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Abstract—This work develops a discrete-time dynamical feed-
back system model for a simplified TCP network with RED control
and provides a nonlinear analysis that can help in understanding
observed parametric sensitivities. The model describes network
dynamics over large parameter variations. The dynamical model
is used to analyze the TCP-RED operating point and its stability
with respect to various RED controller and system parameters.
Bifurcations are shown to occur as system parameters are varied.
These bifurcations, which involve the emergence of oscillatory
and/or chaotic behavior, shed light on the parametric sensitivity
observed in practice. The bifurcations arise due to the presence
of a nonlinearity in the TCP throughput characteristic as a func-
tion of drop probability at the gateway. Among the bifurcations
observed in the system are period doubling and border collision
bifurcations. The bifurcations are studied analytically, numeri-
cally, and experimentally.

Index Terms—Congestion control, nonlinear instability, RED,
TCP.

I. INTRODUCTION

WITH the growing size and popularity of the Internet, con-
gestion control has emerged as an important problem.

Poor management of congestion can render a network partly or
fully inaccessible and significantly degrade the performance of
networking applications. Researchers have proposed various ap-
proaches for addressing this issue. One approach is to keep the
network simple and place most of the required intelligence at the
end hosts by implementing a more sophisticated end-user rate
control allocation [5], [19]. Another approach is to control the
congestion level at each router through active queue manage-
ment (AQM) mechanisms, eg., Random Early Detection (RED)
[8], Random Early Marking (REM) [2], Virtual Queue (VQ) [9],
and Adaptive Virtual Queue (AVQ) [18]. A common goal of
these AQM mechanisms is to detect early signs of congestion
and provide feedback to the adaptive sources so that congestion
can be avoided without causing a significant degradation in net-
work performance.

The RED mechanism, proposed by Floyd and Jacobson [8],
attempts to control the congestion level at a bottleneck by mon-
itoring and updating the average queue size. The basic idea of
RED is to sense impending congestion before it happens and
provide feedback to the sources by either dropping or marking
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their packets. The packet marking/dropping probability is the
control administered by the RED gateways when they detect
queue build-up beyond a certain threshold. Although the RED
mechanism is conceptually very simple and easy to understand,
its interaction with Transmission Control Protocol (TCP) con-
nections has been found to be rather complex and is not well
understood. Most of the rules for setting the parameters of the
RED mechanism are based on limited empirical data and come
from networking experience. These rules have been evolving,
as our understanding of the effects of controller parameters in-
creases. There are reports that discourage wide deployment of
RED (e.g., [26]), arguing that there is insufficient consensus on
how to select controller parameter values and that RED does not
provide a drastic improvement in performance.

Hollot et al. have developed a linearized model of a RED
gateway with TCP connections to characterize the stability
region of the system. Using their single-node analysis, they
provided guidelines for selection of RED parameters. Also,
based on their observation that exponential averaging introduces
an unnecessary feedback delay, they proposed proportional and
proportional-integral controllers to improve the responsiveness
and stability of the RED mechanism [12], [13].

Low et al. have argued that the dynamic behavior of a router
queue is governed mostly by the stability of TCP-RED rather
than by the detailed dynamics of the Additive-Increase-Mul-
tiplicative-Decrease (AIMD) mechanism [23]. This argument
forms the basis for multilink multisource utility-based models
for studying the interaction of TCP with RED gateways and
for a local stability condition in the single-link case. Tinnakorn-
srisuphap and Makowski used a discrete-time stochastic model
to investigate the interaction of a RED gateway with long-lived
TCP connections [36]. They have shown that, as the number of
TCP connections increases, the queue size per connection con-
verges to a deterministic process, which can be easily computed,
and the TCP connections become asymptotically independent.
This implies that, with a large number of TCP connections, a
RED gateway breaks the synchronization among the connec-
tions. Tinnakornsrisuphap, La, and Makowski have extended
this model to incorporate the session dynamics, i.e., arrivals and
departures of TCP connections, where the workload brought in
by a TCP connection is given by a probability law [35]. Similar
results have been obtained using differential equations [3].

As noted above, the behavior of a network with TCP at the
end nodes and RED at the routers is not well understood and
indeed has been found to at times exhibit erratic behavior. To
improve the understanding of TCP-RED network dynamics in
congested regimes, we follow a nonlinear modeling and anal-
ysis framework. In congested regimes, when the number of con-
nections is large, the stochastic nature of incoming traffic is of
less importance, and the network can be approximated as a de-
terministic system. This allows us to use nonlinear analysis and
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detailed simulations to explore network behavior over a wide
range of parameter values. The major difference between the
present work and earlier deterministic studies of TCP-RED is
that here we are able to model the generic nonlinear effects of
TCP beyond linear operating regimes.

We use a deterministic nonlinear dynamical model of a simple
network with TCP connections and a RED gateway. The basic
model that we consider was originally proposed by Firoiu
and Borden [6]. We modify their model with a simpler TCP
throughput function [11], [25] to facilitate the analysis while
keeping the dominant nonlinearity. Our work goes beyond a
simple linear stability analysis and studies regions where non-
linear instabilities occur due to nonlinearity of the throughput
function combined with buffer space limits becoming active. The
effect of these nonlinearities and the global dynamics of network
protocols have not been explored thoroughly. We show that the
model exhibits a rich variety of bifurcation behavior, leading to
irregular network operation.Asparametersare varied, the system
dynamics are shown to transition between a stable fixed point and
oscillatory or chaotic behavior. The paper will also describe the
detrimental consequences of oscillatory or chaotic behavior on
the performance of adaptive sources, such as TCP sources.

We show that the model proposed in [6] can be rewritten
as a first-order discrete-time nonlinear dynamical model. This
modeling framework is very much in the spirit of self-clocked
models proposed by Jacobson [15]. Replacing the TCP
throughput function in [6] with a simpler function enables an
analytical study of the system and provides us with insight as
to how one may be able to improve system behavior. However,
our qualitative results do not rely on the particular form of
throughput function used.

