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Instability of a Tandem Network and
Its Propagation Under RED

Richard J. La

Abstract—The interaction between a random early detection (RED)
gateway and transmission control protocol (TCP) connections has been
shown to lead to a rich set of nonlinear phenomena in single bottleneck
cases. We extend this work and study the interaction of TCP connections
with RED gateways in a simple tandem network, using a nonlinear
first-order discrete-time model. We demonstrate that the nonlinear
behavior of TCP can result in both smooth and nonsmooth bifurcations,
leading to chaos. We show that the instabilities can be induced at both
bottlenecks by changing the system parameters only at one of the
bottlenecks while fixing the parameters at the other, thus demonstrating
the propagation of instability. Moreover, we show that locally sufficient
conditions for stability based on single node analysis are not sufficient for
global network stability.

Index Terms—Bifurcation, congestion control, network stability.

I. INTRODUCTION

The random early detection (RED) mechanism, proposed by Floyd
and Jacobson [3], attempts to control the congestion level at a bottle-
neck by monitoring the average queue size. Although the RED mecha-
nism is conceptually simple and easy to understand, its interaction with
transmission control protocol (TCP) connections has been shown to be
rather complex and is not well understood [7], [9], [12]. Ranjan et al.
have used a simple nonlinear model to investigate the behavior of a
simple single link network with a RED gateway and TCP connections
[12]. They have demonstrated that such a system leads to nonlinear
phenomena, such as oscillations and chaos, if the control parameters
are not selected carefully [12].
Although the RED was proposed almost a decade ago, it has not

been widely deployed in practice, mainly due to a lack of agreement
on parameter setting and/or evidence that it significantly improves the
performance [1]. This problem is further complicated by a lack of un-
derstanding of how congestion in one part of network affects another
part of the network [5]. In this note we take the first step toward rem-
edying this situation. Our starting point is [12], which discusses the
parametric sensitivity of RED in the context of only single bottleneck.
Hence, [12] does not address the issues in multiple bottleneck cases
we are interested in. We extend the model for single bottleneck cases
in [12] to a tandem network and study the interaction of the REDmech-
anism with TCP connections. This tandem network can be viewed as a
network with two dominant bottleneck links.
It turns out even this simple tandem network has enough structure

to illustrate some of important issues in multiple bottleneck cases that
are of interest to us. We first show the existence of both smooth and
nonsmooth bifurcations, i.e., classical period doubling bifurcation and
border collision bifurcation, as parameters are varied, which lead to
queue oscillations at the bottlenecks. We then demonstrate that these
instabilities can be induced by varying the parameters only at one of the
bottlenecks, while keeping the parameters at the other bottleneck fixed.
This suggests that, in some cases of general networks, a queue oscilla-
tion induced by one node can spread to other nodes, making it difficult
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to isolate the source of the instability. Furthermore, the locally suffi-
cient conditions for stability based on single node analysis are shown
to be not sufficient to guarantee the global network stability. This re-
sult suggests that the stability conditions obtained from the single node
analysis may not be strong enough to provide a guideline for indepen-
dently setting RED parameters at the gateways in a general network,
and some form of coordination may be necessary to ensure global sta-
bility.

The rest of the note is organized as follows. Sections II and III present
the nonlinear first-order discrete-time model that is used for our anal-
ysis. Section IV discusses the local stability of equilibrium points. Sec-
tion V presents a numerical example based on our analytical model.

