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ABSTRACT

We consider the problem of jointly optimal admission and routing at a data
network node. Specifically, a message arriving at the buffer of a node in a data
network is to be transmitted over one of two channels with different transmission
times. Under suitably chosen criteria, two decisions have to be made: Whether
or not to admit an incoming message into the buffer, and under what conditions
should the slower channel be utilized. A discounted infinite-horizon cost as well as
an average cost are considered. These costs consist of a linear combination of the
blocking probability and the queueing delay at the buffer. The optimal admission
and routing strategies are shown to be characterized almost completely by means

of “switching curves.”

1. Introduction

Admission control and routing are key issues arising in the design and oper-
ation of communication and computer networks, and have received considerable

attention in recent years. The admission control problem entails a determination
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of efficient policies for allowing incoming messages to gain access to network fa-
cilities. The routing problem involves selecting paths from several alternatives in
the network along which accepted messages can be efficiently forwarded to their

destinations.

Numerous studies of admission control and routing problems at a single node
or at several nodes of a network can be found in the literature. Decisions for
allowing messages into a network have customarily been based on an appropriate
minimization of a blocking cost in conjunction with a cost for queuing delays in the
buffers at the nodes. Routing strategies, on the other hand, have typically been
determined using the queuing delays at the buffers as the measure of performance.
We cite below some of the studies relevant to our work; this list is by no means

exhaustive,

Stidham [24] has considered admission control policies for several simple queu-
ing models. The optimal admission control policies for all these models share
the characteristic that they can be expressed in terms of a “switching curve.”
Viniotis-Ephremides [28] have demonstrated a similar characterization of the opti-
mal admission strategy at a simple node in an Integrated Services Digital Network
(ISDN). Results in the same veirn. have been obtained by Christidou et al [1] for
a cyclic interconnection of two queues, and by Lambadaris et al [9] for a circuit-
switched node. Hajek [2] has investigated the problem of optimally controlling

two interacting queues.

In the realm of relevant routing problems, Lin-Kumar {10] have considered
the task of routing messages arriving at a node among two channels (servers), one
faster than the other. By minimizing the average queuing delay at the node buffer,
they show that the optimal routing policy is characterized by a “threshold” on the
size of the queue. Rosberg-Makowski [16] have treated a similar problem involving
multiple servers under the assumption of light traffic. In a recent preprint, Luh
-Viniotis [13] claim the optimality of a policy determined by multiple thresholds
for the situation in [16] even with arbitrary arrival rates. Nain-Ross [14] consider

the optimal assignment of a single server to multiple classes of customers. In doing
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so, they minimize a linear combination of the average queue lengths of the various
classes of customers while simultaneously constraining the average queue length
of a specific customer class to lie below a specified value. Shwartz-Makowski [23]
treat a similar problem with two types of customers. Both [14,23] show the optimal
assignment strategies to be random assignments.

In what follows, we combine the elements of the admission control and routing
problems at a simple node of a communication network similar to that studied in
Lin-Kumar([10]. To our knowledge, this is the first determination of simultaneously
optimal policies for flow control and routing. In our model, a message arriving at
a buffer is to be transmitted over one of two channels with different transmission
times. Under suitably chosen criteria, two decisions have to be made: whether
or not to admit an incoming message into the buffer, and under what conditions
should the slower channel be utilized. A discounted infinite-horizon cost as well
as an average cost are considered which consist of a linear combination of the

blocking probability and the queuing delay at the buffer.

Beginning with the discounted cost case, we formulate the optimal control
task as a Markov decision problem. It is first shown from Lippman [11,12] that
an optimal policy exists for admission and routing which is stationary in nature.
Next, properties of the optimal cost function are derived using arguments which
rely heavily on modifications of the sample path methods [29] as well as of the
linear programming approach developed by Rosberg al [17]. The said properties
are then used to demonstrate that the optimal admission and routing controls are
characterized almost completely by “switching curves.” This task is complicated
by the appearance of the relevant control terms in a nonlinear fashion in the asso-
ciated dynamic programming equations; nonetheless, it is possible to perform the
necessary minimizations, albeit tediously, to derive the optimal controls. Finally,
we show that the average-cost problem also yields similar results; some elaborate

arguments are needed which are partly provided by the approach of Sennott [22].

The remainder of this paper is organized as follows. The problem is formu-
lated in section 2. Section 3 considers the discounted-cost case and establishes key

properties of the optimal discounted-cost function. The associated optimal policy
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Figure 1: The queueing model

for this case is characterized in section 4; to do so, we need some convexity prop-
erties of the optimal discounted-cost which are established in section 5. Finally,

the average-cost problem is addressed in section 6.

2. Problem Statement and Preliminaries

The model under consideration is shown in Figure 1. We focus our attention
on a single node of a communication network providing service to a stream of
message packets that arrive according to a Poisson distribution with parameter A.

The packets (customers) are stored in a buffer (queue), and subsequently are
to be routed through one of channels (servers) 1 or 2 which have transmission
times that are exponentially distributed with parameters y;, i = 1,2. We assume
that transmission over channel 1 is faster than that over channel 2, i.e., g1 > p2,
and that channel 1 is non-idling. That the faster channel is non-idling in our set-
up can is easily be shown in Appendix 1 by sample path arguments a la Walrand
[29]. Furthermore, in order to ensure that the number of packets in the buffer
remains bounded we shall assume the standard stability condition, A < uy + pa.