Finally, this work is directly related to the Network Weather
Service [37] and to other similar network performance-fore-
casting systems generally used in grid computing. The Network
Weather Service is a distributed system that periodically moni-
tors and dynamically forecasts the performance that various net-
work and computational resources can deliver over a given time
interval. The service operates a distributed set of performance
sensors (e.g., network monitors and CPU monitors) from which
it gathers readings of instantaneous conditions. It then uses nu-
merical time-series models to generate forecasts of conditions
over a given time horizon. The models proposed here and their
analysis illustrate how a simple two-node network (client and
server) can transition into a regime of unpredictable behavior.
The understanding of the underlying dynamics can significantly
enhance the prediction capabilities, leading to better QoS and
better utilization of networking/computing resources.

The rest of the paper is organized as follows. Section III
presents the nonlinear first-order discrete-time model that is
used in the analysis. In Section IV, the fixed point of the model
is determined and an associated period doubling bifurcation
(PDB) is analyzed. The border collision bifurcation from
the period-doubled orbit is studied in Section V. Section VI
contains numerical examples illustrating bifurcations and
nonlinear instabilities in the model. An analytical study of suf-
ficient conditions for chaotic behavior is given in Section VII.
In Section VIII, -2 simulation results are given. Concluding
remarks are collected in Section IX.

II. BACKGROUND ON TCP AND RED

In this section, we first briefly explain the main protocols, the
interaction of which is the main subject of this paper.

A. Transmission Control Protocol

TCP is the most popular form of congestion control protocol
adopted by responsive end-user applications. The transmis-
sion rate of a TCP connection is controlled by its congestion
window size that determines the maximum number of out-
standing packets that have not been acknowledged. TCP
operates in two different modes. When a TCP connection is
first initiated, it starts in slow start (SS) mode. In SS mode, the
connection increases its congestion window size by one for
each acknowledged packet until it receives the first congestion
notification, e.g., packet drop or marking, at which time it
switches to congestion avoidance (CA) mode. In CA mode, the
congestion window size is increased by one during the course
of a round-trip time (RTT) if the connection does not receive
any congestion notification. When a connection receives a
congestion notification, the congestion window size is reduced
to half of the current value. This is often referred to as the
AIMD mechanism.

Due to its popularity and important role in proper manage-
ment of congestion inside the network, the behavior of TCP has
been much studied, and it is well understood in the context of a
single flow. It has been shown that, given the RTT and packet
loss probability , the stationary throughput of a TCP Reno con-
nection can be approximated by

(1)

where is some constant in (see [11], [25], [28], and
[30]), when packet losses are detected through triple-duplicate
acknowledgment. We will use this formula for TCP throughput
in our analysis, assuming TCP flows are in CA mode unless
mentioned otherwise.

B. Random Early Detection

RED is one of the first AQM mechanisms proposed by Floyd
and Jacobson [18]. A RED gateway estimates the congestion
level by monitoring and updating its average queue size. In order
to maintain a relatively small (average) queue size, rather than
waiting until the buffer overflows, it drops a packet with a certain
probability to provide an early signal of impending congestion
when the average queue size exceeds a threshold. This packet
dropping probability is a function of the average queue size

of the following form [18]:1

if
if

otherwise
(2)

1In practice, a RED gateway drops a packet with a modified probability in
order to lead to a more uniform drop pattern [8].
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Fig. 1. Topology of the network.

where and are the lower and upper threshold values,
and is the selected drop probability when .
The average queue size is updated at the time of packet arrival
according to the exponential averaging

(3)

where is the current queue size, i.e., the queue size at the
time of arrival, and is the exponential averaging weight, which
determines the time constant of the averaging mechanism and
how fast the RED mechanism can react to a time-varying load.
On the one hand, the averaging weight should be selected suf-
ficiently small so that transient temporary congestion does not
result in an oscillation of the packet drop probability. On the
other hand, the averaging weight should be set large enough so
that the RED mechanism can react to changes in load in a timely
manner. These are two conflicting goals, and the selection of
the parameters will affect the interaction of the RED mecha-
nism with adaptive sources, such as TCP. In this paper, how-
ever, we show that the averaging weight cannot be set arbitrarily
large without causing an oscillatory behavior at the bottlenecks,
which affects TCP performance.

III. DISCRETE-TIME FEEDBACK MODEL FOR TCP-RED

We consider a simple network where a single bottleneck link
is shared by many connections. This is shown in Fig. 1. This can
be viewed as a network where there exists a dominant bottle-
neck shared by connections, e.g., a bottleneck intercontinental
Internet link. Let , , denote the set of con-
nections. The set of connections is assumed to remain fixed for
the time period of interest. The capacity of the shared link is
denoted by . We assume that the RED queue management
mechanism is implemented at each node in order to control the
average queue size at the router. If an Explicit Congestion No-
tification (ECN) mechanism is implemented, the RED gateway
marks the packet by setting the ECN bit in the IP header of the
packet if the transport layer is ECN capable. This is indicated in
the packet through an ECN Capable Transport (ECT) bit in the
IP header. If the source is not ECN-capable, the RED gateway
drops the packet [7]. The goal of the controller is to keep the
aggregate transmission rate of the connections close to the link
capacity, while maintaining a reasonably small average queue
size between and .

All connections are assumed to be long-lived TCP Reno con-
nections. We assume that the connections are uniform and have
the same round-trip propagation delay (without any queueing
delay), which is denoted by . However, rather than interpreting
this assumption as a requirement that the connections must have
the same propagation delay, one should consider the delay as
the effective delay that represents the overall propagation delay

of the connections, or this could describe a case where the bot-
tleneck link has a large propagation delay that dominates the
round-trip delays of the connections, e.g., an intercontinental
Internet link. We denote the rate or throughput of a connection
by and the packet size by .2 We also consider a mixture of
long-lived and short-lived connections in Section VIII-C.

A network with an AQM mechanism can be modeled as a
feedback system, where sources adjust their transmission rates
based on feedback from the AQM mechanism in the form of
marked or dropped packets [7], [8]. We use a dynamic dis-
crete-time feedback system model, first introduced by Firoiu
and Borden [6], to analyze the interaction of a RED gateway
with TCP connections.