II. NONLINEAR FIRST-ORDER DISCRETE-TIME MODEL

We consider a simple network of two links that are shared by many
connections, as shown in Fig. 1. As mentioned before, this network can
be viewed as a network with two dominant bottleneck links but with
other links that are not bottlenecks. We denote the set of connections
that traverse both links l1 and l2 by I1; I1 = f1; . . . ; N1g, and the con-
nections that traverse only the second link l2 by I2; I2 = f1; � � � ; N2g.
All connections are assumed to be TCP Reno connections that are ex-
plicit congestion notification (ECN) capable [4]. The capacity of links
l1 and l2 are denoted by C1 and C2, respectively, and the buffer sizes
at nodesR1 andR2 byB1 andB2, respectively. The packet size of the
connections is denoted byM , which can be interpreted as the average
packet size of the connections. We assume that the RED queue man-
agement mechanism with ECN capability is implemented at nodes R1

andR2 in order to control the average queue size at the routers. A RED
gateway marks/drops a packet with a probability p, which is a function
of the average queue size qave as follows [3]1 :

p(qave) =

0; if qave < qmin

1; if qave > qmax

q �q

q �q
pmax; otherwise

(1)

where qmin and qmax are the lower and higher threshold values, and
pmax is the selected marking/drop probability when qave = qmax. The
average queue size is updated at the time of packet arrival according to
the exponential averaging

qavenew = (1� w)qaveold + w � qcur (2)

where qcur is the queue size at the time of arrival, andw is the exponen-
tial averaging weight, which determines the time constant of the aver-
agingmechanism and how fast the RED can react to time-varying load.2

On one hand, the averaging weight should be selected small enough
so that transient, temporary congestion does not result in an oscillation
of the packet marking/drop probability. On the other hand, the weight
should be set large enough so that the RED can react to changes in load
in a timely manner. These are conflicting goals, and the selection of the
parameters affects the interaction of the REDmechanism with adaptive
sources, such as TCP.

The connections are assumed to be long-lived, and the set of connec-
tions remains fixed for the time period of interest. Although here we
consider only long-lived connections, similar behavior has been ob-
served when short-lived connections coexist with long-lived connec-
tions [9]. In order to have a tractable model we assume that all connec-

1In practice, an RED gateway marks/drops a packet with a modified proba-
bility in order to lead to a more uniform marking/dropping pattern [3].

2This is a simplification of the formula that does not take into consideration
idle periods of the queue.

Fig. 1. Network model.

tions in I1 have the same roundtrip propagation delay (RTPD) d1 and
all connections in I2 have the same RTPD d2. Rather than interpreting
this assumption as a requirement that the connections must have the
same propagation delay, one should consider the delay dj as the effec-
tive delay that represents the average propagation delay of the connec-
tions in Ij , or this could describe a case where the bottleneck links have
large propagation delays that dominate the roundtrip delays of connec-
tions, e.g., intercontinental Internet links. This allows us to reduce the
problem with N1 + N2 connections to a two-connection system that
represents the set of connections and study its behavior. See [8] for
ns-2 simulation results with heterogeneous roundtrip delays.
Given the roundtrip time (RTT) R and packet marking/drop prob-

ability p, the stationary throughput of a TCP Reno connection can be
approximated by

T (p;R) =
MKp
pR

+ o
1p
p

(3)

whereK is some constant in [1; 8=3] [10], [11], when packet losses
are detected through triple-duplicate acknowledgment. In this note,
we assume K = 3=2 [11]. We approximate TCP throughput with
MK=

p
pR to facilitate our analysis. Although we use this simple ap-

proximation for TCP throughput to facilitate our analysis, our qualita-
tive results do not depend on this particular form of approximation, and
are consequences of rather benign nonlinear behavior of TCP and hold
with more sophisticated models for TCP throughput.
TCP adjusts its transmission rate depending on whether it has de-

tected a packet mark/drop or not. Therefore, a network with an AQM
mechanism can be viewed as a feedback system, where TCP sources
adjust their transmission rates based on the feedback from the AQM
mechanism. This feedback is in the form of marked/dropped packets
and is delayed by an RTT of the connection. This can be modeled as
a stroboscopic map where the instant of observation is approximately
one RTT. Since the AQMmechanism should allow enough time for the
connections to react to control actions before the control action changes
significantly, it is natural to model the system as a discrete-time system.
Moreover, our results in [13] illustrate that there exists a natural dis-
crete-time model corresponding to delay-differential equations which
arises in studying system stability of a rate control mechanism with
a communication delay, and the stability of one can be inferred from
that of the other when the delay is large. In other words, the stability
of the system given by delay-differential equations can be determined
by studying the stability of the underlying discrete-time system. There-
fore, our model here can be interpreted as the underlying discrete-time
model corresponding to the system given by delay-differential equa-
tions (e.g., [7] and [9]).
We use a nonlinear dynamic first-order discrete-time model to ana-

