and Theorems:

P1. Closure
For all $x, y \in B, x+y \in B, x \cdot y \in B$
P2. Identity
There exist identity elements in B, denoted 0,1 relative to (+) and (\cdot), respectively.
For all $x \in B, 0+x=x+0=x, 1 \cdot x=x \cdot 1=x$.
P3. Commutativity
The operations $(+),(\cdot)$ are commutative
For all $x, y \in B x+y=y+x, x \cdot y=y \cdot x$
P4. Distributivity
Each operation $(+),(\cdot)$ is distributive over the other.
For all $x, y, z \in B$:

$$
\begin{aligned}
& x+(y \cdot z)=(x+y) \cdot(x+z)[x \text { OR }(y \text { AND } z)] \\
& x \cdot(y+z)=(x \cdot y)+(x \cdot z)[x \text { AND }(y O R z)]
\end{aligned}
$$

P5. Complement
For every element $x \in B$ there exists an element $\bar{x} \in B$ called the complement of x such that:

$$
\begin{aligned}
& x+\bar{x}=1 \\
& x \cdot \bar{x}=0
\end{aligned}
$$

P6. Non-triviality
There exist at least two elements $x, y \in B$ such that $x \neq y$.

Theorem 3.2: Null elements:
For each element x in a Boolean algebra:

$$
\begin{aligned}
& x+1=1 \\
& x \cdot 0=0
\end{aligned}
$$

Theorem 3.4: The Idempotent law
For each element x in a Boolean algebra:

$$
\begin{aligned}
& x+x=x \\
& x \cdot x=x
\end{aligned}
$$

Theorem 3.5: The Involution Law
For every x in a Boolean algebra, $\overline{(\bar{x})}=x$.
Theorem 3.6: The absorption law
For each pair of elements x, y in a Boolean algebra:

$$
\begin{aligned}
& x+x \cdot y=x \\
& x \cdot(x+y)=x
\end{aligned}
$$

Theorem 3.7: DeMorgan's Law
For each pair of elements x, y in a Boolean algebra:

$$
\begin{aligned}
\overline{(x+y)} & =\bar{x} \cdot \bar{y} \\
\overline{(x \cdot y)} & =\bar{x}+\bar{y}
\end{aligned}
$$

Class Exercise

1. Prove $x+\bar{x} y=x+y$

$$
\begin{aligned}
& x+\bar{x} y \\
& =(x+\bar{x})(x+y)(\text { by P4) } \\
& =1 \cdot(x+y)(\text { by P5 }) \\
& =x+y(\text { by P2) }
\end{aligned}
$$

2. Prove $\bar{x} \bar{y}+x y+\bar{x} y=\bar{x}+y$

$$
\begin{aligned}
& \bar{x} \bar{y}+x y+\bar{x} y \\
& =\bar{x} \bar{y}+y(x+\bar{x}) \text { (by P4) } \\
& =\bar{x} \bar{y}+y \cdot 1 \text { (by P5) } \\
& =\bar{x} \bar{y}+y \text { (by P2) } \\
& =y+\bar{y} \bar{x} \text { (by P3) } \\
& =y+\bar{x} \text { (by Problem } 1 \text { above) } \\
& =\bar{x}+y \text { (by P3) }
\end{aligned}
$$

3. Prove that no Boolean algebra has exactly three distinct elements.

Assume towards contradiction there are three elements, $0,1, \alpha$. (Note that 0,1 must be elements of the Boolean algebra due to P2).
By P5, α must have a complement, $\bar{\alpha}$ such that: $\alpha \cdot \bar{\alpha}=0$ and $\alpha+\bar{\alpha}=1$.
There are three cases:
Case 1: $\bar{\alpha}=0$. In this case, we have $\alpha+0=\alpha$ (by P2) and $\alpha+0=\alpha+\bar{\alpha}=1$ (by above). But now combining the above, we get that $\alpha=1$, so it is not a distinct element.
Case 2: $\bar{\alpha}=1$. In this case, we have $\alpha \cdot 1=\alpha$ (by P2) and $\alpha \cdot 1=\alpha \cdot \bar{\alpha}=0$ (by above). But now combining the above, we get that $\alpha=0$, so it is not a distinct element.
Case 3: $\bar{\alpha}=\alpha$. In this case, we have $\alpha+\alpha=\alpha$ (by Th 3.4) and $\alpha+\alpha=\alpha+$ $\bar{\alpha}=1$. Combining the above, we get that $\alpha=1$. We also have $\alpha \cdot \alpha=\alpha$ (by Th 3.4) and $\alpha \cdot \alpha=\alpha \cdot \bar{\alpha}=0$. Combining the above, we get that $\alpha=0$.

Contradiction.