The control system is defined as follows. At period ,
, the RED controller at the router provides the feedback

signal in the form of a packet drop probability. This feedback
signal is a function of the average queue size evaluated at
period . Due to a feedback delay introduced by the RTT, the
packet drop probability at period , , determines the
throughput of the connections and the queue size at period

, based on system constraints (such as capacity constraints).
The queue size at period is used to compute the av-
erage queue size at period according to the expo-
nential averaging rule in (3). Then, the average queue size
is used to calculate the packet drop probability at period

, which is the control variable of the AQM mechanism.
This can be expressed mathematically as

plant function (4)

(5)

control function (6)

where is the averaging function

(7)

as given in (3), and the RED control function
as given in (2). The exact form of the plant function

depends on system parameters such as the number
of connections, the nature of the connections, and round-trip
delays . We describe the plant function Section III-A.

Let us first motivate our discrete-time model and explain
the relationship with some of the previously proposed models.
Since the queue size and average queue size are updated
upon packet arrivals, the queue dynamics at a RED gateway
evolve at a faster time scale than the RTT of connections.
However, because the reaction times of TCP connections are
fundamentally limited by their RTTs, the average queue size
should not change much over the course of one RTT in order to
allow the connections enough time to react to the current level
of feedback signal and filter out oscillations due to transient
congestion in order for the RED mechanism to work properly,
as mentioned earlier. Therefore, the detailed dynamics of the
interaction over one RTT will be averaged out by the RED
averaging mechanism and will not play a significant role.

2For the simplicity of analysis, we assume that all connections use the same
packet size. Again, this should be interpreted as the average packet size of the
connections rather than a strict requirement.
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This observation has been verified in [35] and [36] using a
discrete-time stochastic model, where a period is assumed to be
an RTT of connections. They show that, as the number of flows
becomes large, both queue and average queue sizes converge
to deterministic processes (i.e., macroscale model) with details
of TCP dynamics filtered out. These results suggest that when
modeling a large number of TCP connections the detailed dy-
namics of interaction with the RED can be simplified using a
macroscale model that captures the larger time-scale dynamics
roughly at the time scale of RTTs of the connections. Similar re-
sults have also been obtained using stochastic differential equa-
tions [3]. In addition, our results in [32] illustrate that there
exists a natural discrete-time model corresponding to delay-
differential equations which arises in studying system stability
of a rate-control mechanism with a communication delay, and
the stability of one can be inferred from that of the other. In
other words, the stability of the system given by delay-differ-
ential equations can be determined by studying the stability of
the underlying discrete-time system. Therefore, our model here
can be interpreted as the underlying discrete-time model corre-
sponding to the system given by delay-differential equations in
[3], [12], and [23], which attempt to approximate packet-level
dynamics using differential equations.

We have shown [32] that, in case of loss of stability, Slowly
Oscillating Periodic (SOP) orbits appear as a result of PDB.
These SOP orbits have periods that are somewhat larger than
twice the RTT of connections, and the ratio of their periods to
the RTT approaches two as the RTT increases.3 These SOP or-
bits manifest themselves as period-two orbits in the underlying
discrete-time map. This suggests that a natural time scale for
studying system stability with a large delay is approximately
the RTT of connections.

Let us denote the duration of a period in our discrete-time
model by and the number of packets the link can transmit
in a period by . Since a period in our model is much larger
than typical interarrival times of packets as explained above,
the exponential averaging weight in (7) is approximately

if , where
is the exponential averaging weight at a RED gateway.

A. Plant Function

In this subsection, we describe the plant function (4) that will
be used for our analysis. In order to compute the plant function,
we assume the following. Given the packet drop probability at
period , the aggregate throughput of the connections is given
by the stationary throughput formula in (1). In this paper, we
follow [28] in taking . The exact value of is
not crucial to our analysis. It provides a good approximation
for our qualitative results when the RED gateway breaks the
synchronization among the connections as demonstrated in [36]
and results in relatively uniform packet drops. Moreover, we
are mainly interested in characterizing the stability conditions
and the parametric sensitivity of system behavior close to the
stability region. It has been observed that a system tends to be
less stable when the load is light [12], [23], [30], in which case

3The exact ratio of the period of the SOP orbits to the RTT depends on the
system parameters and could be considerably larger than two if the RTT is small.

the packet drop rate will be low and the term will be
relatively small compared to the first term [28]. Therefore, the
first term in (1) will give us an accurate approximation in the
region of our interest. This will be validated in Section VIII
through ns-2 simulation.

We use this simple approximation for TCP throughput to fa-
cilitate our analysis. The use of a stationary throughput for-
mula for computing the plant function can be justified as fol-
lows. Since the queue size changes continually between two
consecutive periods, i.e., over the duration of a period, and the
feedback signal also varies continually, the connections see the
time-varying feedback signal from the gateway and can react to
the change in a continuous manner rather than having to wait
till the end of next RTT. When the system is stable, the av-
erage queue size will remain close to the equilibrium queue size
when the number of connections is large, as proved in [3] and
[36]. Thus, the aggregate throughput of the connections will see
the stationary throughput. Therefore, this assumption is clearly
valid while the system remains stable. When the system be-
comes unstable, it has been observed in [16] and [32] that the
connections tend to become synchronized. Therefore, if the ex-
ponential averaging weight is reasonably small, as it should be,
and the number of connections is large with nonnegligible RTT,
the aggregate throughput of connections will be able to adapt to
the slow time-varying feedback signal in a timely manner, and
it will take only a few RTTs for the set of connections to see the
effects introduced by a small change in drop probability. We will
illustrate this using a numerical example in Section VI, where a
period in the discrete-time model is shown to be roughly three
times the mean RTT of connections. Similar behavior has also
been observed in [32]. The fact that connections continuously
react to time-varying feedback signal in practice suggests that
the dynamics of connections are likely to be slightly smoother
in practice than our model would predict.

In addition, our qualitative results do not depend on this par-
ticular form of TCP throughput approximation and are con-
sequences of the nonlinear dependence of TCP throughput on
drop probability , of which (1) is one instance. Similar results
to those obtained here hold for more detailed TCP throughput
function models.

