Introduction to Cryptology ENEE459E/CMSC498R: Homework 11

Due by beginning of class on 5/7/2015.

1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_{A} with Alice and a different key k_{B} with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?
2. Consider the following key-exchange protocol:
(a) Alice chooses $k, r \leftarrow\{0,1\}^{n}$ at random, and sends $s:=k \oplus r$ to Bob.
(b) Bob chooses $t \leftarrow\{0,1\}^{n}$ at random and sends $u:=s \oplus t$ to Alice.
(c) Alice computes $w:=u \oplus r$ and sends w to Bob.
(d) Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).
3. Consider the following key-exchange protocol:

Common input: The security parameter 1^{n}.
(a) Alice runs $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g).
(b) Alice chooses $x_{1}, x_{2} \leftarrow Z_{q}$ and sends $\alpha=x_{1}+x_{2}$ to Bob.
(c) Bob chooses $x_{3} \leftarrow Z_{q}$ and sends $h_{2}=g^{x_{3}}$ to Alice.
(d) Alice sends $h_{3}=g^{x_{2} \cdot x_{3}}$ to Bob.
(e) Alice outputs $h_{2}^{x_{1}}$. Bob outputs $\left(g^{\alpha}\right)^{x_{3}} \cdot\left(h_{3}\right)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).
4. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
5. Fix an RSA public key $\langle N, e\rangle$ and assume we have an algorithm A that always correctly computes $l s b(x)$ given $\left[x^{e} \bmod N\right]$. Write full pseudocode for an algorithm A^{\prime} that computes x from $\left[x^{e} \bmod N\right]$.

