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Abstract

The eloquence with which Massey advocated the use of the cut-off rate parameter for
the coordinated design of modulation and coding in communication systems caused many to
redirect their thinking about how communication systems should be designed. Underlying
his recommendation is the view that modulation and demodulation should be designed to
realize a good discrete channel for encoding and decoding, rather than the prevailing view
at the time, and still the view of many, that bit error-probability should be optimized. In
this short paper, some of the research influenced by Massey’s insightful suggestions on this
subject is reviewed.

I Introduction

The use of the cut-off rate parameter Ry in the study of single-user coded communication
systems was first advocated by Wozencraft and Kennedy [11] in 1966. Unfortunately, their
proposal to use Ry as a criterion for the design of the modulation system remained largely
unheeded. Then, in a remarkable paper in 1974, Massey [4] gave an eloquent argument in
favor of the cut-off rate parameter as a criterion for the coordinated design of modulation
and coding in 2 communication system. Calling to discard the heretofore popular “error
probability” criterion on the grounds that it was apposite only for uncoded systems, he
resurrected the earlier proposal of Wozencraft and Kennedy and showed that the Rg criterion
led to a rich “communication theory” of its own for coded communications. In particular, by
interpreting Rg as a function of the modulator and demodulator, Massey [4] demonstrated
how it could be used to design the best discrete channel as seen by the encoder and decoder.
He crowned his arguments by establishing that a simplex signal set maximized the cut-
off rate of an infinite-bandwidth, additive, white Gaussian-noise channel for infinitely soft
decisions. The “optimality” of such a signal set with respect to the error probability criterion
has remained a conjecture for many years.

Massey’s paper [4] opened the floodgates for a plethora of publications employing the
cut-off rate criterion to assess the performance of coding and modulation schemes for a
variety of applications ranging from optical communications to spread-spectrum systems to
an extension to multiaccess channels. A fair citation of this field is beyond the scope of
this paper; good sources of relevant publications are the IEEE Transactions on Information
Theory and Communications.
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A mention of the widespread use of the cut-off rate as a performance criterion must
be qualified by the observation that it has not been accorded universal acceplance. A
key reason is its seeming lack of fundamental significance, unlike that of the capacity of 3
communication channel. Another reason is the existence of channels with memory for whicl,
the cut-off rate, unlike capacity, exhibits anomalous behavior (see, e.g., [5]).

This paper focuses on the role of the cut-off rate criterion in the coordinated design of
coding and modulation formats for the single-user, additive white (Gaussian-noise channel
[4]. We briefly review the work of Massey [4] when the modulated signals possess unlim-
ited bandwidths. This problem is then considered in the presence of constraints on signal
bandwidth; a complete solution remains elusive. Partial results by Narayan and Snyder [6]
are then presented.
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II The Cut-Off Rate and Its Properties

Let {W : A’ = ¥} be a discrete memoryless channel (DMC) with finite input and output
alphabets, X’ and Y, respectively. Consider a (random) code of rate R > 0 with codewords
of blocklength n, and a maximum-likelihood decoder. It is assumed that the codewords are
independent and identically distributed (i.i.d.) and that the symbols in each codeword are
i.i.d. with (an arbitrary) probability mass function P on X’. The average probability of a
decoding error when this code is used on the DMC {}¥} is bounded above [3, pp. 142-143]
according to
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(All logarithms and exponentiations are with respect to the base 2.)
The upper bound in (2) is improved by choosing P and psoasto maximize Eo(p, P,W)-
pR. To this end, consider

. , Iy 3
max max Eo(p, P, 1 ) - pR 3

and note from {3] that for

aE
R S Rcrl'!(-'p? IV) e -870(191 P, 1") ||-:|=] ] (4)

Eo(p, P,1W) is maximized by p= 1.
The quantity max Eo(1, P,1W) is called the cul-off rale of the DMC {W}, denoted

Ro(W), and is given by

2
Ro(W) = max [— logz (Z P(g-)“1’1f2(y|:5)) ] . (5)
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Observe that Ro(W) depends on {1V} but not on P. If P* achieves the maximum in
(5), we abtain from (2) that

P(P*, W) < exp[-n{Ro(IV) = R)]. (6)

This simpler bound on average error probability is useful if £ < Ro(WV), and is quite
accurate for R = R (P, V). Massey [4] concluded from (6) that for block codes with
maximume-likelihood decoding, Ry(W) deterinines a range of code rates at which reliable
communication can be assured, as well as the coding complexity, reflected by n, to achieve
a specified level of reliability. (For a different interpretation of cut-off rate for channels with
memoty, see [5].)