Since the aggregate throughput of connections cannot be
larger than the link capacity, this determines the queue size at
the next period as follows. First, we can compute the
steady-state packet drop probability such that the bandwidth
capacity constraint is satisfied as follows:

(8)

This is the smallest probability that results in a queue size of
zero at the next period, and, for all , the queue size is
zero at the next period. Hence, if , we know that the
throughput of the TCP connections is given by
and the queue size at period is zero, i.e., . From
(8), we can derive that

(9)
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and the corresponding average queue size such that for any
, is identically zero is given by

if
otherwise.

Suppose first that the buffer size is infinite. If , the
bottleneck link capacity is fully utilized. Thus, if , one
can obtain the queue size at period as the solution of
the following equation:

(10)

The interpretation of (10) is as follows. Assuming sym-
metric TCP connections, the bottleneck link capacity is
equally divided among the TCP connections. In this case,
the throughput of a TCP connection will be given by

.
Hence, the queue occupancy is given by

(11)

Now let the buffer be of finite size . From (11), we see that
is a strictly decreasing function of , and hence we can

compute the largest such that the queue size equals the
buffer size . This probability, which we denote by , is given
by . The corresponding average queue
size is

It is obvious that, for all , i.e., , we have
. From (8) and (11), we have the full definition of the

plant function

if
if
otherwise

(12)

This type of plant function has been verified by -2 simula-
tion by Firoiu and Borden [6] using a particular TCP throughput
function similar to that used here.

From (4)–(6) and (12), we obtain the mapping

if
if

otherwise

(13)

where summarizes the system parameters, including the expo-
nential averaging weight , and

from (2). This mapping gives the dynamical rela-
tionship of the average queue size at period to the av-
erage queue size at period , as shown in Fig. 2. There are three
segments in this map showing either increasing and decreasing
behaviors of average queue size in different regimes. Most of

Fig. 2. First return map for TCP-RED.

the interesting dynamics occur due to the middle segment of the
map. There are two types of forces in this segment, one of which
arises from averaging and the other arises from the RED con-
trol action. Their relative contributions in the queue occupancy
in the next period are determined by the averaging parameter .
This interaction of averaging and RED control law is crucial to
the kind of instabilities and instability cascades that occur as a
system or RED parameter is slowly varied.

IV. FIXED POINT AND ITS BIFURCATION

A fixed point of the mapping is an average queue size
such that . If the RED parameters are properly

configured, then the average queue size should remain between
and .

Assumption 1: , where is the largest proba-
bility that yields the full utilization, defined in (9). This is natural
from a practical point of view since it disallows a disconnected
RED law wherein the drop probability jumps from to 1.

Under Assumption 1, solving (13) for a fixed point leads
to a third-order polynomial, which does not depend on the ex-
ponential averaging weight because neither the “queue law”
nor the “feedback control law” is a function of . The corre-
sponding probability of the fixed point is given as the
square of the positive real solution of the polynomial

(14)

where .
The linear stability of the fixed point can be studied by

considering the associated eigenvalue

(15)

The linear stability condition is or

(16)

In order to simplify the analysis, we reduce the number of
parameters in the model by performing a normalization.
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A. Normalization Scheme

Define the parameter as

The normalized state variables and RED queue thresholds are
defined as

if
if

otherwise

(17)

Equation (17) maps the unit interval into itself.

B. Bifurcation Analysis

Local stability of a one-dimensional (1-D) map in the neigh-
borhood of a fixed point is determined by the eigenvalue of the
linearized map evaluated there. For the normalized map (17),
this eigenvalue is

(18)

where is the fixed point of the normalized map. The linear
stability criterion ( [14]) is

(19)

Note that the eigenvalue depends on the fixed point. Of signifi-
cant interest here are the parameter settings which may lead to
loss of stability of the fixed point, giving rise to nonlinear insta-
bilities through a system bifurcation. Numerical simulations of
the system show the presence of oscillatory regimes as control
and system parameters are varied and indicate that a PDB occurs
from the fixed point with the variation of any of the system or
control parameters. Thus, we are led to consider cases in which
the eigenvalue given by (18) becomes 1, giving a PDB leading
to oscillatory behavior in the system. To demonstrate the exis-
tence of such bifurcations, it is easiest to focus on the expo-
nential averaging parameter as the distinguished bifurcation
parameter. The critical value of is one for which the eigen-
value given by (18) is 1. The critical value can be expressed
in a closed form as follows:

(20)

where is a fixed point of the system whose corresponding
probability is given as a square of the solution from (14).

PDB can be supercritical or subcritical. In the supercritical
case, attracting period-two orbits emerge from the fixed point
on the unstable side of the fixed point. In the subcritical case,
repelling period-two orbits emerge on the stable side. The rami-
fications of these two types of PDB for system behavior are very
different, with supercritical bifurcation leading to a steady os-
cillatory behavior near the original fixed point and subcritical
bifurcation leading to divergent oscillations. It is possible to de-
termine analytically which of these two cases will arise [14]. To
do so, we need to compute the second and third derivatives of
the normalized map

(21)

(22)

to analyze the nature of this bifurcation. The quantity
(evaluated

at the fixed point and the selected parameter values) determines
the nature of a PDB (see [10, p. 158]. A positive implies
that the bifurcation is supercritical, and a negative implies a
subcritical bifurcation. For the system given by (17), is

(23)

The expression for in (23) shows that it may change sign
giving rise to a subcritical bifurcation if the parameters are in
certain ranges. This should be kept in mind when designing a
TCP-RED system to avoid any unexpected oscillations in router
queues.

First, suppose that the system and control parameters are
fixed, except for the averaging weight . Then, from (15), we
see that the eigenvalue is a linearly decreasing function of ,
becoming more negative as is increased. Now consider the
critical averaging weight to be a function of and denote
it as . Then

The next lemma states that the largest value of the averaging
weight that can be used without resulting in loss of stability is
an increasing function of .4

Lemma 1: The critical parameter value is an in-
creasing function of .

