ENEE244-010x
 Digital Logic Design

Lecture 8

Announcements

- Midterm on Wednesday, Oct. 7.
- List of topics for Midterm already up on course webpage.
- Review sheet will be posted by end of week.
- Review session with UTF's Bryan and Frank in class on Monday, Oct. 5.

Agenda

- Last time:
- NAND/NOR Gate Realizations (3.9.4-3.9.6)
- Some examples of Synthesis Procedure
- This time:
- Gate Properties (3.10)
- The simplification problem (4.1)
- Prime Implicants (4.2)
- Prime Implicates (4.3)

Gate Properties

Gate Properties

Figure 3.20 Voltage ranges of logic inputs for positive logic.

- The two signal values associated with logic-0 and logic-1 are actually ranges of values.
- If signal value is in some lowlevel voltage range between $V_{L(\min)}$ and $V_{L(\max)}$ then it is assigned to logic-0. When a signal value is in some high-level voltage range between $V_{H(\text { min })}$ and $V_{H(\max)}$ it is assigned to logic-1.

Noise Margins

- Noise: Random fluctuation in an electrical signal
- Must ensure circuit computes correctly even in the presence of noise.

- The minimal signal value that is acceptable as a logic-1 at the input to a gate is different from the minimal logic-1 signal value that a gate produces at its output.
- Assume output of Gate 1 is exactly at $V_{L(\max)}$ and then noise increases the signal further. How will the signal be interpreted?
- Same situation with $V_{H(\min)}$.

Noise Margins

Gate 1 output
Gate 2 input

- $V_{L(\max)}$ is different for the input/output of a gate!
- Same situation with $V_{H(\text { min })}$.
- Manufacturers normally state a
$V_{I L(\max)}, V_{I H(\min)}, V_{O L(\max)}, V_{O H(\min)}$ in gate specifications.
- Where $V_{O L(\max)}<V_{I L(\max)}<$ $V_{I H(\text { min })},<V_{O H(\text { min })}$

Noise Margins

- Again consider connecting output of gate to another gate, where noise is induced between the two gates.

- Worst case low-level noise margin: Any noise less than $V_{I L(\max)}-V_{O L(\max)}$ does not affect behavior of Gate 2 on a low-level signal.
- Worst case high-level noise margin: Any noise less than $V_{O H(\text { min })}-V_{I H(\text { min })}$ does not affect behavior of Gate 2 on a high-level signal.

Fan-Out

- The signal value at the output of a gate is dependent upon the number of gates to which the output is connected.
- Limitation on number of gates output can connect to. This is known as the fan-out capability of the gate. Manufacturers specify this limitation.
- Circuits known as buffers serve as amplifiers for this purpose.

Propagation Delays

- Digital signals to not change instantaneously. Limitation to the overall speed of operation associated with a gate.
- These time delays are called propagation delays.
- Time required for output signal to change from highlevel to low-level is $t_{p H L}$.
- Time required for output signal to change from lowlevel to high-level is $t_{p L H}$.
- $t_{p H L}$ and $t_{p L H}$ are, in general, not equal. Manufacturers give maximum times in gate specifications.
- General measure used is the average propagation delay time, $t_{p d}$

$$
t_{p d}=\frac{t_{p H L}+t_{p L H}}{2}
$$

Propagation Delay Times

Figure 3.22 Propagation delay times.
$t_{p H L}$: Time required for output signal to change from high-level to low-level. $t_{p L H}$: Time required for output signal to change from low-level to high-level.

Power Dissipation

- Digital circuit consumes power as a result of the flow of currents. Called power dissipation.
- Desirable to have low power dissipation and low propagation delay times.
- These two performance parameters are in conflict with each other.
- Common measure of gate performance is the product of the propagation delay and the power dissipation of the gate.
- This is known as the delay-power product.

Beginning of Exam 2 Material

Simplification of Boolean Expressions

Formulation of the Simplification Problem

- What evaluation factors for a logic network should be considered?
- Cost (of components, design, construction, maintenance)
- Reliability (highly reliable components, redundancy)
- Time it takes for network to respond to changes at its inputs.

Minimal Response Time

- Achieved by minimizing the number of levels of logic that a signal must pass through.
- Always possible to construct any logic network with at most two levels under the double-rail logic assumption.
- Why?

