Introduction to Cryptology ENEE459E/CMSC498R: Homework 9

Due by beginning of class on 4/23/2015.

1. Compute $3^{1000} \bmod 100$ by hand.
2. Compute $\left[101^{4,800,000,023} \bmod 35\right]$ by hand.
3. Let $N=p q$ be a product of two distinct primes. Show that if $\phi(N)$ and N are known, then it is possible to compute p and q in polynomial time.

Hint: Derive a quadratic equation (over the integers) in the unknown p.
4. Let $N=p q$ be a product of two distinct primes. Show that if N and an integer $d \leq \phi(N)$ such that $3 \cdot d=1 \bmod \phi(N)$ are known, then it is possible to compute p and q in polynomial time.

Hint: Obtain a small list of possibilities for $\phi(N)$ and then use the previous exercise.
5. Fix N, e with $\operatorname{gcd}(e, \phi(N))=1$, and assume there is an adversary A running in time t for which

$$
\operatorname{Pr}\left[A\left(\left[x^{e} \bmod N\right]\right)=x\right]=0.01
$$

where the probability is taken over uniform choice of $x \in Z_{N}^{*}$. Show that it is possible to construct an adversary A^{\prime} for which

$$
\operatorname{Pr}\left[A^{\prime}\left(\left[x^{e} \quad \bmod N\right]\right)=x\right]=0.99
$$

for all x. The running time t^{\prime} of A^{\prime} should be polynomial in t and $\|N\|$.
Hint: Use the fact that $y^{1 / e} \cdot r=\left(y \cdot r^{e}\right)^{1 / e}$.

