Introduction to Cryptology ENEE459E/CMSC498R: Homework 7

Due by beginning of class on 4/9/2015.

- 1. Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k||m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgard transform.
- 2. For each of the following modifications to the Merkle-Damgard transform, determine whether the result is collision resistant. If yes, provide a proof; if not, demonstrate an attack.
 - (a) Modify the construction so that the input length is not included at all (i.e., output z_B and not $z_{B+1} = h^s(z_B||L)$). (Assume the resulting hash is only defined for inputs whose length is an integer multiple of the block length.)
 - (b) Modify the construction so that instead of outputting $z = h^s(z_B || L)$, the algorithm outputs $z_B || L$.
- 3. Generalize the Merkle-Damgard construction for any compression function that compresses by at least one bit. You should refer to a general input length ℓ' and general output length ℓ (with $\ell' > \ell$).
- 4. Let (Gen, H) be a collision-resistant hash function and let F be a PRF. For each of the following, state whether \hat{H} is necessarily collision resistant. Justify your answer.
 - (a) $\hat{H}^{s}(x_{1}||x_{2}) = H^{s}(x_{1})||H^{s}(x_{2}).$
 - (b) $\hat{H}^s(x_1||x_2) = H^s(x_1 \oplus x_2).$
 - (c) $\hat{H}^s(x_1||x_2) = H^s(x_1 \oplus F_s(x_2)).$
 - (d) $\hat{H}^{s}(x) = H^{s}(H^{s}(x)).$