The objective is the following: We wish to simultaneously control the admis-
sion of packets to the buffer, as well as their subsequent allocation to the two
channels; this will be done in such a way as to minimize a weighted sum of the
probability of rejecting admission of an arriving packet to the buffer and the delay
experienced by the packets in the queue. This problem can be precisely formulated

in terms of a Markov decision process (MDP) [3,6,20] as follows.
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The state of the system at time ¢,# > 0, is defined by a stochastic process
(x¢, t > 0), describing the evolution of the total load of the system as well as of
the status of the slower channel, where x; = (z}, z2) takes values in the state space

S =(0,0) U (Z+ x {0,1}), with

z; = total number of packets in the system (including the two channels) ,

22 { 0 if channel 2 is empty of packets

1 if channel 2 is servicing a packet,

at time . Z% x {0,1} denotes the cartesian product of Z* and {0,1}. Observe
that the process (x¢,t > 0) is piecewise constant; we shall assume that its sample
paths are right-continous. Next, we associate with each state x in § a set of
admissible actions D = {0,1}?. Thus, an admissible action z;(x) in state x at

time t, with values in D will have the form

2¢(x) = (% (%), % (x))

where 2! = 1 or 0 according to whether an arriving packet is accepted into the
buffer or is rejected (and lost), and 22 = 1 or 0 according to whether or not the
slower channel 2 is activated.

Defining the action space to be the set A = D, we can now represent an
admissible control strategy (CS) as an .A-valued stochastic process (z¢, t > 0),
where z; = (z:(X), x € §). Hereafter, we shall use the abbreviated notation z for
the CS (2, t 2 0). Let P denote the set of all admissible control strategies.

A law of motion corresponding to a CS z is specified by a transition probability
P(x'|x, zt), x,x' € S, t 20, denoting the conditional probability that the system
moves to state x/ at time ¢ when the action z,(x) is applied to it at time ¢ while
in state x.

Our objective is to find a CS z in P minimizing the following cost:

T
limsup E; (El;/ (1 -2l (x) + ‘yz%)dt) ¥ >0, (P1)
0

T—o0

where IE denotes expectation with respect to the probability measure induced by

the CS z on the process (x¢, t > 0) with initial state x at ¢t = 0. If such a mini-
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mizing CS exists, we shall refer to it as the optimal strategy for the unconstrained
average cost problem (P1).

A key step in treating (P1) involves the discounted cost problem associated
with (P1). Namely we wish to find a CS z in P for which the following discounted
cost [3,20] is minimized:

T
limsup EZ (/ e™% (1 — z}(X¢) +v21) dt) §>0, v>0. (P2)
0

T—oo

If such a minimizing CS exists, it is called the optimal strategy for the discounted
cost problem (P2).

We conclude this section by introducing two special classes of relevant CS’s.
An admissible CS which is an i.i.d. stochastic process will be called a stationary
randomized strategy (SRS). Furthermore, if the common distribution of the SRS z
has all its mass concentrated at some point in 4, we shall refer to it as a stationaery
strategy (SS). Let Ps C P denote the set of all SS’s.

Problems P1 and P2 are closely related. Considering first the discounted
cost problem (P2), we assert from Lippman [11, p.1238] that an optimal CS exists
which, furthermore, is stationary. To this end, first observe that the cost incurred
in state x; = (z},z?) at time ¢ has at most a linear growth with respect to 21, i.e.,

1— 2l (x¢) + v} < 1+ 721.
Next, the inter-arrival and inter-departure times of the packets are exponentially
distributed. Furthermore, the action set D is finite. The assumptions of {11, Thm.
1 p. 1239)] are thereby satisfied, leading to our assertion above.

Hereafter, we replace z:(x¢) by z; for notational convenience. Furthermore, in
view of our previous assertion, we restrict attention to stationary CS’s and define

the é-discounted cost starting with initial state x associated with the problem (P2)
by

J(x) & min E: ( / e (1 -2 + 7x})dt) §>0, v>0. (21)
z 0

The minimum cost in (2.1) can be expressed in an alternative form which facilitates

further analysis. To this end let 0 =ty < t; < t; < -+ <ty - be the (random)
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instants in time denoting transition epochs of the system state (x¢, ¢ > 0), where
each transition epoch represents either an arrival of a packet into, or a departure
of a packet from, the system. It is convenient to introduce at this point the &-
discounted expected cost over the time-horizon [0,t,), with initial state x, and

following a control strategy z in Ps, namely,

tn
V1o (x, z) 2 E; (/ e % (1 -2} +7.1:,1:)dt) . (2.2)

0

Let

JP¥(x) = min V%(x,2), n=0,1,---,
2EPs

JL8(x) = lim T8 (x).

We show in appendix 2 that the minimum cost in (2.1) has the alternative expres-
sion

T (x) = JL(x) (2.3)

for every initial state x. The assertion in (2.3) is standard [cf. e.g., 6] for problems
involving finite state spaces. Our problem involves an infinite state space, thereby

requiring additional arguments from {11] which are provided in appendix 2.

3. Properties of the Optimal Discounted Cost Functions

We now derive a few properties of the cost functions J}*(-) and J2;%(+) which
will be employed in the next section to characterize the optimal policy for the
discounted cost problem (P2). In order to avoid repetition, the notation JJ'°(-)
will be used to represent J'%(:), n =0,1,---, as well as J2%(-), as appropriate.
Note that these properties are valid for every v > 0, 6 > 0.

Proposition 1: For each z2, JJ*’(-, z2) is nondecreasing.

