Introduction to Cryptology ENEE459E/CMSC498R: Homework 11

Due by beginning of class on 5/7/2015.

1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a different key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?

- 2. Consider the following key-exchange protocol:
 - (a) Alice chooses $k, r \leftarrow \{0, 1\}^n$ at random, and sends $s := k \oplus r$ to Bob.
 - (b) Bob chooses $t \leftarrow \{0,1\}^n$ at random and sends $u := s \oplus t$ to Alice.
 - (c) Alice computes $w := u \oplus r$ and sends w to Bob.
 - (d) Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

3. Consider the following key-exchange protocol:

Common input: The security parameter 1^n .

- (a) Alice runs $\mathcal{G}(1^n)$ to obtain (G, q, g).
- (b) Alice chooses $x_1, x_2 \leftarrow Z_q$ and sends $\alpha = x_1 + x_2$ to Bob.
- (c) Bob chooses $x_3 \leftarrow Z_q$ and sends $h_2 = g^{x_3}$ to Alice.
- (d) Alice sends $h_3 = g^{x_2 \cdot x_3}$ to Bob.
- (e) Alice outputs $h_2^{x_1}$. Bob outputs $(g^{\alpha})^{x_3} \cdot (h_3)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

- 4. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
- 5. Fix an RSA public key $\langle N, e \rangle$ and assume we have an algorithm A that always correctly computes lsb(x) given $[x^e \mod N]$. Write full pseudocode for an algorithm A' that computes x from $[x^e \mod N]$.