A proof of this lemma can be found in [21]. This lemma tells
us that, when the load is light, the averaging weight must be
selected small in order to avoid an oscillatory behavior in the
queue size due to a PDB. The importance of the bifurcation
point is that the system quickly becomes very unstable in the
sense that the queue size oscillates widely, often resulting in an
empty queue, reducing the system throughput and increasing
the RTT variance of TCP connections. This will be shown in

4For the rest of the paper, we limit our interests to the region where q �

q .
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Sections VI and VIII. One can show in a similar manner that
the initial PDB point is a decreasing function of the round-
trip propagation delay and and an increasing function of

when these parameters are varied in isolation while other
parameters are fixed.

Below, some analytical properties of the map (17) are given
and proved, in preparation for the study of possible instability
routes in the next section.

Assumption 2: Assume that the left derivative of the normal-
ized map in (17) is negative for .

This assumption is not very restricting. It simply asserts that,
as the (normalized) average queue size increases from
to , the average queue size in the next period computed ac-
cording to the map in (17) decreases with . This assumption
will be true if the negative feedback component of the RED is
larger than the contribution retained by the averaging mecha-
nism in the middle segment of the map shown in Fig. 2.

Lemma 2: The map given by (17) is piecewise monotone
under Assumptions 1 and 2.

Next, we analyze the parametric dependence of the TCP-RED
system and show that it is smooth in parameter with respect to .

Lemma 3: The map given by (17) depends smoothly on .
We refer the reader to [29] for a proof of Lemmas 2 and 3.

Properties of TCP-RED map outlined by these lemmas will be
used in the next section to leverage border collision bifurcation
theory to the understand the dynamics in different regions.

V. BORDER COLLISION BIFURCATION

In this section we use the border collision bifurcation (BCB)
theory [4], [24] to analyze the bifurcations due to the variation
of parameter . BCBs occur for piecewise smooth maps and
involve a nonsmooth bifurcation occurring when a parameter
change results in a fixed point (or other operating condition)
crossing a border between two regions of smoothly defined dy-
namics in state space.

If a fixed point collides with the border(s) with a change in
the parameters, there is a discontinuous change in the derivative

of map , and the resulting phenomenon is called
border collision bifurcation. This kind of bifurcation has been
reported widely in economics [27], mechanical systems, and
power electronic models [4], [24], [27].

Border collision is a local bifurcation, and hence it can be
studied by characterizing the local properties of a map in the
neighborhood of the colliding border. It is shown in [27] that a
normal form which is an affine approximation of in the border
neighborhood is sufficient to quantify the possible BCBs. This
normal form is

if
if

(24)

where

(25)

and is the parameter for which border collision happens. It
can be assumed to be 0 without any loss of generality.

There are various types of bifurcation scenarios possible de-
pending on the values of coefficients and in the normal form

given in (25). For the sake of simplicity, we will discuss only the
case relevant to the observed phenomena in our model and pro-
vide a numerical proof by computing the one-sided coefficients
(eigenvalues) for the same.

The following lemma from [4] shows that the border has a
crucial role if a certain bifurcation sequence occurs.

Lemma 4: If a fixed point of the map given by (17) undergoes
a smooth PDB at and the resulting
period-two orbit also goes through a smooth period doubling for

, then, under the piecewise monotonicity condition,
the periodic orbit must collide with the border for some

.
We will see this kind of smooth and nonsmooth bifurcation

in the next section when we present numerical examples.
For our model, the case of interest in border collision theory

is when

and (26)

This is mentioned in [27, case 8]. It is shown that, in this case,
a fixed point attractor can bifurcate into a periodic attractor or
a chaotic attractor as is varied from negative to positive. This
is the exact phenomenon we observe for our model when the
bifurcation parameter is varied and a stable period-two orbit
transitions to chaos. Essentially, if we take the second iterate
of our map, it exhibits a fixed point bifurcating into a chaotic
orbit. The existence of chaos can be confirmed by computing the
Lyapunov exponents [30]. A numerical example that provides
evidence for our claim is given in the next section.

VI. NUMERICAL EXAMPLES

The behavior of the map in (13) can be explored numeri-
cally in parameter space to look for interesting dynamical phe-
nomena. When the eigenvalue exits the unit circle, the fixed
point becomes unstable. Depending on the nature of the ensuing
bifurcation, there can be new fixed points, higher period orbits,
or chaos. There is also a possibility of an orbit (original fixed
point or a bifurcated orbit) colliding with either border or

, leading to a rich set of possible bifurcations.
In this section, we numerically validate our analysis using bi-

furcation diagrams. A bifurcation diagram shows the qualitative
changes in the nature and the number of fixed points of a dynam-
ical system as parameters are quasi-statically varied. The hori-
zontal axis is the parameter that is being varied, and the vertical
axis represents a measure of the steady states (fixed points or
higher period orbits). For generating the bifurcation diagrams,
in each run we randomly select four initial average queue sizes,

, , , and , and these average queue
sizes evolve according to the map in (13), i.e.,

We plot , , and , 2, 3, and 4.
Hence, if there is a single stable fixed point or attractor of the
system at some value of the parameter, all will converge
to and there will be only one point along the vertical line at
the value of the parameter. However, if there are two stable fixed
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Fig. 3. Bifurcation diagram of average and actual queue length with respect to
the averaging weight w (p = 0:1).

Fig. 4. Bifurcation diagram of average and actual queue length with respect to
the averaging weight w (p = 0:03).

points, and , with a period of two, i.e.,
and , 1, 2, then there will be two points
along the vertical lines and the average queue size will alternate
between and .

In this section, we study the effects of various system and con-
trol parameters on average and queue behavior as each of these
parameters is varied while the others are fixed. More specifi-
cally, we study how the averaging weight , lower threshold

, the number of connections , and the round-trip propa-
gation delay affect system stability, queue behavior, and their
sensitivity to these parameters.