The cut-off rate of a DMC {1V} also affords other interpretations. For instance, as
pointed out by Csiszir [2], Ro(WW) equals Rényi capacity [7] or “information radius” of
order a = 1/2, and the g-cut-off rate [2] for 3 = —1.

The cut-off rate parameter plays an important role in assessing the performance of codes
different from that considered above. For instance, Viterbi {10] has shown for convolutional
coding with maximum-likelihood decoding that the average probability of decoding error
on a DMC {1V} is bounded above according to

Pe(P™, W) < kpexp[-nRo(W)) (7)

where n is the constraint length, and kpn varies slowly with R. Also, the cut-off rate is a key
parameter in sequential decoding, wherein the receiver decodes a code with a tree structure
by compulting the metrics of, and making tentative hypotheses on, successive branches of the
tree and by changing these hypotheses when subsequent choices indicate an earlier incorrect
hypothesis. The cut-off rate Ro(}V) of a DMC {W} is the Romp(1¥) for sequential decoding
(ef. Arikan (1]}, which is the rate above which the average computational complexity of the
decoding algorithm becomes unbounded.

II1 The Additive White Gaussian Noise Channel

Let X' = {1,---,a} be the (finite) encoder alphabet. The corresponding {modulated) signal
setis § = {5{8),0<t < T; i =1,---,a}, where s;(¢) is the signal transmitted by the
sender over the waveform channel when the encoder produces the symbol i. Signals are
transmitted and received on the interval [0,T). The (random) signal Z(t) received at the
output of the additive, white, Gaussian-noise (AWGN) wavelorm-channel is

Z(t) = si(t) + N(1), (8)
where N () is white Gaussian-noise with power-spectral density No/2 W/hz. The demod-
ulator then produces an output from the alphabet ¥ = {1,---,4}.

From a coding viewpoint, the modulator, waveform channel, and demodulator together
constitute a discrete channel with input aiphabet .V and output alphabet Y. By virtue of
the stationarity and independent increments property of {N(¢),0 < ¢ < T}, this channel is
also memoryless, and hence a DMC; we denote this DMC by {W}. It is important to note
that {1V} depends on the choice of the signal set S, although this dependence will not be
displayed for notational convenience.
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The cut-off rate of the DMC {W'} is not decreased by using a finer output quantization
at the demodulator. In this treatment, we shall restrict ourselves to the limiting situation
when the output quantization is arbitrarily fine, i.e., b = oo. Tor the effects of finite
quantization, see [4]. It then follows from [4] and (2) that

Bo(1, P,W) = —log 3 P(i)P(j) expl—s:;/4No] ©)
1,3=1
where
T
si= [ s - 0P a (10)

The problem of coordinated design of the encoder and modulator, using the cut-off rate
criterion, can now be stated as follows.

Problem I: Determine

A
mgx Ro(“ )
or, equivalently,
max max Eo(1, P, 1Y) (11)
subject to
P(i)20,i=1,--,¢; > P(i)=1; (12)
i=1

and the “average energy” constraint
Y

S0 PG) ( fo ! sf(z)dz) = E. (13)

=1

Theorem 1 (Massey [4]): The maximum in Problem 1 is attained by the simplez signal
set 8” characterized by

lZs:-(t)=0, 0<t< Ty (14)
aa’:l

s; =8 i#7]; (15)
T
/sfz(t)dt=E‘, i=1,0 (16)
Q

where s is a constant for distinct signals and with tlie code symbols being chosen according
to the uniform probability distribution

P(i)=1fa, i=1,--,a (17)
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The corresponding maximal cut-off rate is

Ry =loga — log [1+(a-1)exp (_z(—a%)]\’g)] . (18)

Proof: See [4].

Remark: It is interesting to note that the conjectured optimality of the simplex set with
respect to the probability of error criterion, subject to (13) with P(i}) = 1/a, 1 <i<a (the
4sirong” simplex conjecture) was recently disproved [9]. The “weak” simplex conjecture is
still unresolved when (13) is replaced by the constraint f(;T s}(tydt=E, 1<i<a

Either by virtue of law or nature, it is generally necessary to impose constraints on the
portion of the frequency spectrum that the signals transmitted by a sender can occupy.
There is no universal measure of bandwidth for a signal of finite duration; several measures
have been proposed, and we consider two of these below.

