
7742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 12, DECEMBER 2018

Universal Sampling Rate Distortion
Vinay Praneeth Boda and Prakash Narayan

Abstract— We examine the coordinated and universal rate-
efficient sampling of a subset of correlated discrete memoryless
sources followed by lossy compression of the sampled sources.
The goal is to reconstruct a predesignated subset of sources within
a specified level of distortion. The combined sampling mechanism
and rate distortion code are universal in that they are devised
to perform robustly without exact knowledge of the underlying
joint probability distribution of the sources. In Bayesian as well as
nonBayesian settings, single-letter characterizations are provided
for the universal sampling rate distortion function for fixed-
set sampling, independent random sampling, and memoryless
random sampling. It is illustrated how these sampling mech-
anisms are successively better. Our achievability proofs bring
forth new schemes for joint source distribution-learning and lossy
compression.

Index Terms— Discrete memoryless multiple source, fixed-set
sampling, independent random sampling, joint distribution-
learning, memoryless random sampling, sampling rate distor-
tion function, universal rate distortion, universal sampling rate
distortion function.

I. INTRODUCTION

CONSIDER a set M of m discrete memoryless sources
with joint probability mass function (pmf) known only

to belong to a given family of pmfs. At time instants
t = 1, . . . , n, possibly different subsets At of size k ≤ m are
sampled “spatially” and compressed jointly by a (block) source
code, with the objective of reconstructing a predesignated
subset B ⊆ M of sources from the compressed represen-
tations within a specified level of distortion. In forming an
efficient rate distortion code that yields the best compression
rate for a given distortion level, what are the tradeoffs –
under optimal processing – among causal sampling proce-
dure, inferential methods for approximating the underlying
joint pmf of the memoryless sources, compression rate and
distortion level? “Universality” requires that the combined
sampling mechanism and lossy compression code be fashioned
in the face of imprecise knowledge of the underlying pmf.
This paper is a progression of our work in [4] on sampling
rate distortion for multiple sources with known joint pmf.
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Motivating applications include in-network computation [10]
and dynamic thermal management in multicore processor
chips [35].

The study of problems of combined sampling and compres-
sion has a classical and distinguished history. Recent relevant
works include the lossless compression of analog sources
in an information theoretic setting [33]; compressed sensing
with an allowed detection error rate or quantization distor-
tion [25]; sub-Nyquist temporal sampling followed by lossy
reconstruction [14]; and rate distortion function for multiple
sources with time-shared sampling [20]. See also [12], [29].
Closer to our approach that entails spatial sampling, the
rate distortion function has been characterized when multi-
ple Gaussian signals from a random field are sampled and
quantized (centralized or distributed) in [23]. In a setting of
distributed acoustic sensing and reconstruction, centralized as
well as distributed coding schemes and sampling lattices are
studied in [15]. In [13], a Gaussian random field on the interval
[0, 1] and i.i.d. in time, is reconstructed from compressed
versions of k sampled sequences under a mean-squared error
distortion criterion. All the sampling problems above assume
a knowledge of the underlying pmf.

In the realm of rate distortion theory where a complete
knowledge of the signal statistics is unknown, there is a rich
literature that considers various formulations of universal cod-
ing; only a sampling is listed here. Directions include classical
Bayesian and nonBayesian methods [36], [22], [24], [26];
“individual sequences” studies [31], [32], [37]; redundancy
in quantization rate or distortion [16]–[18]; and lossy com-
pression of noisy or remote signals [8], [19], [30]. These
works propose a variety of distortion measures to investigate
universal reconstruction performance.

Interesting variations of our models, especially for the
“remote estimation” of a subset of multiple correlated
sources, have been considered recently in the control
literature [11], [21], [27], [1]. While redolent of our
approach in spirit, there are marked differences. For instance,
in [11], [21], and [27], sampling is temporal rather than
spatial. On the other hand, [1] treats a “scalable” model in
which a subset of correlated sources are compressed first in
a “coarse” manner and, based on receiver feedback, another
possibly different subset of sources are compressed in a refined
manner. Connections between these works and ours below
remain intriguing and unexplored as yet.

Our work differs materially from the approaches above.
Sampling is spatial rather than temporal, unlike in most of
the settings above. Furthermore, we introduce new forms of
randomized sampling that can depend on the observed source
realizations, and which yield a clear gain in performance.
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We restrict ourselves to universality that involves a lack of
specific knowledge of source pmf within a finite family of
pmfs. Accordingly, in Bayesian and nonBayesian settings, we
consider average and peak distortion criteria, respectively, with
an emphasis on the former. Extensions to an infinite family
of pmfs are currently under study. It is important to make
clear that our models entail a centralized processing of the
sources. Note that decentralized encoding would subsume the
long-standing general open problem of distributed lossy source
coding (cf. e.g., [2], [28]).