A. Effect of Exponential Averaging Weight

We use the following parameters for the numerical examples
presented in this subsection:

Mb/s

packets b

s bifurcation parameter

The bifurcation plots in Figs. 3 and 4 show the effect of
varying the averaging weight for different values of ,
namely and . Figs. 3(a) and 4(a) show
the exponentially averaged queue sizes, and Figs. 3(b) and 4(b)
plot the actual queue sizes. For small , these plots have a fixed
point, which shows up as a straight line until some critical value
of is reached, at which point the straight line splits into two.
The emergence of two stable fixed points of period two is a
consequence of a PDB. This is the first indication of oscilla-
tory behavior appearing in the system due to the inherent non-
linearity of the interaction between RED mechanism and TCP,
as opposed to a discontinuity in “queue or control law” which

TABLE I
EIGENVALUES COMPUTED FOR DIFFERENT VALUES OF PARAMETER w

TO ILLUSTRATE PDB, q = 0:102222

TABLE II
EIGENVALUES COMPUTED FOR DIFFERENT VALUES OF PARAMETER w

TO ILLUSTRATE BCB, q = 0:102222

has been suggested in the past. This period-two oscillation starts
batching load at the router, as shown in the plots.

Increasing further results in one of the period-two fixed
points colliding with the upper border of the map, giving a
chaos-type phenomenon. This is basically a bifurcation se-
quence expressed briefly as . This is a case of
BCB, as shown in the analysis earlier. It can be seen that, when
the bifurcation diagram for collides with the border ,
the queue empties, underutilizing the bottleneck link capacity.
The implication of a relatively small oscillation in the average
queue length is rather serious for the queue length since the
buffer starts getting empty and overly filled in every alternate
cycle. This dynamical phenomenon is common to both plots in
Figs. 3 and 4. We note that the distance between the initial PDB
point and the BCB point is short in both cases. This suggests
that an effective way of controlling the instability may be to
control the first PDB point, as demonstrated in [21] and [33].

To illustrate the PDB in the system, we compute the eigen-
value for the fixed point as is varied. It can be seen that this
eigenvalue leaves unit circle along a negative real line, indi-
cating a PDB. We also track the unstable fixed point and com-
pute the corresponding eigenvalue to show that it indeed crosses
the unit circle as shown in Table I. We also notice that both the
stable and unstable fixed point is smaller
than for the normalized model. Hence, it lies
on the same side of the border even after smooth PDB.

To provide evidence for our claim for a BCB, we further com-
pute the eigenvalue of a period-two orbit of the map numerically
and show that, indeed, one-sided eigenvalues obey the condition
given in (26). This computation is done for the set of parameters
corresponding to Fig. 3. We define .

In Table II, the first and second rows show the four con-
secutive states (the exponentially averaged queue size at the
router) corresponding to the parameter just before the BCB
but after PDB. We note that all the states stay on the same side of
the border with eigenvalue corresponding to a period-two orbit
being less than unity. This implies the existence of stable pe-
riod-two orbit.
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Fig. 5. Lyapunov exponent computed for average queue length with respect to
the averaging weight w (p = 0:1).

The third row depicts the same data just after a BCB from
a fixed point to chaos for the second iterate. Comparing the
states with the border reveals that and lie on
different sides of the border. The eigenvalues corresponding to
these two points, i.e., , is negative. This eigen-
value can be used to approximate in (25) in
this case. Similarly, the eigenvalue corresponding to and

, i.e., , can be used to approximate in (25). Since
lies between 0 and 1, as shown in Table II, and is smaller than
1, these values satisfy the condition given by (26). Note that

the eigenvalues change discontinuously as is varied. This sup-
ports our contention that there is a border collision bifurcation
in the system through which the system may become chaotic. It
also stresses the role played by a border. We also note that there
is a possibility of other rich nonlinear instabilities with different
periodicity based on different parameter settings.

We also plot the Lyapunov exponents for the bifurcation sce-
nario in Fig. 3 where . This is useful since a positive
Lyapunov exponent indicates the presence of chaotic behavior
[1, p. 110]. Fig. 5 shows that for small the exponent is nega-
tive, which corresponds to the single stable fixed point. It slowly
increases to zero near the PDB and then becomes negative again
due to a stable period-two orbit. Finally, it jumps to a positive
value when one of the period-two fixed points collides with one
of the borders.

B. Effect of Lower Threshold Value

In this subsection, we explore how the lower threshold value
affects system stability and behavior. The set of parame-

ters used for the numerical example in this section is given as
follows:

Mb/s

packets b

bifurcation parameter

Fig. 6(a) shows the fixed points of the system with varying
. As is clear from the figure, similar nonlinear phenomena

are exhibited in this case as well. The system becomes less stable
as is increased, while other parameters are held fixed. Fur-
thermore, this plot also exhibits similar sensitivity of the system
behavior to , as in the previous subsection.

We plot the Lyapunov exponent corresponding to the bifur-
cation scenario in Fig. 6(a). The Lyapunov exponent shown in

Fig. 6. (a) Bifurcation diagram of average and actual queue length with respect
to q (p = 0:1,w = 0:15). (b) Lyapunov exponent computed for average
queue length with respect to q .

Fig. 7. (a) Bifurcation diagram of average queue length with respect to the
number of connections N (p = 0:1, w = 0:15). (b) Initial PDB point as a
function of a number of active TCP-sessions.

Fig. 6(b) also stays negative for small as in Fig. 5. In a sim-
ilar fashion, it increases to zero when the system goes through
a PDB and again decreases when the system has a stable pe-
riod-two trajectory. Finally, it jumps to a positive value after a
BCB and stays positive.

C. Effect of System Parameters on Stability

A network manager may have control over the selection of
control parameters such as , , , and . However,
other system parameters such as the number of connections
and the round-trip propagation delay are out of the network
manager’s control. Hence, it is important to understand how
these system parameters affect the system stability and queue
behavior in relation to the control parameters in order to under-
stand how these control parameters should be set in practice.

We first study the impact of the number of connections
on the system behavior. The system parameters used for our
example are as follows:

Mb/s

packets s b

bifurcation parameter

The bifurcation diagram in Fig. 7(a) shows that the system
stabilizes as the number of connections increases. In general,
there is an agreement that a larger number of users tends to sta-
bilize the system [12], [23].