lyze the interaction of the RED gateways with TCP connections, which
was first proposed by Firoiu and Borden [2]. We define the control
system as follows. The packet marking probabilities p

k
= (p1k; p

2

k)

at period k, k � 1, where pjk is the marking probability at node Rj ,
j = 1,2, determine the throughput of the connections and the queue
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sizes q
k+1

= (q1k+1; q
2
k+1) at period k + 1, based on the system

constraints. The queue sizes at period k + 1 are used to compute the
average queue sizes qj;avek+1 , j = 1; 2, at period k + 1 according to
the exponential averaging rule in (2). Then, the average queue sizes
qave
k+1

= (q1;avek+1 ; q
2;ave

k+1 ) are used to calculate the packet marking prob-
abilities p

k+1
at period k + 1, which are the control variable of the

AQM mechanism. This can be mathematically written as follows:

plant function : q
k+1

=G(p
k
) (4)

averaging function : qave
k+1

=A qave
k
; q

k+1
(5)

control function : p
k+1

=H qave
k+1

(6)

where A(qave
k
; q

k+1
) = (1 � w) � qave

k
+ w � q

k+1
as given in (2),

w = (w1; w2), and the control function H(qave
k+1

) = p(qave
k+1

) in (1).
These multiplications are component-wise, and the underline is used
to denote a vector. The exact form of the plant function G(�) depends
on the system parameters such as the number of connections, nature of
connections, roundtrip delays, etc., and is described in the following
section.

III. INTERACTION OF RED GATEWAYS WITH TCP CONNECTIONS

We now describe the plant function G(�) that is used for analyzing
the system. In order to compute the plant function we assume the fol-
lowing: Given the packet drop probability at period k the aggregate
throughput of the connections is given by the stationary throughput
formula in (3). The use of stationary throughput formula for computing
the plant function can be justified as follows. As mentioned earlier the
exponential averaging weight should be chosen sufficiently small so
that the average queue size qave does not fluctuate much due to tran-
sient, temporary fluctuations in the arrival rate. This implies that the
exponential averaging weight should be small enough so that the time
constant determined by the averaging weight would be larger than the
effective RTT of the connections in order to avoid a fast oscillation in
the packet marking/drop probability. When the exponential averaging
weight is reasonably small, as it should be, and the number of connec-
tions is large with a nonnegligible RTT, the TCP connections’ dynamics
operate at a faster time-scale than the evolution of the average queue
size and the aggregate throughput (or workload) presented by the con-
nections sees a quasi-stationary behavior before the average queue size
changes significantly.

We now proceed to define the plant function. Suppose p
k
= (p1k; p

2
k)

denote the packet marking probabilities at period k, k � 1. Let p3k =
1� (1� p1k)(1� p2k) = p1k + p2k � p1k � p2k . We define pu to be

pu = inf p 2 [0; 1]
MKp
pd1

� C1

N1

=
N1MK

C1d1

2

(7)

which is the smallest probability such that all p3k � pu lead to q1k+1 =
0 and is assumed to be smaller than one. Based on packet marking
probabilities p

k
we compute the queue sizes q

k+1
= (q1k+1; q

2
k+1) at

period k + 1 by considering different cases as follows.

Case 1)—p3k � pu: We define

p2;u(p
k
) = inf p 2 <+

N2MKp
pd2

� C2 � N1MK

p3kd1
: (8)

This is the smallest probability that results in q2k+1 = 0 given
p3k � pu.

Case 1a)—p2k � p2;u(p
k
): In this case from (7) and (8) one

can see that q
k+1

= 0.