Proof: We shall first prove that J7%(z! + 1,z2) > J1%(z!, 2?) for all 2! using the
following coupling argument. Consider two similar systems starting with initial
conditions (z!,z?) and (2! + 1, z?), respectively. Couple the arrival and service
processes of both systems; further, in both cases, follow the optimal CS for the

latter system starting with initial state (z! + 1,z?). Denoting this strategy by
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z = (2%, 2%), let (X¢) and (x:), 0 <t < tn, be the corresponding trajectories of the
systems starting at (z!,z2) and (2! + 1,z?%), respectively. Define a stopping time

by 7 = [min(t : x; = %¢)] A tn. We see that

tn tn T
/ e-“(l-z3+7x%)dt-/ e*"‘(1—23+7£t)dt2f ye™Mdt 2 0
0 0 0

so that

tn
Jr8(z! +1,22) = ]E('Il,‘_l,,z)/ e %1 - 2} +yzl)dt
0

tn
2> E("zl,z2)/ e-ﬁt(l - ztl + ")'."i:% )dt
o
> J:,G(ml,xZ).

The proof of the claim is completed by letting n — oo, when it readily follows
that JX8(z! + 1,22) > J20(2t, 2?).
Propositions 2-4 and Corollaries 2,3 below stem from arguments very similar

to those in [29]. Brief proofs for the interested user are provided in appendix 3.

Proposition 2: For every § > 0, there exists an integer T = Z(6) such that:
J74(%,0) > J74(z7,1). (3.1)

Corollary 2: There exists a strictly increasing sequence of positive integers
{zk}5%, satisfying

T8 (2, 0) 2 IV (24, 1)
for k > 1.

Corollary 3: If the integers z; and 3, 71 < T3, satisfy
JU(zx,0) > I (zx,1), k=1,2,
then for all 21 < = < z9, it holds that
J1(2,0) > J7¥(z,1).

Proposition 3: For each «, J.)'%(z,0) < JX%(z + 1,1).

Proposition 4: J7%(1,1) > J2%(1,0).
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Finally, we introduce two more propositions. Their proofs are more involved

than those of the previous propositions, and will be provided in section 5 below.
Proposition 5(Convezity): For eachn >0, § >0, and z2 =0,1, J, ’6(-,:32) isa

convex function, i.e.,
TP +1,2%) — IP% (e, 2?) 2 JYA (et 2?) — T (et - 1,27) (3.2)

for all z! > 1.

Proposition 6: Foreachn >0, § >0,
JY (! +1,1) = JP(,0) > TP (e, 1) = JP¥(a! — 1,0) (3.3)
for all 2! > 1.

4. An Optimal Policy for the Discounted Cost Problem

In this section we derive the form of the optimal strategy associated with the
B-discounted cost problem (P2). This is done below in two steps.

The first step entails converting the original continuous-time problem (P2)
into its discrete-time equivalent by the standard procedure of “uniformization”
[2,6,17]. We recall from section 3 that 0 = o < ¢) < t3 < .-+ < tp--- are the
(random) instants in time denoting transition epochs of the system state. By
suitably introducing dummy departures as in [12,17), the inter-epoch intervals are

seen to be i.i.d. random variables with distribution
Prites: — ti > t] = e~ 13 Futuzy (4.1)

for k = 0,1,---. Consider the discrete time system obtained as in [6,17] by sam-

pling the original continous-time system at its transition epochs. To this end, we

introduce the notation xz a x:, and z; 2 z(x¢, ) and define

8= At p+ p2
At mtpz+6

(4.2)

whence 0 < 8 < 1. The B-discounted cost incurred by the n-step discrete time
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system for the CS z is defined [6,17] as

n=-1
Vro(x,2) S EL Y B¥(1 - 2} + va}).
k=0

It then follows as in [6,17] that (cf. (3.4))

Vat(x) = 15 Birmaix, 2). (4.3)
Let

VA(x,2) £ lim V1P(x,2).

We can now state the minimization problem (P2) in terms of a discrete-time
problem of equivalent cost as follows. Define the minimum S-discounted cost for

the n-step and infinite horizon discrete-time systems, respectively, by

J""a(x) m111,1 VrB(x, 2) (4.4)
and

Jrh(x) & min V1h(x, z). (4.5)
Letting

J1P(x) & lim JE7(x) (4.6)

it can be easily deduced, as in section 3, that
JE(x) = JP(x)

for every initial condition x. Finally, the equivalence, in the sense of optimal
discounted cost, between (P2) and the discrete-time formulation above follows
readily from (4.3) and (4.6) by noting that

JTé(x) = ! ; b JTA(x). (4.7)

Thus, it suffices to restrict attention hereafter to the discrete-time 3-discounted

cost problem defined by (4.5).
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We can now proceed to the second step associated with problem (P2) by
developing the dynamic programming equations for the problem in (4.5). The

notation is considerably simplified by introducing the following quantities:
Ai =)\ (J”%f’(i +1,0) - J”%ﬂ(z',O)) ~1, i>0
Bi= )8 (.f“’"’(i, 1) - j""’(z’,o)) + B (j"’ﬂ(i —1,1) = J"(i - 1,0)) . i>2
By =8 (J"%f’u, 1) — j%ﬂ(1,0)) ,
By =0,
Ci =28 (J72(i +1,1) = F*2(i +1,0) + J74(3,0) - T4, 1)) L i1
Co = A8 (J""’ﬁ(l, 1) — f”’ﬁ(l,o)) ,
Di =8 (f"'ﬂ(z' +1,1) = JA(, 1)) —1, i>1
Ei = Bus (J“%ﬂ(z' ~1,1) = J1A( - 1,0)) . i>2
E,=0.

Furthermore, the following observations are useful:

(i) A; and D; are increasing functions of 7, ¢ > 0, by the convexity of
J7:#(.,z?) (cf. Proposition 5 and (4.7)).

(ii) For every ¢ > 1, A; + C; = D;. This follows directly from the definition
of A;, Ci,and D;.