Our technical contributions are as follows. In Bayesian and
nonBayesian settings, we consider a new formulation involv-
ing an universal sampling rate distortion function (USRDf),
with the objective of capturing the interplay and characterizing
inherent tradeoffs among sampling mechanism, approximation
of underlying (unknown) pmf, lossy compression rate and
distortion level. Our results build on the concept of sampling
rate distortion function [4], which in turn uses as an ingredient
the rate distortion function for a “remote” source-receiver
model with known pmf [2], [3], [9], [34]. We begin with fixed-
set sampling where the encoder observes the same set of k
sampled sources at every time instant. Recognizing that only
the k-marginal pmf of the sources – pertaining to the sampling
set – can be learned by the encoder, the corresponding
USRDf is characterized. In general, allowing randomization
in sampling affords two distinct advantages over fixed-set
sampling: better approximation of the underlying joint pmf and
improved compression performance enabled by sampling dif-
ferent subsets of sources in apposite proportions. An indepen-
dent random sampler chooses different k-subsets of the sources
independently of source realizations and independently in
time, and can learn all k-marginals of the joint pmf. This
reduction in pmf uncertainty (vis-à-vis fixed-set sampling) aids
in improving USRDf. Interestingly, our achievability proof
shows how this USRDf can be attained without inform-
ing the decoder explicitly of the sampling sequence. Lastly,
we consider a more powerful sampler, namely the memoryless
random sampler, whose choice of sampling sets can depend
on instantaneous source realizations. Surprisingly, this latitude
allows the encoder to learn the entire joint pmf, and that,
too, only from the sampling sequence without recourse to
the sampled source realizations. Furthermore, we show how
USRDf can be attained by means of a sampling sequence
that depends deterministically on source realizations, thereby
reducing code complexity. Thus, all our achievability proofs
bring out new ideas for joint source pmf-learning and lossy
compression.

Our model is described in Section II. The main results,
illustrated by examples, are stated in Section III. In Section IV,
we present the achievability proofs in the increasing
order of sampler complexity, with an emphasis on the
Bayesian setting; a unified converse proof is presented
thereafter.

II. PRELIMINARIES

Denote M = {1, . . . , m}, and let XM = (X1, . . . , Xm) be

a XM = m×
i=1

Xi -valued random variable (rv) where each Xi

is a finite alphabet. For a (nonempty) set A ⊆ M, we denote
by X A the rv (Xi , i ∈ A) with values in ×

i∈A
Xi , and denote

n repetitions of X A by Xn
A = (Xn

i , i ∈ A) with values in
X n

A = ×
i∈A

X n
i , where Xn

i = (Xi1, . . . , Xin) takes values in the

n-fold product space X n
i = Xi × · · · × Xi . For 1 ≤ k ≤ m,

let Ak = {A : A ⊆ M, |A| = k} be the set of all k-sized

subsets of M and let Ac = M\ A. Let YM = m×
i=1

Yi , where

Yi is a finite reproduction alphabet for Xi . All logarithms and
exponentiations are with respect to the base 2.

Let � be a finite set (of parameters) and θ a �-valued rv
with pmf μθ of assumed full support. We consider a discrete
memoryless multiple source (DMMS) {XMt }∞t=1 consisting
of i.i.d. repetitions of the rv XM with pmf known only
to the extent of belonging to a finite family of pmfs P =
{PXM|θ=τ , τ ∈ �} of assumed full support. Two settings are
studied: in a Bayesian formulation, the pmf μθ is taken to be
known while in a nonBayesian formulation θ is an unknown
constant in �.

Definition 1: For each n ≥ 1, in the Bayesian setting, a k-
random sampler (k-RS), 1 ≤ k ≤ m, collects causally† at each
t = 1, . . . , n, random samples X St � X St t from XMt , where
St is a rv with values in Ak with (conditional) pmf PSt |Xt

MSt−1 ,
with Xt

M = (XM1, . . . , XMt ) and St−1 = (S1, . . . , St−1).
Such a k-RS is specified by a (conditional) pmf PSn|Xn

Mθ with
the requirement

PSn|Xn
Mθ = PSn|Xn

M =
n∏

t=1

PSt |Xt
MSt−1 . (1)

In the nonBayesian setting, the first equality above is redun-
dant. In both settings, a k-RS is unaware of the underlying
pmf of the DMMS.

The output of a k-RS is (Sn, Xn
S) where Xn

S =
(X S1, . . . , X Sn ). Successively restrictive choices of a k-RS in
(1) corresponding to

PSt |Xt
MSt−1 = PSt |XMt , t = 1, . . . , n, (2)

PSt |Xt
MSt−1 = PSt , t = 1, . . . , n, (3)

and, for a given A ⊆ M,

PSt |Xt
MSt−1 = �(St = A), t = 1, . . . , n (4)

will be termed the k-memoryless random sampler,
k-independent random sampler and the k-fixed-set sampler
abbreviated as k-MRS, k-IRS and k-FS, respectively.

Remark: Another formulation of interest allows k to vary
with t , subject to a time-average constraint. This is not treated
here.

Our objective is to reconstruct a subset of DMMS com-
ponents with indices in an arbitrary but fixed recovery set
B ⊆ M, namely Xn

B , from a compressed representation of the
k-RS output (Sn, Xn

S), under a suitable distortion criterion.

†By causality, we mean

St −◦− Xt
M, St−1 −◦− Xn

M,t+1, t = 1, . . . , n

as implicit in the second equality in (1).
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Definition 2: An n-length block code with k-RS for a
DMMS {XMt }∞t=1 with alphabet XM and reproduction alpha-
bet YB is a triple (PSn|Xn

M , fn, ϕn) where PSn|Xn
M is a k-RS

as in (1), and ( fn, ϕn) are a pair of mappings where the
encoder fn maps the k-RS output (Sn, Xn

S) into some finite
set J = {1, . . . , J } and the decoder ϕn , with access to Sn

and the encoder output, maps An
k × J into Yn

B . We shall use
the compact notation (PS|XM, f, ϕ), suppressing n. The rate
of the code with k-RS (PS|XM, f, ϕ) is 1

n log || f || = 1
n log J .