Case 1b)—p2k < p2;u(p
k
): In this case, q1k+1 = 0 and q2k+1 =

min(B2; ~q
2(p

k
)), where ~q2(p

k
) is the solution to

N1MK

p3k d1 +
q M

C

+
N2MK

p2k d2 +
q M

C

= C2: (9)

If we assume that d1 = d2, then ~q2(p
k
) = (N1K= p3k) +

(N2K= p2k) � (C2d2=M).
Case 2)—p3k < pu: There exist a set of (q1; q2) � 0 such that

N1MK

p3k d1 +
q M

C
+ q M

C

= C1: (10)

Let q2;max

k = (N1KC2= p3kC1) � (d1C2=M),
i.e., q2 that satisfies (10) with q1 = 0, and
q2uk = max(0; (N2KC2=( p2k(C2 � C1))) � (d2C2=M)),
where the second term is the solution to
(N2MK=( p2k(d2 + (q2M=C2)))) = C2 � C1.

Case 2a)—q2uk � min(B2; q
2;max

k ): In this case, the queue
size q2k+1 = q2uk and q1k+1 = min(B1; ~q

1(q2k+1; pk)),
where ~q1(q2k+1; pk) is q1 that satisfies (10)
with q2 = q2k+1 = q2uk , i.e., ~q1(q2k+1; pk) =

(N1K= p3k) � (d1C1=M)�(q2k+1C1=C2) =

(N1K= p3k)� (d1C1=M)�(q2uk C1=C2).
Case 2b)—q2uk > min(B2; q

2;max

k ): In this case the
queue size q2k+1 = min(B2; ~q

2(p
k
)) and q1k+1 =

max(0;min(B1; ~q
1(q2k+1; pk))), where ~q2(p

k
) is the

solution to (9), and ~q1(q2k+1; pk) = (N1K= p3k) �
(C1d1=M)�(C1q

2
k+1=C2) as in the previous case.

From the aforementioned information, we can compute q
k+1

as a
function of p

k
, and hence we have the plant function shown in (11)

and (12) at the bottom of page to complete our discrete-time model
described in Section II. From (4) to (6) and the plant function G(�)
given in (11) and (12), we define a mapping

qave
k+1

= (1� w) � qave
k

+ w � AG H qave
k

:= g qave
k
; � (13)

where � summarizes the system parameters, including the exponential
averaging weights w, and multiplications are component-wise. Equa-
tion (13) maps the average queue sizes at period k to the average queue
sizes at period k + 1.

IV. STABILITY OF THE SYSTEM

A fixed point of the mapping g(�; �) is a vector of average queue
sizes q� such that q� = g(q�; �). Given the system parameters one
can find such a fixed point q�, if there is any, by solving (13) with the
given A(�), G(�), and H(�). The local stability of the fixed point q�

can be studied by looking at the eigenvalues of the Jacobian matrix
J = [Jij ; i; j = 1; 2] of the mapping g(�; �) in (13), where Jij =
(@gi=@q

j). Depending on where the fixed point q� = (q1�; q2�) of
the system lies, there could be several different cases. In this section
we only consider the case where q� satisfies case (2a) in Section III,
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which is the most interesting case from the operational point of view.
In this case, G1(p) and G2(p), where p = H(q�), are given by

G1(p) =min B1;
N1K

p3k
� N2KC1

p2k(C2�C1)
+
(d2�d1)C1

M

G2(p) =max 0;
N2KC2

p2k(C2�C1)
� d2C2

M
(14)

where p1 = ((q1� � q1min)=(q
1
max � q1min))p

1
max, p

2 = ((q2� �
q2min)=(q

2
max � q2min))p

2
max, and p

3 = p1 + p2 � p1 � p2. We assume
that the fixed point is an interior point, i.e., 0 < q� < B.