Another way of verifying that the system stability improves
with is to compute the initial PDB point, i.e., the averaging
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Fig. 8. (a) Bifurcation diagram of average and actual queue length with
respect to round-trip propagation delay (d). (b) Initial PDB point as a function
of round-trip propagation delay.

weight at which the PDB occurs, as a function of . This
is shown in Fig. 7(b). The plot shows that the critical bifurca-
tion parameter value increases with the number of active
TCP connections. Its implication for stability is that increasing
the number of active TCP connections renders the queue length
stable, though at the expense of increased delay, since a larger
value of is needed to induce the first PDB and consequently
BCB. This is in agreement with results in [12] and [23], where
under certain conditions a larger number of active TCP sessions
stabilizes the system.

Similarly, we also plot a bifurcation diagram with respect to
round-trip propagation delay . The plot in Fig. 8(a) is in gen-
eral agreement with the result in [12] and [23] that larger de-
lays cause instability. Parameters for this bifurcation diagram
are given as follows:

Mb/s

packets b

bifurcation parameter

The variation of the critical value of the bifurcation param-
eter as a function of round-trip propagation delay is
plotted in Fig. 8(b). It shows that the system is more stable for
smaller values of round-trip propagation delay, as a larger aver-
aging weight is needed to make it oscillate. This result again is
in agreement with the general result of [12] and [23] that smaller
delays tend to keep the system stable. One should note that the
system stability is rather sensitive to the variation in .

VII. CHAOTIC BEHAVIOR

The purpose of this section is to give an analytical proof of the
presence of chaos in the TCP-RED dynamic model. The tool we
use is a well-known theorem of Sharkovsky [34], which was also
proved by Li and Yorke [22] and goes by the name “period three
implies chaos.” It applies to continuous 1-D maps and thus can
be applied to piecewise-smooth but continuous systems such as
the system studied here.

The main result of Li and Yorke [22] is as follows.
Theorem 1: Let be an interval and let be

continuous. Assume that there is a point for which the
points , , and satisfy

Then

1) for every there is a periodic point in having
period ;

2) there is an uncountable set (containing no periodic
points), which satisfies the following conditions.

a) For every , with ,

b) For every and periodic point ,

In our case , and is given by the function
which defines the TCP-RED map in (13). It is also clear that
the TCP-RED map is continuous by construction as long as As-
sumption 1 is in force. Also, note that the existence of a pe-
riod-three orbit, i.e., or , is
a special case of the hypotheses of the theorem and proves the
existence of chaos.

We have proved earlier [29] that the map (13) is strictly in-
creasing for and for , but it
can be strictly decreasing in the segment where

under certain conditions.
To apply the theorem, we need to choose a starting point

and iterate on it using the map three times and then apply the
conditions stated in the theorem. We select .
This choice is made based on earlier numerical studies (Matlab)
which showed a strong tendency toward bifurcation and chaos
when the system state nears . With this choice for ,
we find that and

. Looking at Fig. 2, it is clear that there
are two possible cases for the location of : either
(Case I) or (Case II). If is small, then
will be close to , and therefore Case I will hold. However,
conditions for Theorem 1 to apply will be found below for both
Case I and Case II.

Case I: Let (this corresponds to
lying in the interval . Then

Hence, the criterion of Theorem
1 ensuring the existence of chaos gives

(27)
Case II: Alternatively, suppose . Then

. Now the criterion
of Theorem 1 ensuring the
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Fig. 9. First return map and period-three condition for (a) w = 2 , (b) for
w = 2 , (c) for w = 2 , and (d) for w = 2 .

existence of chaos in this case gives ,
which reduces to following simple condition:

(28)

Summarizing, we have the following lemma. Here, “chaotic in
the sense of Li and Yorke” means satisfying the conclusions of
Theorem 1.

Theorem 2: The TCP-RED system given by (13) is chaotic
in the sense of Li and Yorke if either (27) and
hold or (28) and hold.

The progression of nonlinear instabilities toward period-three
and chaos is illustrated in Fig. 9. It is shown that, as exponential
averaging weight is increased initially, the condition given by
Case I holds, and for larger values of the condition given by
Case II is satisfied.

VIII. SIMULATION RESULTS

In this section, we verify the existence of instabilities through
the simulation results obtained using -2 simulator developed
at the University of California at Berkeley and Lawrence
Berkeley Laboratory (LBL). We demonstrate the parametric
sensitivity of the RED to different system parameters, such as
the number of connections and round-trip delays. The simulated
network topology is as shown in Fig. 1. TCP connections are
Reno connections. The propagation delays of the edge links that
connect the sources to node or node to the destinations
are uniform random variables selected from [10 ms, 35 ms].
The capacity of these edge links are set to 30 Mb/s.

In CA mode, a TCP Reno connection increases its congestion
window size by one during an RTT if there is no packet drop.
When it detects a packet loss, it sets the window size to roughly
half of what it was at the time of detection. Thus, although it is
a very robust mechanism, TCP leads to an oscillatory behavior
due to this bandwidth estimation scheme in CA mode. Hence, in
practice, with a small number of TCP connections, one would
expect to see both the queue size and the average queue size
fluctuate significantly. Such an oscillatory behavior will be mit-
igated with the increasing , as demonstrated by Tinnakorn-
srisuphap and Makowski [36]. Thus, the oscillation in the av-
erage queue size per flow induced by this oscillatory behavior of
TCP diminishes with the increasing number of flows. However,
the oscillation induced by instability does not decrease with the
number of flows, as should be apparent from Section III. We run
the simulation with a reasonably large number of connections in
order to reduce the fluctuation in the queue size due to the os-
cillatory behavior of TCP and set .

The capacity and delay of the bottleneck link are set to
Mb/s and 30 ms, respectively. Given these param-

eters, the average round-trip propagation delay (without any
queuing delay) is approximately 150 ms with the standard
deviation of 20.4 ms. The packet size for TCP connections
is 500 bytes, and the buffer size at node and is 7500
packets. The threshold values and are set to 750
packets and 2250 packets, respectively, and is set to 1/8.
The simulation is run for 200 s. We plot the queue size and
average queue size every 200 ms.