(An encoder that operates by forming first an explicit estimate
of θ from (Sn, Xn

S) is subsumed by this definition.)
Remark: We note that the decoder ϕ above is taken to be

informed of the sequence of sampling sets Sn . Clearly, this
always holds for a k-FS, while the assumption is meaningful
for a k-IRS and k-MRS. For a k-IRS, it will be shown to be
not needed.

For a given (single-letter) finite-valued distortion measure
d : XB × YB → R

+ ∪ {0}, an n-length block code with k-RS
(PS|XM, f, ϕ) will be required to satisfy one of the following
distortion criteria (d,�) depending on the setting.

(i) Bayesian: The expected distortion criterion is

E

[
d
(

Xn
B, ϕ

(
Sn, f (Sn, Xn

S)
))]

� E

[1

n

n∑

t=1

d
(

X Bt ,
(
ϕ
(
Sn, f (Sn, Xn

S)
))

t

)]

=
∑

τ∈�

μθ(τ )E
[1
n

n∑

t=1

d
(

X Bt ,
(
ϕ
(
Sn, f (Sn, Xn

S)
))

t

)∣∣∣θ = τ
]

≤ �. (5)

(ii) NonBayesian: The peak distortion criterion is

max
τ∈�

�

[
d
(

Xn
B, ϕ

(
Sn, f (Sn, Xn

S)
))∣∣θ = τ

]
≤ �, (6)

where the “conditional” expectation denotes, in fact,
�PXn

MSn |θ=τ
= �PXn

M|θ=τ PSn |Xn
M

.

Definition 3: A number R ≥ 0 is an achievable universal
k-RS coding rate at distortion level � if for every � > 0 and
sufficiently large n, there exist n-length block codes with k-RS
of rate less than R + � and satisfying the distortion criterion
(d,� + �) in (5) or (6) above; and (R,�) will be termed
an achievable universal k-RS rate distortion pair under the
expected or peak distortion criterion. The infimum of such
achievable rates is denoted by RA(�), Rı (�) and Rm(�)
for a k-FS, k-IRS and k-MRS, respectively. We shall refer to
RA(�), Rı (�) as well as Rm(�) as the universal sampling
rate distortion function (USRDf), suppressing the dependence
on k.

Remark: Clearly, the USRDf under (5) will be no larger
than that under (6).

III. MAIN RESULTS

We make the following main contributions. First, a (single-
letter) characterization is provided of the USRDf for fixed-set
sampling, i.e., k-FS, in the Bayesian and nonBayesian settings.
Second, building on this, a characterization of the USRDf is
obtained for a k-IRS in these settings, and it is shown that

Fig. 1. Ambiguity atoms.

randomized sampling can outperform strictly the “best” fixed-
set sampler. Indeed, this USRDf can be attained even upon
dispensing with the a priori assumption that the decoder is
informed of the sequence of sampling sets. Finally, the USRDf
for a k-MRS is characterized and shown to be achievable
by a sampler that is determined by the instantaneous real-
izations of the DMMS at each time instant. We note that the
USRDfs for a k-FS and k-IRS can be deduced from that of
a k-MRS. Nevertheless, for the sake of expository conve-
nience, we develop the three sampling models in succession;
this will also facilitate the presentation of the achievability
proofs.

Throughout this paper, a salient theme that recurs is this:
An encoder without prior knowledge of θ and with access
to only k instantaneously sampled components of the DMMS
{XMt }∞t=1 can form only a limited estimate of θ. The qual-
ity of said estimate improves steadily from k-FS to k-IRS
to k-MRS.

Consider first fixed-set sampling with A ⊆ M in (4).
An encoder f with access to Xn

A cannot distinguish among
pmfs in P (indexed by τ ) that have the same PX A |θ=τ . Accord-
ingly, let �1 be a partition of � comprising “ambiguity”
atoms, with each such atom consisting of τ s with identical
marginal pmfs PX A |θ=τ . Indexing the elements of �1 by τ1,
let θ1 be a �1-valued rv with pmf μθ1 induced by μθ . For
each τ1 ∈ �1, let �(τ1) be the collection of τ s in the atom
of �1 indexed by τ1. In the Bayesian setting,

PX A |θ1=τ1 = PX A |θ=τ , τ ∈ �(τ1).

In the nonBayesian setting, in order to retain the same notation,
we choose PX A |θ1=τ1 to be the right-side above.

When the pmf of the DMMS {XMt }∞t=1 is known, say
PXM – corresponding to |�| = 1 – we recall from [4] that
the (U)SRDf for fixed A ⊆ M is

RA(�)= min
XM −◦− X A −◦− YB
�[d(X B ,YB )]≤�

I (X A ∧ YB), �min ≤�≤�max,

(7)

with

�min = �
[

min
yB∈YB

�[d(X B, yB)|X A]],
�max = min

yB∈YB

[
�[d(X B, yB)|X A]],

which can be interpreted as the (standard) rate distortion
function for the DMMS {X At }∞t=1 using a modified distortion
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measure d̃ defined by

d̃(x A, yB) = �[d(X B, yB)|X A = x A].
This fact will serve as a stepping stone to our analysis

of USRDf for a k-random sampler. In the Bayesian setting,
we consider a modified distortion measure dτ1 , τ1 ∈ �1,
given by

dτ1(x A, yB) � �[d(X B, yB)|X A = x A, θ1 = τ1]; (8)

the set of (constrained) pmfs

κBA (δ, τ1) � {Pθ XMYB : θ, XM −◦− θ1, X A −◦− YB,

�[dτ1(X A, YB)|θ1 = τ1] ≤ δ}, (9)

and the (minimized) conditional mutual information

ρB
A (δ, τ1) � min

κBA (δ,τ1)
I (X A ∧ YB |θ1 = τ1) (10)

which is akin to (7) and will play a basal role. In the
nonBayesian setting, the counterparts of (9) and (10) are

κnB
A (δ, τ1) �

{
PXMYB |θ=τ = PXM|θ=τ PYB |X A,θ1=τ1

: �[d(X B, YB)|θ = τ ] ≤ δ, τ ∈ �(τ1)
}

(11)

and

ρnB
A (δ, τ1)� min

κnB
A (δ,τ1)

I (X A ∧ YB |θ1 = τ1). (12)

Remarks: (i) The minima in (10) and (12) exist as those of
convex functions over convex, compact sets.