(iii) For ¢ > 1, A; £ Dj4,. This follows from Proposition 6 and (4.7), since

jmﬂ(i +1,1) - j"v,ﬁ(i’ 0) > j%ﬁ(i, 1) - j%ﬂ(i -1,0),

or

JVPG +2,1) = JTP(GE +1,1) > JVP(i +1,0) — JVP(4,0),

whence the assertion results.
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Figure 2: The state transition diagram

Referring to the state transition diagram in Figure 2, the dynamic program-
ming equations can now be written as shown below. We remark that the slow
channel, once activated, cannot be preempted at transition epochs corresponding
to arrivals into the system, and departures from the fast channel. We omit the

preliminary elementary algebra needed to arrive at (4.8) below.
Fori>1:
JTB(5,0) =1 + vi + mi?0 1}{z1A;+zng+zlz2C,~}+
z 1)

1,22¢

+8 (786 1,0+ AT, 0) + 42 J(:, 0))

JrRE, 1) =1+~i+ min {2'D; + 22E )+ (52)
z1,z2€{0,1}
+ 8 (k20" = 1,0) + 1 J¥8( = 1,1) + AT (S, 1)) .
For i = 1, we get:
J(1,0) =1 + v+ zl,zl;nei?O’l}{zlAl + 2%2B; + 2'2%C )+
+8 (I P(0,0) + XT7P(1,0) + 42 J74(1,0)) 5
(4.8b)

7 !6 — : 1
J7P(1,1) —1+7+zlren{1§,11}{z Dy}
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+8 (mj%ﬁ(o,c)) F AT, ) + m (1, 1)) .
Finally, for ¢ = 0, we have:

JY20,00 =14+ min {z*4¢ + 2*22Co} + BT P(0,0). (4.8¢)
21,22€{0,1}

The optimal control actions taken at states (7,0) and (i,1), respectively, are

seen to appear in a nonlinear manner in the dynamic programming equations

(4.8a)-(4.8c), and can be determined by the minimization with respect to (2!, 2%)

of the functions:
o1, 22) 2 2 A + 2By + 2122C;, i >0, (4.9a)

and
FHEMTD) 2D +2E;, i>1. (4.9%)
Before proceeding with the minimization, it is instructive to consider the nature
of the optimal cost functions J7#(-,0) and J*#(-,1). From propositions 1-6 it is
evident that the forms and relative values of these two cost functions will be as
depicted in Figure 3a.
We commence with the actions taken at state (¢,0). There are four cases to

be considered.
Case (i): i <7 —1 (see Figure 3a). The values of f)(z!,2%) for the four possible
choices of (2!, 2%) are:
0 for 2! = 0,2% = 0;
Ajfor 21 =1,22 = 0;
B; for 2! = 0,22 = 1;
Ai+Bi+C;for 2 =1,22 =1.
Since in this case B; > 0 and B; + C; > 0, the choice is between (2! = 0,2? =
0) and (2! = 1,2z% = 0) according to whether 4; > 0 or A; < 0. Thus, the

optimal strategy disables the slower channel and accepts (resp. blocks) an incoming

message at the buffer if A; < 0 (resp. 4; > 0).
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Figure 3: Structure of the optimal policy

Case (1): i > 7: In this case it is easily verified that B; < 0 and B; + C; < 0, so
that the choice is between (2! =0, 2% = 1) and (2! = 1, 2% = 1), the corresponding
values of fJ(z!,2%) being B; and A; + B; + Ci, respectively. Thus, the optimal
policy keeps the slower channel active and accepts (resp. blocks) an incoming

message if A; + C; < 0 (resp. 4; + C; > 0).
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Case (iii) (resp. case(iv)): ¢ =71 — 1(resp. i = 1). Based on the propositions of
section 3, the admission control depends on the sign of A; (resp. A; + C;) exactly
as in the previous case.

The optimal control actions taken at states (i,1) are easily determined in a
similar manner by the signs of D; and E;. If D; < 0 (resp. 2 0), E; < 0 (resp. 2> 0),
then (2! = 1,22 = 1) (resp. (2! =0, 2% = 0)) minimize f)(2!, 2?).

We are now in a position to characterize the optimal admission policy at the

buffer; this is done in Propositions 7-10.

Proposition 7: The optimal admission policy is characterized by a switching
curve (see Figure 3b).
Proof: We first show 21(3,0) = 1 = z1(¢/,0) = 1 for all i’ < i, i.e., if the optimal
policy admits an incoming message into the buffer at state (z,0), it must also do
so at states (i',0), ¢’ < i. Suppose i > 7 (cf. case (ii) above). If 2}(7,0) = 1, then
A; + C; < 0. From the convexity of J¥4(.,0), it follows that for all 7 < i’ < i,
Ay +Cy <0, so that z1(i',0) = 1. Finally for ¢’ < 7, again Ay < 0 (by observation
(11%) earlier in this section), whence z!(¢,0) = 1 (cf. case (i)). Similar arguments
show that z(3,0) = 1 for i < 7 would imply 2?(i’,0) = 1 for all +' < 1.

Lastly, it follows in a straightforward manner that 2!(i,1) = 1 implies
21(i',1) = 1 for i’ < ¢. Indeed, if 2%(s,1) = 1, then D; < 0 whence Dy < 0
for i/ < i by the convexity of j“”ﬂ(~, 1); consequently, z1(:/,1) = 1.

Proposition 8: If the optimal policy accepts an incoming message at state (3, 1),

then it also does so at states (i',0),¢ < 3, i.e., 2!(,1) = 1 implies 2!(:',0) = 1.

