ENEE244-010x
 Digital Logic Design

Lecture 6

Announcements

- Homework 2 due today
- Homework 3 up on webpage (tonight), due Wed, 9/30.
- Class is canceled on Wed, 9/23
- Substitute on Mon, 9/28

Agenda

- Last time:
- Manipulations of Boolean Formulas (3.6)
- This time:
- Gates and Combinational Networks (3.7)
- Incomplete Boolean Functions and Don't Care Conditions (3.8)
- Universal Gates (3.9.3)

Digital Logic Gates

- AND $f(x, y)=x y$
- OR

$$
f(x, y)=x+y
$$

- NOT (Inverter) $\quad f(x)=\bar{x}$
- Buffer (Transfer) $\quad f(x)=x$
- NAND $f(x, y)=\overline{(x y)}=\bar{x}+\bar{y}$
- NOR $f(x, y)=\overline{x+y}=\bar{x} \bar{y}$
- XOR $f(x, y)=x \bar{y}+\bar{x} y=x \bigoplus y$
- X-NOR (Equivalence)

$$
f(x, y)=x y+\bar{x} \bar{y}
$$

Gate Symbols

- Multiple input gates:

AND (1 if all 1), NAND (not AND)
OR (1 if at least one 1), NOR (not OR)

Some Terminology

- System specification: A description of the function of a system and of other characteristics required for its use.
- A function (table, algebraic) on a finite set of inputs.
- Double-rail logic*: both variables and their complements are considered as primary inputs.
- Single-rail logic: only variables are considered as primary inputs. Need inverters for their complements.

Gates and Combinational Networks

- Synthesis Procedure
- Example: Truth table for parity function on three variables

X	Y	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Synthesis Procedure

X	Y	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterm Canonical Form:

$$
f(x, y, z)=\bar{x} \bar{y} z+\bar{x} y \bar{z}+x \bar{y} \bar{z}+x y z
$$

Two-level Gate Network

Minterm Canonical Form:
$f(x, y, z)=\bar{x} \bar{y} z+\bar{x} y \bar{z}+x \bar{y} \bar{z}+x y z$

Incomplete Boolean Functions and Don't Care Conditions

Incomplete Boolean Functions and Don't Care Conditions

- n -variable incomplete Boolean function is represented by a truth table with $n+1$ columns and 2^{n} rows.
- For those combinations of values in which a functional value is not to be specified, a symbol, --, is entered.
- The complement of an incomplete Boolean function is also an incomplete Boolean function having the same unspecified rows of the truth table.

Describing Incomplete Boolean Functions

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\boldsymbol{F}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	--
1	0	0	0
1	0	1	--
1	1	0	0
1	1	1	1

Minterm canonical formula:

$$
f(x, y, z)=\sum m(0,1,7)+d c(3,5)
$$

Describing Incomplete Boolean Functions

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\boldsymbol{F}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	--
1	0	0	0
1	0	1	--
1	1	0	0
1	1	1	1

Maxterm canonical formula:

$$
f(x, y, z)=\Pi M(2,4,6)+d c(3,5)
$$

Describing Incomplete Boolean

Functions

- Manipulating Boolean equations derived from incomplete Boolean functions is a very difficult task.
- In the next chapter, there are procedures for obtaining minimal expressions that can handle the don't care conditions.
- Can leverage don't care conditions to get simplified expressions for functions (smaller gate networks).

More on Don't Care Conditions

- Satisfiability don't cares of a subcircuit/subsystem consist of all input patterns that will never occur.
- Observability don't cares of a subcircuit/subsystem are the input patterns that represent situations when an output is not observed.
Example: $\{x y, \bar{x} y\} \quad\{x \bar{y}, \bar{x} \bar{y}\}$

Universal Gates

- A gate or set of gates is called universal if it can implement all Boolean functions.
- Standard universal gates:
- AND, OR, NOT
- Proof?
- Theorem:
- A set of gates $\left\{G_{1}, \ldots, G_{n}\right\}$ is universal if it can implement AND, OR, NOT.

NAND is Universal

- Recall $\operatorname{NAND}(x, y)=\overline{x y}=\bar{x}+\bar{y}$
- $\operatorname{NOT}(x)=$

$$
\bar{x}=\bar{x}+\bar{x}=\operatorname{NAND}(x, x)
$$

- $\operatorname{AND}(x, y)=$

$$
\begin{aligned}
& x y= \overline{\overline{(x y)}} \\
&=\operatorname{NOT}((\overline{x y})) \\
&=\operatorname{NOT}(\operatorname{NAND}(x, y)) \\
&=\operatorname{NAND}(\operatorname{NAND}(x, y), \operatorname{NAND}(x, y))
\end{aligned}
$$

- $O R(x, y)=$

$$
\begin{aligned}
& x+y= \overline{\overline{(x+y)}}=\overline{(\bar{x} \bar{y})} \\
&=\operatorname{NAND}(\operatorname{NOT}(x), \operatorname{NOT}(y)) \\
&=\operatorname{NAND}(\operatorname{NAND}(x, x), \operatorname{NAND}(y, y))
\end{aligned}
$$

NOR is Universal

- Recall $N O R=\overline{x+y}=\bar{x} \bar{y}$
- $\operatorname{NOT}(x)=$

$$
\bar{x}=\bar{x} \bar{x}=\operatorname{NOR}(x, x)
$$

- $\operatorname{AND}(x)=$

$$
\begin{aligned}
x y=\overline{\overline{(x y)}} & =\overline{(\bar{x}+\bar{y})} \\
& =\operatorname{NOR(\operatorname {NOT}(x),\operatorname {NOT}(y))} \\
= & \operatorname{NOR}(\operatorname{NOR}(x, x), \operatorname{NOR}(y, y))
\end{aligned}
$$

- $O R(x)=$

$$
\begin{aligned}
x+y= & \overline{\overline{(x+y)}}=\operatorname{NOT}(\overline{x+y}) \\
& =\operatorname{NOT}(\operatorname{NOR}(x, y)) \\
& =\operatorname{NOR}(\operatorname{NOR}(x, y), \operatorname{NOR}(x, y))
\end{aligned}
$$

Class Exercise