(ii) It is seen in a standard manner that ρB
A (δ, τ1) in (10)

and ρnB
A (δ, τ1) in (12) are convex and continuous in δ.

(iii) Clearly, the minimum in (12) under pmf-wise con-
straints (11) can be no smaller than that in (10) under
pmf-averaged constraints (9).

Our first main result states that the USRDf at distortion level
� for fixed-set sampling in the Bayesian setting is a minmax
of quantities in (10), where the maximum is over ambiguity
atoms τ1 in �1, while the minimum is over distortion thresh-
olds δ = �τ1 , τ1 ∈ �1 whose mean does not exceed �.
On the other hand, in the nonBayesian setting, the USRDf
at distortion level � is a maximum over ambiguity atoms of
quantities in (12) with δ = �, and hence is no smaller than
its Bayesian counterpart.

Theorem 1: The Bayesian USRDf for fixed A ⊆ M is

RA(�)= min
{�τ1 , τ1∈�1}
�[�θ1

]≤�

max
τ1∈�1

ρB
A (�τ1, τ1) (13)

for �min ≤ � ≤ �max, where

�min =�
[
�[ min

yB∈YB

dθ1(X A, yB)|θ1]
]
=�[ min

yB∈YB

dθ1(X A, yB)],
�max =�[ min

yB∈YB

�[dθ1(X A, yB)|θ1]
]
.

The nonBayesian USRDf is

RA(�) = max
τ1∈�1

ρnB
A (�, τ1), �min ≤ � ≤ �max (14)

where

�min

= max
τ1∈�1

min
PYB |X A ,θ1=τ1=PYB |XM,θ=τ

max
τ∈�(τ1)

�[d (X B , YB)|θ = τ ]

and

�max = max
τ1∈�1

min
yB∈YB

max
τ∈�(τ1)

�[d (X B, yB)|θ = τ ].
Remarks: (i) In fact, the minimizing pmf PYB |X Aθ1 in �min

is a conditional point-mass.
(ii) We note that for a given distortion level �, the set

{�τ1, τ1 ∈ �1 : ∑
τ1∈�1

μθ1(τ1)�τ1 ≤ �} is a convex, compact

set in �|�1|. Next, observing that

max
τ1∈�1

ρB
A (�τ1, τ1)

is a convex function of {�τ1, τ1 ∈ �1}, the minimum in (13)
exists as that of a convex function over a convex, compact set.

(iii) The minimizing {�∗
τ1

, τ1 ∈ �1} in (13) is char-
acterized by the following special property: For a given
�min ≤ � ≤ �max, for each τ1 ∈ �1, either

ρB
A (�∗

τ1
, τ1) ≡ max

τ̃1∈�1

ρB
A (�∗

τ̃1
, τ̃1) (15)

where the right-side does not depend on τ1, or

�∗
τ1

= �[ min
yB∈YB

dτ1(X A, yB)|θ1 = τ1].

By a standard argument in convex optimization, if {�∗
τ1

,
τ1 ∈ �1} does not satisfy the property above, then a small
perturbation decreases the maximum in (15) leading to a
contradiction.

(iv) The �min and �max for the Bayesian and the non-
Bayesian settings can be different.

Example 1: For the probability of error distortion measure

d(xB, yB) = �(xB = yB) = 1 −
∏

i∈B

�(xi = yi ),

xB, yB ∈ XB = YB

the Bayesian USRDf for fixed-set sampling with A ⊆ B in
(13) simplifies with (10) becoming

ρB
A (�τ1, τ1) = min

�[ατ1 (X A)�(X A =YA)|θ1=τ1]
≤�τ1−(1−�[ατ1 (X A)|θ1=τ1])

I (X A ∧ YA|θ1 = τ1)

(16)

where

ατ1(x A) = max
x̃∈XB

PX B |X Aθ1(x̃ |x A, τ1) (17)

is the maximum a posteriori (MAP) estimate of X B on the
basis of X A = x A under pmf PXM|θ1=τ1 .

The proof of (16), (17) is along the lines of that
of [4, Proposition 1] under the pmf PXM|θ1=τ1 (rather than
PXM as in [4]), and so is not repeated here. Furthermore,

�min = 1 −�[αθ1(X A)] and

�max = 1 −�[ max
xB∈XB

PX B |θ1(xB |θ1)
]
.
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The form of the Bayesian USRDf in (16) suggests a simple
achievability scheme comprising two steps. Using a maximum
a posteriori (MAP) or maximum likelihood (ML) estimate τ̂1
of θ1 on the basis of Xn

A = xn
A, the first step entails a lossy

reconstruction of xn
A by its codeword yn

A, under pmf PXM|θ1=τ̂1

and for a modified distortion measure

d̃τ̂1(x A, yA) � ατ̂1(x A)�(x A = yA)

with a corresponding reduced threshold

�τ̂1 − (1 −�[ατ̂1(X A)|θ1 = τ̂1]).
This is followed by a second step of reconstructing xn

B from
the output yn

A of the previous step as a MAP estimate

yn
B = arg max

yn∈Yn
B

PX B |X Aθ1(yn|yn
A, τ̂1);

the corresponding probability of estimation error coincides
with the mentioned reduction 1 −�[ατ̂1(X A)|θ1 = τ̂1] in the
threshold.