Proof: Since z(i,1) = 1, it follows that Dy < 0 and Ay < 0 for all &' < i, so that
22(¢,0) = 1.

Proposition 9: For i > 7, 21(i,1) = 0 iff 2}(,0) = 0.

Proof: The proof is obvious by the fact that D; = 4; + C; < 0.

Finally, proposition 2 and corollaries 2,3 of section 3 lead to the following

optimal routing strategy.
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Proposition 10: The optimal routing policy is of the threshold type, i.e., there
exists an integer ¢ such that 22(i,-) = 1(0) for i > (i < 7).

5. Convexity of the Discounted Optimal Cost
In this section we establish Propositions 5 and 6 (cf. section 3). We begin by

considering Proposition 5, namely the convexity property of J. ’6(-, z?). In view of

(4.3) and (4.7), it suffices to show for each n > 0, 0 < 8 < 1, and 2 = 0,1, that
FpA(a +1,0%) = Tt 2?) 2 TpA(e P — T10(at — 1,47

for all 2! > 1. In order to do so, we shall employ a modification of the tech-
nique introduced in (4], wherein the discounted-cost, discrete time problem is first

suitably transformed into a linear program.

Our approach entails artificially “enlarging” the state space of the system
by redefining the state at instant k& (corresponding to the transition epoch #x) in

terms of a triple xx = (z},z%,z3), where

7} = number of packets in the buffer and on channel 1 at the transition epoch

tr (and not the total number in the system, as defined earlier);

z? = number of packets transfered from the buffer to channel 2 upto transition

epoch #;
23 = number of packets that have departed on channel 2 upto transition epoch

tg.

This new state description is intended solely for the proofs at this section, and
should cause no confusion. It subsumes the state description of section 4, since
the total number of messages in the systen at time instant & is given by ri+azi -2}
while the condition of the second channel is simply zi — z}. Clearly, z} > 0 and
zi — z3 belongs to {0,1}. In terms of the new state description, the n-step -
discounted cost for the discrete-time problem with initial state z corresponding to

a CS z in P is given by

n—1
Vix,2) = B Y B4 ((1 - 7A(W") + 1(zi(w*) + 2k (wF) - 2i(wh)),  (5.1)
k=0
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and the corresponding optimal cost by
JTP(x) = min V8(x, 2). (5.2)
2EP

Let A, Dy, D, represent, respectively, the events of an arrival of a packet at
the buffer, and the departures of a packet on channels 1 and 2. Next, let QF =
{w*(wyy... ,wi):w; € {4,D1D;}}, k=1,2,---,n represent the collection of all
events corresponding to arrivals and departures of packets at the transition epochs

during the interval [0,%x]. On Q& we define the following transition matrix:

([1 -1 0
0 1 0 fwg=A
0 0 0
(-1 -1 0
W)= |0 1 0| fwr=D
|0 0 O
[0 -1 0
0 1 0 ifw1;=D2.
({0 0 1

We can then write the evolution of the system state as

T (@] [2h(wf) 2}y (W)
zi_i_l(w:“) = :cz:(w:) + S (W) z§+1(w:+1) , (5.3)
2§41 (W) zy(w") Zh (W)

for k = 0,1,---, where z}(w¥) and 2Z(w¥) correspond, respectively (as in section

1), to the actions of admission to the buffer, and the activation of channel 2, at
transition epoch tx, and z}(w*) takes the value 1 or 0 at ¢ according to whether
or not a “dummy” departure [6,12,17] occurs on channel 2. Equation (5.3) can be

solved recursively to yield

k
Xi(wF) = x + Y Ej(w)z;(w?), (5.4)
=1
where the notation zx(w*), k =1,2,---, is obvious. We can now rewrite (5.1) as
n=—1

70705, = B2 3 B (1w = A1~ 1)+ 9(e} + 5 — ).
k=0
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Upon substituting (5.4) in the equation above, we get

i)=Y T chwh)ed(wh) + M)l + ¢

k=1 wkenk
where
k(W) = PW*)B*EP (W) D B — I(w* = 4)],
=k
A(w*) = —PHBER WMy Y B,
=k
and

c= /\iﬂk+i7ﬁk[a¢1+32 - z°).

k=1 k=1

The minimization problem (5.2) can now be transformed into the following linear

program:

W)= min 3 Y ehwh)hh) +ehwh) + e

{lk(w")}:=1 k=1 wkegw
such that for each w* in Q, and k =1,2,--+,n

zi(wk) e {0,1), i =1,2,3 (feasibility constraint)  (LP)

k
ot + 520 wzw) 2 0,
=1

and

k
0<2? —2* + 3 EP (W) - P (w))z; (W) < 1
i=1

where Eg-i)(wj ) denotes the ith row of the matrix Z;(w).

Remark: The first constraint is associated with the feasibility of the control actions.
The second and third constraints, respectively, imply that the number of packets
in the buffer and on the slow channel should be nonnegative, and, moreover, that

the second channel cannot forward more than one packet at any time.
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Lemma 1: For 0 < 8 < 1, n = 0,1,---, W5(.) is a convex piecewise linear
function.

Proof: Since the quantity x enters linearly in the constraints of (LP), the lemma
follows directly from the theory of linear programming [26, page 56).

Lemma 2: The linear program (LP) accepts an integer solution, i.e., zi(w¥)
belongs to {0,1}, ¢=1,2,3 for every k =1,2,...,n.