Consider the signal set § = {8;(t),0 < t £ T, i = 1,---,a} used according to the
probability distribution {P(i),i=1,---,a}. The squared second moment bandwidth of S is
defined by

a o T . 2
Bon(s: p) = St PO dsi(0/diP
El=l P(’)-’;J [S,'(t)] dt
If $;(f),—c0 < f < oo, denotes the Fourier transform of s;(¢),0 £ t < T, the fractional
out-of-band energy of § is the fraction of the total average energy of S lying outside a
prespecified frequency band [—F, F} and is defined by

%y P() [ 18P = [5p 1S Pdf]
LSS PO SO

i=1 o0

(19)

(20)

We now state two problems of coordinated encoder and signal design subject to con-
straints on the bandwidth of the signal set, using the cut-off rate criterion. These problems
are obvious extensions of Problem 1 above, and areas yet unresolved in full generality.
Problem 24: Same as Problem 1 above, with the additional squared second-moment band-
width constraint

Bsat(S; P) < B2 (21)

Problem 2B: Same as Problem 1 above, with the additional fractional out-of-band energy
constraint

Bopr)(S; P) L e (22)

Remark: Problems 2A and 2B reduce to Problem 1 upon setting 52 = co in (21) and € = 1
in (22), respectively.

Modified versions of Problems 2A and 2B above have been, in effect, solved in [6] albeit
in the context of a multiaccess AWGN channel. Rather than determining signal sets that
maximize Ro(W) under constraints on average energy and bandwidths, we instead seek to
identify signal sets with minimal bandwidths, in the sense of (19} and (20}, from among
those that achieve the maximal cut-off rate R in (18).
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Problem 34: Consider the family 3° of all simplex signal sets & satisfying (14)-(16), with
the signals Leing used equiprobably in accordance with (17), that is, P(i) =1/a,1 < i < a.
Determine

min Bspr(S; P). (23
T (& P) )
Problem 3B: Tor the same setup as in Problem 3A above, determine
min Bogim(S; P). (24
i op(r)(S; P) )

Remark: Clearly, if the minimal bandwidth in Problem 3A (resp. Problem 3B} satisfics con-
straint {19) (resp. (20)), then the corresponding (optimal) signal set is optimal for Problem

24 (resp. Problem 2B) too.
The solutions to Problems 3A and 3B are provided by the following ‘

Theorem 2 (Narayan-Snyder [6]):

1. The minimum in Problem 3A is attained by the “raised-cosine” simplex set S8 =

{s?M(1),0 <1 < T51 < i € a) given by

sagpy _ [ aF “—1) ol - 5
(1) = o[ = [( -+ 3 #i(0)|- (25)
J=13#
where [ |
N2 int .
(Y= = in — <i<a. )
¢i(t) (T) sin -, 1<i<a (26)
The corresponding minimal squared second-moment bandwidth equals
7l'2 I
Bsa{SM) = —(a + 1){(2¢ +1). (27)

6T?

2. The minimum in Problem 3B is attained by the “prolale spheroidal wave” simplex i
set SOB(F) = {S?B(F’(t), 0<t<T;1<i< a} given by

OBIFY gy - “EI [(a—]n,)‘l’;(t}—% Za: Wj(t)J, (28)

a - . .
J=15%:

1
()= \/ m({-:(l), (29)

with ¢,-)(?) being a prolate spheroidal wave function with eigenvalue A,_(27 FT).
The corresponding minimal fractional out-of-band energy equals

where
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a-=1

Bos(r) (503“’)) =a- Y \(2rFT). (30)
1=

Proof: The proof follows from [6, Section IIIJ.

IV Conclusion

In addition to the results on the AWGN channel reviewed in this paper, several authors
have gainfully used the cut-off rate parameter as a criterion [or signal design. For instance,
Snyder and Rhodes [8] have identified modulation formats that maximize the cut-ofl rate
parameter of a single-user, shot-noise limited optical channel with infinite bandwidth under
simultaneous constraints on average energy and peak amplitude (see also Wyner [12]). In [6],
some of these results are extended to a two-sender multiaccess channel by maximizing the
“cut-off rate region™ and identifying the optimal signal sets. Also, conditions are established
under which this optimality is preserved when constraints are imposed on signal bandwidth.
This cumulative body of work bears out Massey’s thesis {4] Lthat the cut-off rate parameter
of a DMC leads to a rich communication theory of its own, offering useful insights into
the coordinated design of efficient coding and modulation systems. At the same time, we
should be careful not to overstate its importance as it lacks the fundamental significance of
channel capacity.
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