In the nonBayesian setting, the USRDf in (14), (12)
simplifies with

ρnB
A (�, τ1)

= min
PYA |X A ,θ1=τ1

PYB\A |YA ,θ1=τ1
=PYB |XM,θ=τ

�[�(X B =YB )|θ=τ ]≤�,τ∈�(τ1)

I (X A ∧ YA|θ1 = τ1),

(18)

for �min ≤ � ≤ �max, where

�min = max
τ1∈�1

min
PYB |X A ,θ1=τ1

max
τ∈�(τ1)

(
1 − P(X B = YB |θ = τ )

)

and

�max = max
τ1∈�1

min
yB∈YB

max
τ∈�(τ1)

(
1 − PX B |θ (yB |τ )

)
.

This leads to the following achievability scheme. With τ̂1 as
the ML estimate of θ1 formed from Xn

A = xn
A, first xn

A is
reconstructed as yn

A according to PYA |X A,θ1=τ̂1 resulting from
the minimization in (18). This is followed by the reconstruc-
tion of xn

B from yn
A by means of the estimate

yn
B = arg max

yn∈Yn
B

PYB |YAθ1(yn|yn
A, τ̂1)

under pmf PYB |YAθ1 which, too, is obtained from the minimiza-
tion in (18).

Example 2: Let M = {1, 2} and X1 = X2 = {0, 1},
consider a DMMS with PX1 X2|θ=τ represented by a virtual
binary symmetric channel (BSC) shown in Figure III, where
pτ , qτ ≤ 0.5, τ ∈ �, where � is a given finite set. For
A = {1}, B = {1, 2}, and the probability of error distortion
measure of Example 1, the Bayesian USRDf reduces to

R{1}(�)= min
{�τ1 , τ1∈�1}
�[�θ1

]≤�

max
τ1∈�1

(
h(pτ1) − h

(�τ1 − qτ1

1 − qτ1

))
,

for �min ≤ � ≤ �max, where

�min = �[qθ1], �max = �[pθ1 + qθ1 − pθ1qθ1];

Fig. 2. Virtual BSC (q).

and qτ1 = PX2|X1θ1(0|1, τ1), τ1 ∈ �1; and the nonBayesian
USRDf is

R{1}(�) = max
τ1∈�1

(
h(pτ1) − min

τ∈�(τ1)
h
(� − qτ

1 − qτ

))

with

�min = max
τ∈�

qτ and �max = max
τ∈�

(pτ + qτ − pτ qτ ).

First, it is easy to see that �min and �max in the Bayesian
setting are smaller than their counterparts in the nonBayesian
setting. Next, note that the Bayesian USRDf, with an addi-
tional outer minimization over thresholds �τ1 is smaller than
the nonBayesian USRDf which involves a maximum over
members in each ambiguity atom.

Example 3: This example, albeit concocted, shows that for
fixed-set sampling with A and recovery set B , a choice of A
outside B can be best. Let M = {1, 2, 3}, B = {1, 2} and
Xi = Y j = {0, 1}, i = 1, 2, 3; j = 1, 2. Consider a DMMS
with PX1 X2|θ=τ as in Figure III and X3 = X1 ⊕ X2 where ⊕
denotes addition modulo 2. Here, pτ = 0.5, qτ ≤ 0.5, τ ∈ �,
with the qτ s, τ ∈ �, being distinct. For distortion measure
d(xB, yB) � � ((x1 ⊕ x2) = (y1 ⊕ y2)), the Bayesian USRDf
for fixed-set sampling is

R{1}(�) = h(0.5) − h
(� − q̃

1 − 2q̃

)
,

�min = q̃ ≤ � ≤ �max = 0.5, (19)

where q̃ = ∑
τ∈�

μθ(τ )qτ . Since PX1|θ=τ is the same for all

τ ∈ �, note that |�1| = 1. The nonBayesian USRDf is

R{1}(�) = h(0.5) − min
τ∈�

h
( � − qτ

1 − 2qτ

)
,

�min = max
τ∈�

qτ ≤ � ≤ �max = 0.5. (20)

Also, R{1}(�) = R{2}(�). For sampling set A = {3}, �1 = �
and the Bayesian USRDf is

R{3}(�) = min
{�τ , τ∈�}: �[�θ ]≤�

max
τ∈�

h(qτ )−h (�τ ) ,

�min = 0 ≤ � ≤ �max = q̃, (21)

and the nonBayesian USRDf is

R{3}(�) = max
τ∈�

h(qτ ) − h (�) ,

�min = 0 ≤ � ≤ �max = max
τ∈�

qτ . (22)

Since �min in (19) equals �max in (21), in the Bayesian
setting R3(�) is strictly smaller than R1(�). A similar
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observation holds in the nonBayesian setting upon examin-
ing (20) and (22).

Turning to a k-IRS in (3), the freedom now given to the
sampler to rove over all k-sized subsets in Ak engenders a
partition �2 of �1 (and hence a finer partition of �) with
smaller ambiguity atoms. Let A1, . . . , A|Ak |, where |Ak | =(m

k

)
, be any fixed ordering of Ak . Let �2 be a partition of

� consisting of ambiguity atoms, with each atom formed
by τ s with identical (ordered) collections of marginal pmfs(

PX Ai |θ=τ , i = 1, . . . , |Ak |
)

.