Proof: We denote by z* the optimal strategy that solves the linear program (LP).
By using duality theory {26, page 50] as it applies to linear programming, we
conclude that z* is an optimal solution for (LP) iff there exist suitable vector-
valued variables A;(w¥) in R? such that A;(w*) > 0 (componentwise), and the
following conditions are satisfied for k = 1,2,...,n, w¥ in Q%: (We drop below

the dependence of certain variables on w® to make the presentation simpler.)

cl) z* is a solution to the following program:
n
min 3> (ckzl + ok = Aak = AP (e — 21) + AE)(ek + 2R - 1))
k=1 wk
c2) The state trajectory generated by z*, denoted xi(2*), should satisfy,

zl(z*) 20 and 0<zi(2*)—-zi(2*) <1

c3) If Azl > 0, then z} = 0. Further, if A}*® > 0 then % + 23 = 0(1).

The cost function in c1) can be transformed (after a simple change of the variables

of summation) to:

n

n
. =(1
min E E ckzk +cizp — E A3t ‘:‘Sc D2k
z
ko

j=k

n
+ (Z(A;a - /\;2)(553) - Ef))zk + terms independent of z
i=k

n
= mzin Z Z di(ck, Ak, wr)Zx + terms independent of z

k=1 w*
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where di(ck, Ak, wr) is defined in an obvious manner.

We then conclude immediately that

. 1 if di(ck, Ak, wr) <0
z;'=4{0 if dj(ck, A, wi) >0 1=1,2,3. (5.5)
€[0,1] ifdi(ck,Ag,wk) =0

Henceforth, suppose that the initial condition x is integer-valued. For k =
1,2,---,n let z*, A" satisfy the optimality conditions c1), ¢2) and ¢3). We shall
use z* to construct an integer-valued policy z that is optimal, i.e., satisfies the

abovementioned conditions. To this end, we provide the following lemma.

Lemma 3: Consider the following region in R®:

, 11
X = {P161 + p2e2 + pses, pi € (—'2','2'] },

where €; = (1,0,0)7,e; = (=1,+1,0)T,e3 = (0,0,~1)T. Let ¢i(w),i = 1,2,3 be

the 7th column of the matrix E(w). Then

{X +Zw)z, z€[0,1}}cXU U X+6w+€w)

V.je{1,2,8},i#j
we{A,Dy,D2}

Proof: The proof is straightforward and, hence, omitted.

Proposition 11: There is an integer-valued (i.e., {0,1}-valued) policy z =
(zx(w*),k =1,2,...n) such that z}(w*) = zz(w*), where the latter is integer-

valued, and for all w* in Q¥ and k > 1, it holds that
Ay 2 (xk(wF, 2") — xx(w¥, 2)) € X.

Proof: The proof is by induction. Suppose for some k£ 2 0 that A is in X,

Then, it follows that

Aty = Dg + Zpr (WFHzhy (@) — Erg (W) zegr (1),



[BYU Brigham Young University] At: 21:52 26 August 2010

Downloaded By:

JOINTLY OPTIMAL ADMISSION 243

If z},,(wF*!) is integer-valued, then obviously z{y1 = Zk+1. Else, by lemma 1,

either (Ak + Zx41(w 1)zps1 (wF*1)) isin X, so that weset zf,, =0 (i = 1,2,3),
or (A + Zpr1(whH)zpq1 (k) isin (X + & (WFTY) + §{+1(w"+1 )) , when we

choose z} ; = z,'z+1 =1landzf,, =0, £#4j. Ineither case Azy; belongs to
X.

Proposition 12: The integer-valued policy z constructed above is optimal, i.e,

it satisfies conditions c1), ¢2) and ¢3).

Proof: Condition cl) is trivially satisfied, since zi(w*) = z}'(w*) whenever z}% is
integer valued. We now check the feasibility conditions c2). We wish to show that

1 > 0and z} —23 > 0. Suppose this were not true. Then, since z}, 22, z3 equal 0
or 1, we clearly have z} < —1 and z% + a:k —1. Since A lies in X, we conclude
that z}! = z} 4+ py —p2 for p1,pz in (— 3,3 ]. Hence, 23! < =143+ = 0, which

is clearly a contradiction since z}! is known to be optimal (and hence feasible).

Similarly, since Ay belongs to X, we readily see that:

N

3

[N

(“’iszzs) = (xi,xi) + (p2,p3) p1,p2¢( —

and

. 1
zkz—xk _—1+p2—p3<—1+2+§ 0,

which again lead to a contradiction.

Next, we must show that 22 — k3 < 1. As before, if this were not true we must
have 22 — z3 > 2. Using the same arguments as before, z}2 — z}* > 2+ p; —ps >

2~ % - -;- > 1, clearly a contradiction.

Finally, we establish the complementary slackness conditions ¢3). It is enough to
show that if 2! = 0 then z} = 0. In a similar way we must show that z}? —z}® =
0(1) implies z}+z} = 0(1). As before, we have that z} =z} —(p1—p2) =p2— ;1
belongs to (—1,1) so that z} = 0, since z}, is integer-valued. All other cases in c3)

can be treated in a similar manner.




[BYU Brigham Young University] At: 21:52 26 August 2010

Downloaded By:

244 LAMBADARIS AND NARAYAN

At this point, the proof of proposition 5 is evident. Returning to the old state
description of the system, if x = (z!,z?) is a point with integer coordinates, then
since z, the solution of the linear program (LP), is integer-valued, i.e., belongs to

{0,1}, and J#¥(z?, 2?) is unique for each n, we conclude that:
B (22, 2?) = Wi(a* — 22,2%,0),

for 21 > 1, and 22 in {0, 1}; furthermore, J#7(z!, z2) inherits the convexity (with
respect to the argument z!) of Wy(z! — 22, 22,0) for every n. Hence, J#7(z!, z?)
is also convex with respect to z?.