A. Effects of Exponential Averaging Weight

In this subsection, we vary the exponential averaging weight
and study how it affects the queue behavior while other system
and control parameters are fixed. Fig. 10 plots the evolution of
the average queue size from 100 s to 200 s. In Fig. 10(a),
the average queue size remains relatively stable around a single
attractor or equilibrium, except for the fluctuations caused by
the bandwidth estimation scheme of TCP, and there is no no-
ticeable change in queue behavior. However, with increasing

, the average queue size begins to oscillate [Fig. 10(b)]. Fi-
nally, when reaches some threshold value as predicted by
our results, the average queue size shows no sign of any equi-
librium point and constantly oscillates between the boundaries
[Fig. 10(c) and (d)]. Such oscillations in queue size result in
a frequently empty queue, as shown in Fig. 10(d) and, hence,
lower throughput. The throughput decreases proportionally with
the fraction of time the queue is empty, representing a waste of
network resources. This example illustrates how one can expect
very different behavior in queue sizes with a small change in
the averaging weight . Note that the exponential averaging
weight is increased only by 25% from Fig. 10(b) to Fig. 10(d),
clearly indicating a very sensitive nature of the RED to the pa-
rameter .

We use this numerical example to further illustrate the rela-
tionship between our discrete-time model given by (4)–(6) and
the simulation setup, which is first described in Section III. In
this example, the average queue size when the system is stable,



1090 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 6, DECEMBER 2004

Fig. 10. Average queue sizes with various w . (a) w = 4:0 � 10 .
(b) w = 4:2 � 10 . (c) w = 4:6 � 10 , (d) w = 5:2 � 10 .

e.g., Fig. 10(a), is approximately 880 packets. We compute the
value of that is a solution to

which is . With and
880 packets, (20) gives us . Our sim-

ulation results indicate that the initial bifurcation takes place
slightly after [Fig. 10(b)], and we approx-
imate it to be . Hence, due to the differences in the
time scales of the discrete-time model and the -2 simulation
as explained in Section III, the ratio of the averaging weight of
our discrete-time model to that of the RED gateway in
the neighborhood of the parameters used in this example is given
by .

We now compare the magnitude of oscillation in our simu-
lation to the predicted magnitude from the bifurcation diagram
shown in Fig. 11. Although it is difficult to perfectly estimate
the oscillation magnitude due to the noise present in the sim-
ulation, the range of oscillation in Fig. 10(c) and (d) is ap-
proximately [840, 940] and [810, 990], respectively. The values
of period-two fixed points are approximately 850 and 940 at

and 820 and 1000 at
from Fig. 11. Therefore,

the magnitude of the observed oscillations in our simulation is
reasonably close to the expected magnitude from the bifurca-
tion diagram, in spite of the presence of noise due to a limited
number of flows.

B. Effects of Round-Trip Propagation Delay

This subsection demonstrates the sensitivity of the system sta-
bility to the round-trip delays of the connections. We use the
same parameter values as in Section VIII-A except for the delay

, which is the bifurcation parameter in this subsection. The
value of the averaging weight in our discrete-time model is

Fig. 11. Bifurcation of the example.

Fig. 12. Bifurcation diagram with varying d. (w = 0:085, N = 500).

Fig. 13. Queue evolution with different delays. (w = 4:93�10 ). (a) d =
145 ms. (b) d = 142.5 ms.

set to 0.085, which corresponds to when
150 ms. Fig. 12 plots the bifurcation diagram with varying .
It indicates that the system becomes unstable around 143
ms. For -2 simulation, we have fixed the averaging weight
at and decreased the mean round-trip propagation
delay of the connections to 145 and 142.5 ms by decreasing the
one-way propagation delay of the bottleneck link accordingly.
The value of is increased slightly according to

in order to compensate for a decrease in the round-trip delay and
have the same averaging weight in our discrete-time model.
Note that the variation in queueing delay due to a change in

is much smaller than the change in according to Fig. 12,
and hence is negligible. Fig. 13 plots the queue evolution. These
plots show that, as the delay is decreased to 145 ms and then to
142.5 ms, the system becomes stable as predicted by our model
in Fig. 12.
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Fig. 14. Queue evolution with short-lived and long-lived connections.
(a) w = 5:0 � 10 . (b) w = 6:0 � 10 .

C. Short-Lived Flows

In this subsection, we introduce short-lived flows and investi-
gate how their presence affects system behavior. Here we reduce
the number of long-lived TCP connections to 400 and intro-
duce short-lived connections that arrive according to a Poisson
process with 50 connections/s. The duration of these short-
lived connections is exponentially distributed with a mean of 2.0
s. This gives an average number of active connections of 500,
as in the long-lived connection case, and approximately 80% of
the traffic is generated by the long-lived connections.

As shown in Fig. 14, the queue behavior changes only slightly
as the mixture of connections changes. Even with short-lived
connections, the qualitative behavior of the queue size changes
only marginally, and for sufficiently large averaging weight the
queue size exhibits similar unstable behavior as in Fig. 10. The
fact that the initial bifurcation point increases with short-lived
flows can be explained as follows. The aggregate of the short-
lived flows can be viewed as nonresponsive traffic since these
connections may not live long enough to react to congestion in-
dication before they complete the transfer and can be modeled
as UDP traffic. It has been shown in [20] that the presence of
UDP traffic enhances the system stability, which is intuitive be-
cause UDP traffic does not react to any congestion notification.
A similar result is also proved in a rate control problem with a
communication delay with nonresponsive flows [32].

IX. CONCLUSION

A nonlinear deterministic packet-level model of a TCP-RED
gateway is developed and its dynamical behavior is analyzed.
The analysis is the first to uncover rich nonlinear behaviors in-
cluding multiple periodicities and chaotic behavior in TCP-RED
models. The analysis agrees with previous results from linear
modeling of congested networks and adds to these results by
showing possible behaviors under wide system and control
parameter variations. The first instability to occur was found
to be a PDB, which contrasts with earlier reports of instability
being caused by the discontinuity in the RED AQM law. This
instability is followed by another bifurcation that is caused by
the finite buffer size, namely a BCB. The discovery of this route
to instability and associated erratic behavior is important for its
own sake, but also for the investigation of robust control schemes
to mitigate these instabilities. Numerical and -2 simulations
were presented to provide further evidence and validation of the
phenomena uncovered in this work. Further work of the authors
[31] has uncovered a similar period-doubling instability in
Kelly’s optimal rate-allocation scheme [17].
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