Minimal Component Cost

- Assume this is the only other factor influencing the merit evaluation of a logic network.
- In general, there are many two-level realizations.
- Determine the normal formula with minimal component cost.
- Number of gates is one greater than the number of terms with more than one literal in the expression.
- Example: $x y+\bar{x} \bar{y} \bar{z}+x y z$
- \# of gates: 4
- Number of gate inputs is equal to the number of literals in the expression plus the number of terms containing more than one literal.
- Example: $x y+\bar{x} \bar{y} \bar{z}+x y z$
- \# of gate inputs: 11
- Using these criteria can obtain a measure of a Boolean expression's complexity called the cost of the expression.

The Simplification Problem

- The determination of Boolean expressions that satisfy some criterion of minimality is the simplification or minimization problem.
- We will assume cost is determined by number of gate inputs.

Fundamental Terms

- A product or sum of literals in which no variable appears more than once.
- Can obtain a fundamental term by noting:

$$
\begin{aligned}
& x+\bar{x}=1 \\
& x \cdot \bar{x}=0 \\
& x+x=x \\
& x \cdot x=x
\end{aligned}
$$

- Example: $\bar{x} y x=0, \bar{x} y \bar{x}=\bar{x} y$
- Example: $\bar{x}+y+x=1, \bar{x}+y+\bar{x}=\bar{x}+y$

Prime Implicants

- f_{1} implies $f_{2}\left(f_{1} \rightarrow f_{2}\right)$
- There is no assignment of values to the n variables that makes f_{1} equal to 1 and f_{2} equal to 0 .
- Whenever f_{1} equals 1 , then f_{2} must also equal 1.
- Whenever f_{2} equals 0 , then f_{1} must also equal 0 .
- Example:
$-f_{1}(x, y, z)=1$ if and only if binary number $x y z$ is divisible by 4.
$-f_{2}(x, y, z)=1$ if and only if binary number $x y z$ is divisible by 2.
$-f_{1} \rightarrow f_{2}$
- Concept can be applied to terms and formulas.

Examples

- $f_{1}(x, y, z)=x y+y z$,

$$
\begin{gathered}
f_{2}(x, y, z)=x y+y z+\bar{x} z \\
f_{1} \rightarrow f_{2}
\end{gathered}
$$

- $f_{3}(x, y, z)=(x+y)(y+z)(\bar{x}+z)$,

$$
f_{4}(x+y)(y+z)
$$

$$
f_{3} \rightarrow f_{4}
$$

Examples

- Case of Disjunctive Normal Formula
- Sum-of-products form: E.g. $f(x, y, z)=x y z+\bar{x} y z+x \bar{y} z$
- Each of the product terms implies the function being described by the formula: E.g. $x y z \rightarrow f(x, y, z)$
- Whenever product term has value 1 , function must also have value 1.
- Case of Conjunctive Normal Formula
- Product-of-sums form: E.g. $f(x, y, z)=(x+y+z)(\bar{x}+$ $y+\bar{z})$
- Each sum term is implied by the function: E.g. $f(x, y, z) \rightarrow$ $(x+y+z)$
- Whenever the sum term has value 0 , the function must also have value 0 .

Subsumes

- A term t_{1} is said to subsume a term t_{2} iff all the literals of the term t_{2} are also literals of the term t_{1}.
- Example: $x \bar{y} \bar{z}, x \bar{z}$

$$
x+\bar{y}+\bar{z}, x+\bar{z}
$$

- If a product term t_{1} subsumes a product term t_{2}, then t_{1} implies t_{2}.
- Why?
- If a sum term t_{3} subsumes a sum term t_{4}, then t_{4} implies t_{1}.
- Why?

Subsumes

- Theorem:
- If one term subsumes another in an expression, then the subsuming term can always be deleted from the expression without changing the function being described.
- CNF: $(x+y)(x+y+z)$
$-(x+y) \rightarrow(x+y+z)$
- DNF: $x y+x y z$
$-x y z \rightarrow x y$

Implicants and Prime Implicants

- A product term is said to be an implicant of a complete function if the product term implies the function.
- Each of the minterms in minterm canonical form is an implicant of the function.
- An implicant of a function is a prime implicant if the implicant does not subsume any other implicant with fewer literals.

Example

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	0	0	
1	1	1	0

$\bar{y} z$ is an implicant.
Is it a prime implicant?
Yes. \bar{y}, z are not implicants