Next, from [26, page 56] we have that W5 7(z?,22,0) is a piecewise linear
function. Furthermore, by using arguments similar to those in Proposition 1, it

can be shown that it is an increasing function in #! and 22, and hence it holds

that
Walz! +1,1,0) — Wp(z! +1,0,0) > Wo(z',1,0) — W,(21,0,0). (5.6)

Proposition 6 now follows immediately. Property (5.6) is known as “supermodu-

larity”; a detailed proof of (5.6) can be found elsewhere [8,27)].

6. The Average Cost Problem

The average cost problem (P1) entails a minimization of the expected average
cost per unit time [4,15,22,25]). Our elaborate approach below is necessitated by
the fact that the state space is not finite. We determine the optimal stationary
policy for the average cost problem (P1) by associating it with the discounted
cost problem (P2). Moreover, the optimal average cost for problem (P1) can be
expressed as follows by using the standard procedure of uniformization earlier

employed in section 4; thus

Jau(x) = rzrélg V(x,z)

- 1 n
Vix,z) =i ZEs 1 — 2l(xz) + 2!
(x,2) = limsup - x(é (%) + 7z}
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where, with a slight abuse of notation, z denotes a policy that is not necessarily

stationary.

However, the following lemma proposes a stationary policy which is a candi-
date for average-cost optimality. Furthermore, this stationary policy will be seen

to arise as a limit of optimal policies associated with the discounted cost problem

(P2). The lemma can be found in [4] and [22].

Lemma 4: Let {8,}3%, be a sequence of discount factors converging to 1.
Let {z5,}52, be the associated sequence of (stationary) optimal policies for the
discounted-cost problem. Then there exists a subsequence {8/} and a stationary

policy z which is the limit point of z5_,.

Althought the lemma has been proved in [4,22], for the sake of completeness
we present a brief proof below along with some observations.

Proof of lemma 4: The finiteness of the action set D = {0, 1}? enables it to be
viewed as a compact topological space with a discrete topology, where every subset
of D is simultaneously open and closed. Further, the associated topological basis
formed by these open sets is finite. By the Tychonoff theorem [21], the countable
product space A = D% is also compact under the product discrete topology. Since
the basis for A under the same topology is countable and since A4 is normal [21}, it is
also metrizable by Urysohn’s lemma [7]. Consequently, A is sequentially compact,
i.e., every sequence {zg,} (of stationary policies) has a convergent subsequence
{2s,,} converging to a stationary policy z in the following sense: for every x in §

there exists an integer N(x) such that zg ,(x) = 2(x) for n' > N(x).

Next, we establish that the stationary policy z of the previous lemma will have
the form derived in section 4. In particular, we show that z!(z?,z2) = 0 implies
21(z!,22) = 0 for ! > z!. If this were not true, suppose that z1(z!,z%) = 1 for
z! > g!. Then since zg, — z, we conclude that there exist N(z!,2?), N(z*,z?%)
such that zj (z',2?) = 0 for all n' > N, and zp (F',2%) = 1 for all n' 2 N.
By choosing k = maz{N, N} we see that z} (¢',2?) = 0 and 2, (Z',2%) = 1 for
#! > z! which contradicts proposition 7 of section 4. A similar argument can be

applied to the routing control z2.
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It only remains to establish the optimality of the stationary policy z of lemma
4 for the average cost problem. To this end, we consider the following two cases

determined by the nature of the admission control 2.

1) Assuming that z!(z!, z?) = 0 for some finite z?, we conclude that the underlying
Mﬁrkov decision process is “essentially” a finite, irreducible chain and, hence,
ergodic. If p,(x) is t.he associated stationary probability distribution under the
policy z we obviously have 3 ¢ p:(x)(1 — 2} (x) + v2!) < co0. Moreover, since
J7B (!, 2?) is increasing in z!,z? (Propositions 1,3), we have that J1#(z!,2?) —

j""ﬁ(0,0) >0forall 8, v, !, z%. Hence the following theorem from [22] follows:

Theorem 2: The policy z from Lemma 4 is optimal for the average cost problem

(P1). Furthermore the average cost is given by:

Jou = lim(1 - B)F(x)

not depending on the initial state x.

2) Assuming that 2! (z!,2%) = 1 for all z}, the problem reduces to that studied
by Lin and Kumar [10], where the routing control is shown to be of the threshold

type.
7. Concluding Remarks

Considering the admission control problem alone, Stidham [24] has estab-
lished, under Poisson arrivals and exponential service times, the optimality of the
threshold policy in terms of minimizing a combination of blocking and delay costs.
For the same arrival and service distributions, Lin-Kumar {10} and Walrand [29)
show that a routing policy of the threshold type minimizes a delay cost. A natu-
ral question that arises, therefore, concerns the possibility of separating the joint
problem of identifying admission and routing controls which minimize a weighted
blocking and delay cost, into the two separate problems addressed above. The
dynamic programming equations (4.8) of section 4 involve a strong correlation
between the two controls, and suggest no a priori separation. It is interesting,

however, that the final forms of the joint controls turn out to be of the thresh-
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old type, which forms are individually optimal for the two separate problems. Of
particular note is the optimality of the threshold routing policy even after the
exogenous Poisson arrival process has been “filtered” by the admission control.
The approach in [10], as also ours, requires the exogenous arrival process to be
Poisson and the transmission times to be exponential, Otherwise the dynamic
programming equations cannot be written in their present form. The approach in

[29] is also based on an exponential assumption.

Finally we remark that the problem which seeks a minimal blocking prob-
ability under an explicit constraint on the average delay in the system is as yet
unsolved. On the basis of Ross 18], it may be conjectured that the optimal policy

will be randomized rather than stationary.