Note that �2 is a refinement of �1 (for any Ai ). Indexing
the elements of �2 by τ2, let θ2 be a �2-valued rv with pmf
μθ2 derived from μθ . For each τ2 in �2, let �(τ2) be the
collection of τ s in the atom indexed by τ2. In analogy with
(10) and (12), we define counterparts in the Bayesian and
nonBayesian settings as

ρB
ı (δ, PS , τ2) � min

κBı (δ,PS,τ2)
I (X S ∧ YB |S, θ2 = τ2); (23)

ρnB
ı (δ, PS , τ2) � min

κnB
ı (δ,PS,τ2)

I (X S ∧ YB |S, θ2 = τ2), (24)

where dτ2 is defined as in (8) with θ2 = τ2 replacing θ1 = τ1,
and

κBı (δ, PS , τ2)

�
{

Pθ XMSYB = μθ PXM|θ PS PYB |S X Sθ2

:
∑

A∈Ak

PS(A)�[dτ2(X A, YB)|S = A, θ2 = τ2] ≤ δ
}
,

κnB
ı (δ, PS, τ2)

�
{
PXMSYB |θ=τ = PXM|θ=τ PS PYB |S X S,θ2=τ2

:
∑

A∈Ak

PS(A)�[d(X B, YB)|S = A, θ = τ ] ≤ δ, τ ∈ �(τ2)
}
.

Theorem 2: The Bayesian USRDf for a k-IRS is

Rı (�) = min
PS , {�τ2 , τ2∈�2}

�[�θ2
]≤�

max
τ2∈�2

ρB
ı (�τ2 , PS, τ2),

�min ≤ � ≤ �max, (25)

where

�min = min
A∈Ak

�
[
�[ min

yB∈YB

dθ2(X A, yB)|θ2]
]

and

�max = min
A∈Ak

�
[

min
yB∈YB

�[dθ2(X A, yB)|θ2]
]
.

The nonBayesian USRDf is

Rı (�) = min
PS

max
τ2∈�2

ρnB
ı (�, PS, τ2), �min ≤ � ≤ �max,

(26)

for

�min = min
PS

max
τ2∈�2

∑

A∈Ak

PS(A) min
PYB |S X S ,θ2=τ2=PYB |S XM,θ=τ

max
τ∈�(τ2)

�[d (X B, YB)|S = A, θ = τ ]

and

�max = max
τ2∈�2

min
yB∈YB

max
τ∈�(τ2)

�[d (X B, yB)|θ = τ ].
Corollary 1: The USRDfs in the Bayesian and nonBayesian

settings remain unchanged upon a restriction to n-length
block codes ( f, ϕ) with uninformed decoder, i.e., with ϕ =
ϕ( f (Sn, Xn

S)).
Remarks: (i) For a k-IRS we restrict ourselves to the

interesting case of k < |B|, for otherwise it would suffice
to choose St = B, t = 1, . . . , n.

(ii) Akin to a k-FS, the optimizing PS, {�∗
τ2

, τ2 ∈ �2} in
(25) has the following special property: For a given �min ≤
� ≤ �max, for each τ2 ∈ �2, either

ρB
ı (�∗

τ2
, PS, τ2) = max

τ̃2∈�2

ρB
ı (�∗

τ̃2
, PS , τ̃2)

or

�∗
τ2

=
∑

A∈Ak

PS(A)�[ min
yB∈YB

dτ2(X A, yB)|θ2 = τ2].

(iii) In general, a k-IRS will outperform a k-FS in two ways.
First, the former enables a better approximation of θ in the
form of θ2 whereas the latter estimates θ1 = θ1(θ2). Second,
random sampling enables a “time-sharing” over various fixed-
set samplers, that can outperform strictly the best fixed-
set choice. Both these advantages of a k-IRS over fixed-set
sampling are illustrated in Examples 4 and 5.

Example 4: This example illustrates that a k-IRS can per-
form strictly better than the best k-FS. For M = B = {1, 2},
and Xi = Yi = {0, 1}, i = 1, 2, consider a DMMS with
PX1 X2|θ=τ = PX1|θ=τ PX2|θ=τ where

PX1|θ (0|τ ) = 1 − pτ , PX2|θ (0|τ ) = 1 − qτ , τ ∈ �,

and 0 < pτ , qτ < 0.5. Under the distortion measure
d(xB, yB) = �(x1 = y1) + �(x2 = y2), for a k-FS, with
k = 1, the Bayesian USRDf for sampling set A = {1} is

R{1}(�)= min
{�τ1 , τ1∈�1}
�[�θ1

]≤�

max
τ1∈�1

(
h(pτ1)−h

(
�τ1 −qτ1

))
,

for �[qθ ] ≤ � ≤ �[pθ + qθ ], where qτ1 = �[qθ |θ1 = τ1],
and the nonBayesian USRDf is

R{1}(�) = max
τ1∈�1

(
h(pτ1) − min

τ∈�(τ1)
h
(
� − qτ

))

for max
τ∈�

qτ ≤ � ≤ max
τ∈�

(pτ + qτ ).

