Introduction to Cryptology ENEE459E/CMSC498R: Homework 6

Due by beginning of class on 4/2/2015.

1. Say $\Pi = (\text{Gen}, \text{Mac}, \text{Vrfy})$ is a secure MAC, and for $k \in \{0, 1\}^n$, the tag-generation algorithm Mac_k always outputs tags of length t(n). Prove that t must be super-logarithmic or, equivalently, that if $t(n) = O(\log n)$ then Π cannot be a secure MAC.

Hint: Consider the probability of randomly guessing a valid tag.

- 2. Assume secure MACs exist. Prove that there exists a MAC that is secure (by Definition 4.2) but is *not* strongly secure (by Definition 4.3).
- 3. Consider the following MAC for messages of length $\ell(n) = 2n 2$ using a pseudorandom function F: On input a message $m_0||m_1$ (with $|m_0| = |m_1| = n - 1$) and key $k \in \{0, 1\}^n$, algorithm Mac outputs $t = F_k(0||m_0)||F_k(1||m_1)$. Algorithm Vrfy is defined in the natural way. Is (Gen, Mac, Vrfy) secure? Prove your answer.
- Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticated fixed-length messages. (In each case Gen outputs a uniform k ∈ {0,1}ⁿ. Let (i) denote an n/2-bit encoding of the integer i.)
 - (a) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^n$, compute $t := F_k(m_1) \oplus \cdots \oplus F_k(m_\ell)$.
 - (b) To authenticate a message $m = m_1, \ldots, m_\ell$, where $m_i \in \{0, 1\}^{n/2}$, compute $t := F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle \ell \rangle || m_\ell)$.
- 5. Let F be a pseudorandom function. Show that each of the following message authentication codes is insecure. (In each case the shared key is a random $k \in \{0, 1\}^n$.)
 - (a) To authenticate a message $m = m_1 || \cdots || m_\ell$, where $m_i \in \{0, 1\}^n$, compute $t := F_k(m_1 \oplus \cdots \oplus m_\ell)$.
 - (b) To authenticate a message $m = m_1 || m_2$, where $m_1, m_2 \in \{0, 1\}^n$, compute $t := F_k(m_1) || F_k(m_2 \oplus F_k(m_1))$.
 - (c) To authenticate a message $m = m_1 || m_2$, where $m_1, m_2 \in \{0, 1\}^n$, compute $t := F_k(m_1 \oplus m_2) || F_k(m_2 \oplus F_k(m_1))$.
 - (d) To authenticate a message $m = m_1 || \cdots || m_\ell$, where $m_i \in \{0, 1\}^n$, choose $r \in \{0, 1\}^n$ at random and compute $t := r || F_k(m_1 \oplus r) || \cdots || F_k(m_\ell \oplus r)$.