m-Notation, M-Notation

Lecture 5 supplement

Boolean Formulas and Functions

- Example: $f(x, y, z)=(\bar{x}+y) z$
- Can be specified via a truth table.

X	Y	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Normal Forms

- Consider the function:

$$
f(w, x, y, z)=\bar{x}+w \bar{y}+\bar{w} \bar{y} z
$$

- A literal is an occurrence of a complemented or uncomplemented variable in a formula.
- A product term is either a literal or a product (conjunction) of literals.
- Disjunctive normal form: A Boolean formula written as a single product term or as a sum (disjunction) of product terms.

Normal Forms

- Consider the function:

$$
f(w, x, y, z)=z(x+\bar{y})(w+\bar{x}+\bar{y})
$$

- A sum term is either a literal or a sum (disjunction) of literals.
- Conjunctive normal form: A Boolean formula written as a single sum term or as a product (conjunction) of sum terms.

Canonical Formulas

- How to obtain a Boolean formula given a truth table?

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{f}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Minterm Canonical Formula

| x | y | z | f |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | $\bar{x} z$ |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

m-Notation

\mathbf{X}	\mathbf{y}	\mathbf{z}	\mathbf{f}	
0	0	0	0	
0	0	1	1	$\bar{x} \bar{y} z$
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	$x \bar{y} \bar{z}$
1	1	0	0	
1	1	1	0	

- $f(x, y, z)$ can be written as $f(x, y, z)=m_{1}+$ $m_{3}+m_{4}$
- $f(x, y, z)=\Sigma m(1,3,4)$

Maxterm Canonical Formula

\mathbf{X}	\mathbf{Y}	z	\mathbf{f}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	1	$\bar{x}+\bar{y}+\bar{y}+\bar{z}$
1	1		
			$\bar{x}+\bar{y}+\bar{y}+\bar{z}$

$f(x, y, z)=(x+y+z)(x+\bar{y}+z)$
$(\bar{x}+y+\bar{z})(\bar{x}+\bar{y}+z)(\bar{x}+\bar{y}+\bar{z})$

M-Notation

X	Y	z	f	
0	0	0	0	$x+y+z$
0	0	1	1	
0	1	0	0	$x+\bar{y}+z$
0	1	1	1	
1	0	0	1	$\bar{x}+y+\bar{z}$
1	0	1	0	
1	1	0	0	$\bar{x}+\bar{y}+z$
1	1	1	0	

- $f(x, y, z)$ can be written as $f(x, y, z)=$ $M_{0} M_{2} M_{5} M_{6} M_{7}$
- $f(x, y, z)=\Pi M(0,2,5,6,7)$