Turning to a k-IRS with k = 1, clearly, �2 = �. For a
k-IRS the Bayesian USRDf is

Rı (�) = min
PS , {�τ , τ∈�}
�[�θ ]≤�

max
τ∈�

min
�1τ , �2τ

PS ({1})�1τ +PS ({2})�2τ ≤�τ

I,

for min{�[pθ],�[qθ ]} ≤ � ≤ �[pθ + qθ ] and the non-
Bayesian USRDf is

Rı (�) = min
PS

max
τ∈�

min
�1τ , �2τ

PS ({1})�1τ +PS ({2})�2τ ≤�

I, (27)

for min
0≤α≤1

max
τ∈�

(αpτ + (1 − α)qτ ) ≤ � ≤ max
τ∈�

(pτ + qτ ) where

I equals

PS({1})(h(pτ )−h
(
�1τ −qτ

))+ PS({2})(h(qτ )−h
(
�2τ − pτ

))
.
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An analytical comparison of the USRDfs shows the strict
superiority of the k-IRS over the k-FS, as seen – for instance –
by the lower values of �min for the former.

Example 5: In Example 4, assume that

pτ ≥ qτ , τ ∈ �.

For a k-FS with k = 1, the nonBayesian USRDf is

R{1}(�) = max
τ1∈�1

(
h(pτ1) − min

τ∈�(τ1)
h
(
� − qτ

))
,

R{2}(�) = max
τ1∈�1

(
h(qτ1) − min

τ∈�(τ1)
h
(
� − pτ

))
. (28)

Now, observe that for each τ ∈ �

h(pτ ) − h(δ − qτ ) ≤ h(qτ ) − h(δ − pτ )

holds for pτ ≤ δ ≤ pτ + qτ . Thus, for a k-IRS with k = 1,
the nonBayesian USRDf in (27) simplifies to

Rı (�) = max
τ∈�

h(pτ ) − h(� − qτ )

which is strictly smaller than the USRDf for the better k-FS
in (28). The superior performance of the k-IRS is enabled by
its ability to estimate simultaneously both PX1|θ and PX2|θ
(and thereby PX1 X2|θ ); a k-FS can estimate only one of
PX1|θ or PX2|θ .

Lastly, for a k-MRS in (2), the ability of the sampler
to depend instantaneously on the current realization of the
DMMS enables an encoder with access to the sampler output
to distinguish among all the pmfs in P . Accordingly, for a
k-MRS, � itself serves as the counterpart of the partitions �1
(for a k-FS) and �2 for a k-IRS. For a rv U with fixed pmf
PU on some finite set U, and for fixed PS|XMU , we define
the counterparts of (23) and (24) as

ρB
m (δ, PU , PS|XMU , τ )

� min
κBm (δ,PU ,PS|XMU ,τ )

I (X S ∧ YB |S, U, θ = τ ), (29)

and

ρnB
m (δ, PU , PS|XMU , τ )

� min
κnB

m (δ,PU ,PS|XMU ,τ )
I (X S ∧ YB |S, U, θ = τ ), (30)

where the minimization in (29) and (30), in effect, is with
respect to PYB |S X SUθ and the sets of (constrained) pmfs are

κBm (δ, PU , PS|XMU , τ )

� {PθU XMSYB = μθ PU PXM|θ PS|XMU PYB |S X SUθ

: �[d (X B, YB)|θ = τ ] ≤ δ},
and

κnB
m (δ, PU , PS|XMU , τ )

� {PU XMSYB |θ=τ = PU PXM|θ=τ PS|XMU PYB |S X SU,θ=τ

: �[d (X B, YB)|θ = τ ] ≤ δ}.
Here, U plays the role of a “time-sharing” rv, as will be seen
below.

Theorem 3: For a k-MRS, the Bayesian USRDf is

Rm(�)= min
PU ,PS|XMU ,{�τ , τ∈�}

�[�θ ]≤�

max
τ∈�

ρB
m (�τ , PU , PS|XMU , τ ),

(31)

for �min ≤ � ≤ �max, where

�min = min
PS|XM

�

[
min

yB∈YB

�
[
d
(
X B , yB

)∣∣S, X S , θ
]]

and

�max = min
PS|XM

�

[
min

yB∈YB

�
[
d
(
X B, yB

)∣∣S, θ
]]

. (32)

The nonBayesian USRDf is

Rm(�) = min
PU ,PS|XMU

max
τ∈�

ρnB
m (�, PU , PS|XMU , τ ), (33)

for �min ≤ � ≤ �max, where

�min = min
PS|XM(

max
τ∈�

�
[

min
yB∈YB

�
[
d(X B , yB)|S, X S, θ = τ

]∣∣θ = τ
])

(34)

and

�max = min
PS|XM

max
τ∈�

∑

Ai ∈Ak

PS|θ (Ai |τ )

× min
yB∈YB

�
[
d(X B, yB)|S = Ai , θ = τ

]
. (35)

It suffices to take |U | ≤ 2|�| + 1.
In (32) and (34), (35), it is readily seen that conditionally

deterministic samplers (defined below) attain the minima in
�min and �max. In fact, such samplers will be seen to be
optimal for every �min ≤ � ≤ �max.

For a mapping w : XM×U → Ak , a deterministic sampler
is specified in terms of a conditional point-mass pmf

PS|XMU (s|xM, u)

= δw(xM,u)(s)

�
{

1, s = w(xM, u)

0, otherwise, (xM, u) ∈ XM × U, s ∈ Ak .
(36)

Theorem 3 is equivalent to
Proposition 1: For a k-MRS, the Bayesian USRDf is

Rm(�) = min
PU , δw,{�τ , τ∈�}

�[�θ ]≤�

max
τ∈�

ρB
m (�τ , PU , δw, τ ), (37)

for �min ≤ � ≤ �max with �min and �max as in (32), and
the nonBayesian USRDf is

Rm(�) = min
PU , δw

max
τ∈�

ρnB
m (�, PU , δw, τ ), (38)

for �min ≤ � ≤ �max, with �min and �max as in (34) and
(35), respectively. It suffices if |U | ≤ 2|�| + 1.