From (14), one can see that g2(�; �) does not depend on q1� and,
hence, J21 = 0. Therefore, the eigenvalues of the Jacobian matrix are
given by J11 and J22, where

J11 =1� w1 � w1 � N1K(1� p2)�1

2(p1 + p2 � p1 � p2)1:5

J22 =1� w2 � w2 � N2KC2

2 p2 (q2� � q2min) (C2 � C1)

and �j = pjmax=(q
j
max � qjmin), j = 1; 2. We investigate how these

eigenvalues behave as the exponential averaging weights vary in the
following section.

V. NUMERICAL RESULTS

A bifurcation diagram shows the qualitative changes in the nature or
the number of fixed points of a dynamical system with varying param-
eters. In this section we only vary the exponential averaging weights
and study the stability of the system. However, similar results can be
obtained with any of the system or control parameters (see [12]). The
x-axis is the parameter that is being varied, and the y-axis plots the
set of fixed solutions (with a period of one or higher) corresponding to
the value of the parameter. For generating the bifurcation diagrams, in
each run we randomly select four random initial average queue sizes,
qave
1

(0), qave
2

(0), qave
3

(0), and qave
4

(0), and these average queue sizes
evolve according to the map g(�; �) in (13), i.e.,

qave
i

(k) = g qave
i

(k � 1); � ;

for k = 1; . . . ; 1; 000 and i = 1; 2; 3; and 4:

We plot qave
i

(k), k = 991; . . . ; 1; 000 and i = 1; 2; 3; 4. Hence, if
there is a single stable fixed point or attractor q� of the system at some
value of the parameter, all qave

i
(k) will converge to q� and there will

be only one point along the vertical line at the value of the parameter.
However, if there are two stable fixed points, ~qave

1
and ~qave

2
, with a

period of two, i.e., g(~qave
i
; �) 6= ~qavei and g(g(~qavei ; �)) = ~qave

i
, i =

1; 2, then there will be two points along the vertical line and the average
queue sizes will alternate between ~qave

1
and ~qave

2
.

The parameters used in the numerical examples are as follows:

q
max

=(600; 1200); q
min

=(200; 400); p
max

=
1

8
;
1

8

C =(12; 30) Mbps; K=
3

2
; B=(1000; 2000)

d1 = d2 = 0:1 s; M=4; 000 bits; N1=N2=100:

A. Instability of the Tandem Network

Fig. 2(a) and (b) plot the set of stable fixed points as a function of
exponential averaging weights w = w � (1; 1), where w is the value
along the x-axis. The y-axis plots the average queue sizes per flow, i.e.,
q1;ave=N1 and q2;ave=(N1 + N2). Fig. 2(c) and (d) show the actual
queue sizes per flow. One can see that there is a unique fixed point of
the system q� = (2:12 � N1; 2:78 � (N1 + N2)) for w < 0:3862. At
w = 0:3862, the initial period doubling bifurcation occurs, and the
queue size begins to oscillate. This can be also verified by computing
the eigenvalue J22 and showing that it hits the unit circle at �1 [6].
A careful investigation of the bifurcation diagrams reveals that the

second period doubling bifurcation at w = 0:464 is not a classical pe-
riod doubling bifurcation, but rather a period doubling bifurcation due
to a border collision. Here, a border is a region at which the behavior of
queue sizes changes from one case to another in Section III. If a fixed
point collides with a border, there is a discontinuous change in the Ja-
cobian matrix of the mapping. This border collision bifurcation leads
to a cascade of bifurcations, resulting in chaos as shown in Fig. 2.
This border collision bifurcation illustrates the impact of an insta-

bility on the system throughput. Note that the distance between the ini-
tial period doubling bifurcation point and the border collision bifurca-
tion point is relatively short. Hence, once the system becomes unstable,
the queue sizes quickly start oscillating widely, often leading to empty
queues and a waste of resources.