Appendix 1

We introduce two different systems both with the same total number of cus-
tomers; at t = 0, the faster channel is idle in the first system, while being active
in the second. An optimal policy corresponding to the first sytem is then applied
to both systems. Using the same technique as in Walrand [29, Lemma 3.1 (1,2),
p. 132, it can be deduced that the (second) system which activates the faster

channel incurs a (strictly) lower cost than the other.

Appendix 2

Observe from [11, Theorem 1], that J¥8(-) is the unique solution to the fol-

lowing functional dynamic programming equation:

JYé(x) = nel‘ipn (1 — 2 (x) + vz + Z ﬂé(x,z,x’)J“”é(x’)Pr(x'lx,z)) (A2.1)
il x' €8S

where x = (z!,z?), and B5(x, z,x') is an expected discount factor of the form

Bs(x,2,x') = ] e~ 4T (¢x, 2,x'),
(1]

with T(-|x, z,x') denoting the probability distribution function of the random time

it takes the system to go from state x to x' under the CS z.
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Next, using dynamic programming arguments, it can be easily shown that

J18(-) satisfies the following recursion:

1(x) mm (1 — 21 (x) + vzt + Z Bs(x, z,x" )T (x" ) Pr(x'|x, z))

x'eS
(A2.2)
Since J5(+) 2 J8(+), we have that JL5(x) = limp—oo J¥(x) exists. Moreover
J2:%(x) is the unique solution to the contraction mapping (A2.2). This observation,
together with the fact that J7%(x) is the unique solution to the same contraction

mapping (A2.1), yields that J%%(x) = J5(x).

Appendix 3

Proof of Proposition 2: Suppose that for some é§ > 0 and for all z the reverse
inequality holds (with respect to (3.1)), i.e.,

J7(z,0) < J¥(z,1).

We shall show that this supposition leads to a contradiction. The proof employs
coupling arguments ¢ la Walrand [29]. Consider a system with initial state (z,0),
where z is a positive integer. Consider a second system which is similar but has
initial state (z,1). Couple the arrival and service processes of the two systems,
and apply to each the optimal strategy, denoted z = (2!, 22), associated with the
first system (i.e., with initial state (z,0)). Let (x;) and (X;) respectively represent
the corresponding state trajectories. By the supposition above, observe that in
view of the stationarity of z, the first system never forwards a message through
the slower channel.

Letting V7¥(z,1) = Ef{ 1) ([ e (1 — 2} +v&})dt), it is clear that
J78(z,1) € V7¥(z,1). Let 7 = min(t : 2z} = 0) and let o be an exponential
random variable with mean u;! which represents the packet transmission time on

the slower channel. Then

J7(z,0) = J¥(z,1) > J78(2,0) — V7o(z,1)
r -4
= Y Ef, (1o < r]fa et 1o > r]/o e=0tdt)

£ ¢(z,9).
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Next consider an M|M|1 system starting with z initial packets, with no arrivals,
and with the service time distribution being exponential with parameter u;. Let

7 denote the time at which this system empties. Define

3(z,6) = vE(1[o < 7] / gt — [ > 7] / e~ 0tds).
0

L4

Since 7 24 7, it is clear that ¢(z,8) > @(z,§) for all z. Then our supposition
is contradicted if we show that (z, ) is non-negative for some = suitably large.
To this end, we observe that as z increases ¥ increases stochastically, so that
1{o < 7] increases while 1[c > 7] decreases, both in the stochastic sense. Noting
that IP(c > ) = 1 —=P(o < ) goes to 0 as z increases, it is clear that there exists
an integer F = Z(6) such that $(z,6) > 0.

Proof of Corollary 2: We proceed in a manner similar to that of Proposition 2.
For each integer zx > 1, an integer z¢4+; > ) can be determined in an inductive
manner by redefining at each step 7 =min(t : z} = z}) and proceeding as in
Proposition 2.

Proof of Corolarry 8: The proof is as in [29, p.133, case 3]. Consider two systems
with initial conditions (z,0) and (z,1). Aslong as the total number of messages lies
between z; and z, only the faster channel is employed. It is then straightforward
to show that the second system incurs a lower cost by using the slow channel at

t = 0 instead of ing it at some Jater random time.

Proof of Proposition 4: The proof is similar to that of the previous proposition. Let
z be the optimal policy associated with the system starting with initial condition

(z +1,1). If ¢ is an exponential random variable with mean u;!, we easily get:
T
Tz +1,1) = J3(2,0) 2 yEaprs, / et > 0
0

where 7 = min(¢,,o). Similar arguments hold true for the case n — oo.

Proof of Proposition 5: We use the same argument as in [29, p. 133]. Let oy and
o2 be random variables representing the transmission times of a packet on the

fast and slow channels respectively. Clearly, we can choose o3 = 1;—30'1. Consider

two similar systems, the first starting with initial condition (1,1), and the second
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with initial condition (1,0). Denote by 2z the optimal policy associated with the
first system. For the second system, we follow the policy Z constructed as follows:
Whenever z activates the fast channel (i.e., accepts messages in the system), Z
enables the slower channel.

We need only consider two cases. In the first case, the fast channel of the
second system is transmitting, and hence, so is the slow channel of the first sys-
tem. Then the strategies z and Z, as defined above, will result in the same state
trajectories for the two systems, and hence, the two systems will incur identical
costs. In the second case, the fast channel of the second system is idle while the
slow channels of both systems are busy. By introducing a dummy packet on the
fast channel of the second system, the system states are coupled. As the dummy

packet incurs no cost, the assertion is established in this case too.
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