Introduction to Cryptology ENEE459E/CMSC498R: Homework 5

Due by beginning of class on 3/10/2015.

- 1. Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a pseudorandom function. For all $sk \in \{0,1\}^n$ and for all input $x \in \{0,1\}^n$, define $F'_{sk}(x) := F_{sk}(x)||F_{sk}(x+1)$. Is F' a pseudorandom function? If yes, prove it; if not, show an attack.
- 2. Let F be a length-preserving pseudorandom function. For the following constructions of a keyed function $F': \{0,1\}^n \times \{0,1\}^{n-1} \to \{0,1\}^{2n}$, state whether F' is a pseudorandom function. If yes, prove it; if not, show an attack.
 - (a) $F'_k(x) := F_k(0||x)||F_k(1||x).$
 - (b) $F'_k(x) := F_k(0||x)||F_k(x||1).$
- 3. Consider the following keyed function F: For security parameter n, the key is an $n \times n$ Boolean matrix A and an n-bit Boolean vector b. Define $F_{A,b} : \{0,1\}^n \to \{0,1\}^n$ by $F_{A,b} := Ax + b$, where all operations are done modulo 2. Show that F is not a pseudorandom function.
- 4. Let F be a pseudorandom function and G be a psuedorandom generator with expansion factor ℓ(n) = n + 1. For each of the following encryption schemes, state whether the scheme has indistinguishable encryptions in the presence of an eavesdropper and whether it is CPA-secure. (In each case, the shared key is a uniform k ∈ {0,1}ⁿ.) Explain your answer.
 - (a) To encrypt $m \in \{0,1\}^{n+1}$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, G(r) \oplus m \rangle$.
 - (b) To encrypt $m \in \{0, 1\}^n$, output the ciphertext $m \oplus F_k(0^n)$.
 - (c) To encrypt $m \in \{0, 1\}^{2n}$, parse m as $m_1 ||m_2$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0, 1\}^n$ and send $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$.
- 5. What is the effect of a dropped ciphertext block (e.g., if the transmitted ciphertext c_1, c_2, c_3, \ldots is received as c_1, c_3, \ldots) when using the CBC, OFB, and CTR modes of operation?