G1(p
k
) = q1k+1

=

0; if p3k � pu

min B1;
N Kp
p
� d C

M
� q C

C
; if p3k < pu and q2uk � min B2; q

2;max

k

max 0;min B1; ~q
1 min B2; ~q

2(p
k
) ; p

k
; otherwise

(11)

and

G2(p
k
) = q2k+1

=

0; if p3k � pu and p2k � p2;u(p
k
)

min B2; ~q
2(p

k
) ; if p3k � pu and p2k < p2;u(p

k
)

q2uk ; if p3k < pu and q2uk � min B2; q
2;max

k

min B2; ~q
2(p

k
) ; otherwise

(12)
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Fig. 2. Bifurcation diagrams. (a) , (b) , (c) , and (d) .

B. Propagation of Instability

In this section, we only vary the exponential averaging weight of the
second bottleneck link l2. Fig. 3 plots the average queue sizes per flow,
i.e., q1;ave=N1 and q2;ave=(N1+N2), as a function of w = (0:1; w).
One can see that, as in Fig. 2, there is a unique fixed point of the system
q� = (2:12 �N1; 2:78 � (N1 +N2)) for w < 0:3862. At w = 0:3862
the initial period doubling bifurcation takes place as in the previous
subsection. Hence, althoughw1 is much smaller in this case (w1 is fixed
at 0.1), the initial bifurcation occurs at the same value ofw as in Fig. 2.
In fact the border collision bifurcation, which leads to chaos, occurs at
the same value as well, as shown in Figs. 2 and 3. This can be explained
as follows. In this example, the fixed point q� satisfies case (2a), and
the eigenvalue of the Jacobian matrix with larger magnitude for the
given range of w in this example is J22, which does not depend on q1�

because g2(�; �) is a function only of q2;ave as shown in Section IV.
This example demonstrates that in a general network an instability

caused by one bottleneck may propagate to other parts of the network.
Hence, even if the majority of the routers are properly configured, if a
handful of routers are misconfigured, then a large portion of the net-
work may experience an oscillation in queue sizes, which may make it
difficult to isolate the source of instability and correct it.

This numerical example also illustrates the fact that locally sufficient
conditions for stability are not enough to guarantee the global network
stability as will be shown here. Note from [12] that the initial period
doubling bifurcation point in a single bottleneck case is given by

w� =
2

1 + NK

2
p
�(q �q )

(15)

where � = pmax=(qmax�qmin), andN is the number of connections.
The fixed point q� can be computed as the positive real solution to the
following third-order polynomial:

(q� � qmin) q� +
dC

M

2

�

(NK)2

�
= 0:

Suppose that we isolate each bottleneck link and assume that the other
link is not a bottleneck. In other words, we select one bottleneck link in
the tandem network at a time and remove the other bottleneck and the
connections not traversing the selected bottleneck link. This allows us
to study how congestion at one bottleneck affects the queue behavior
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Fig. 3. Bifurcation diagrams. (a) . (b) .

at another and the stability of the overall network. Equation (15) yields
the bifurcation points of 0.5674 and 0.4692 for the first and second bot-
tleneck links, respectively, when they are considered separately. There-
fore, from Figs. 2 and 3 one can see that the locally sufficient conditions
thatw1 < 0:5674 andw2 < 0:4692 based on the single node analysis,
are not sufficient to guarantee the global network stability. The ns-2
simulation results for these numerical examples are given in [8].

This has rather serious practical implications. First, if the instability
propagates from one bottleneck to another, it is difficult to track down
its source since every bottleneck that exhibits an instability needs to
be checked. Moreover, even if every bottleneck is checked, it may still
be difficult to locate the source. Second, even when a network man-
ager can somehow estimate all system parameters and satisfy the lo-
cally sufficient conditions for stability based on the single node anal-
ysis [9], [12], these locally sufficient conditions at individual nodes do
not guarantee the global stability of the network, and some of the nodes
may still experience an oscillation in queue size. These issues on pa-
rameter selection pose a serious challenge to network engineers since
different sets of bottlenecks connections traverse (determined by the
routing algorithms) may belong to different domains, and ensuring the
global network stability may require communication and cooperation
between these domains.
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