Proof: See Appendix B.
The achievability proof of Theorem 3, by dint of

Proposition 1, will use a deterministic sampler based on the
minimizing w from (37) or (38).



BODA AND NARAYAN: UNIVERSAL SAMPLING RATE DISTORTION 7749

Example 6: This example compares the USRDfs for a
k-MRS and a k-IRS and is an adaptation of Example 2 above
(and also of ( [4], Example 2)). Consider Example 2 with qτ =
0.5 for every τ ∈ �, whereby PX1 X2|θ=τ = PX1|θ=τ PX2|θ=τ .
Clearly, �2 = �. For a k-IRS, the Bayesian USRDf is

Rı (�) = min
{�τ ,τ∈�}
�[�θ ]≤�

max
τ∈�

(
h(0.5) − h

(�τ − pτ

1 − pτ

))

= h(0.5) − h
(� − p

1 − p

)

for 0 ≤ � ≤ p, where p = �[pθ ], and the nonBayesian
USRDf is

Rı (�) = h(0.5) − min
τ∈�

h
(� − pτ

1 − pτ

)
, 0 ≤ � ≤ max

τ∈�
pτ .

For a k-MRS, in ρB
m (δ, PU , PS|XMU , τ ) as well as

ρnB
m (δ, PU , PS|XMU , τ ), PU = a point-mass and

PS|XMU (s|xM, u) = PS|XM(s|xM)

=

⎧
⎪⎨

⎪⎩

1, s = 1, xM = 00 or 11

1, s = 2, xM = 01 or 10

0, otherwise

are uniformly optimal for all 0 ≤ δ ≤ pτ and for all τ ∈ �.
Then, the Bayesian USRDf is

Rm(�) = min
{�τ ,τ∈�}
�[�θ ]≤�

max
τ∈�

(
h(pτ ) − h(�τ )

)
, 0 ≤ � ≤ p,

and the nonBayesian USRDf is

Rm(�) = max
τ∈�

h(pτ ) − h(�), 0 ≤ � ≤ max
τ∈�

pτ .

Clearly, in both the Bayesian and nonBayesian settings
Rm(�) < Rı (�).

In closing this section, standard properties of the USRDf for
the fixed-set sampler, k-IRS and k-MRS in the Bayesian and
nonBayesian settings are summarized below, with the proof
provided in Appendix C.

Lemma 1: The right-sides of (13), (14), (25), (26), (31)
and (33) are finite-valued, decreasing, convex, continuous
functions of �min ≤ � ≤ �max.

IV. PROOFS

A. Achievability Proofs

Our achievability proofs emphasize the Bayesian setting.
Counterpart proofs in the nonBayesian setting use similar sets
of ideas, and so we limit ourselves to pointing out only the
distinctions between these and their Bayesian brethren. In the
Bayesian setting, the achievability proofs successively build
upon each other according to increasing complexity of the
sampler, and are presented in the order: fixed-set sampler,
k-IRS and k-MRS.

A common theme in the achievability proofs for a k-FS,
a k-IRS and a k-MRS involves forming estimates τ̂1 of the
underlying τ1 in �1, τ̂2 of τ2 in �2 and τ̂ of τ in �,
respectively. The assumed finiteness of � enables τ̂1 or τ̂2
to be conveyed rate-free to the decoder. Codes for achieving

USRDf at a prescribed distortion level � are chosen from
among fixed-set sampling rate distortion codes for τ1s in
�1 or from among IRS codes for τ2s in �2 or from among
MRS codes for τ s in �. Such codes, in the Bayesian setting,
correspond to appropriate distortion thresholds that, in effect,
average to yield a distortion level �; in the nonBayesian
setting, a suitable “worst-case” distortion must not exceed �.
A chosen code corresponds to an estimate τ̂1, τ̂2 or τ̂ .

A mainstay of our achievability proofs is the existence of
sampling rate distortion codes with fixed-set sampling for a
DMMS with known pmf Q.

Lemma 2: Consider a DMMS {XMt }∞t=1 with known pmf
Q = QXM . Let A, B ⊆ M be fixed sampling and recovery
sets, respectively, and define

dA(x A, yB) � �[d(X B, yB)|X A = x A].
For every � > 0 and �min ≤ � ≤ �max, there exists a
sampling rate distortion code ( f, ϕ) of rate

1

n
log || f || ≤ min

�Q[dA(X A,YB)]≤�
IQ(X A ∧ YB) + �

and expected distortion

�Q
[
d
(
Xn

B , ϕ( f (Xn
A))

)] = �Q
[
dA
(
Xn

A, ϕ( f (Xn
A))

)]

≤ � + �

for all n large enough. Here,

�min = �[ min
yB∈YB

dA(X A, yB)]

and

�max = min
yB∈YB

�[dA(X A, yB)].
Proof: The proof of the lemma follows from the achiev-

ability proof of [4, Proposition 1] upon replacing the recovery
set M therein by B .

Theorem 1: Considering first the Bayesian setting, observe
that

�min = min
θ,XM −◦− θ1,X A −◦− YB

�[d(X B, YB)]
= min

θ,XM −◦− θ1,X A −◦− YB
�[�[d(X B, YB)|X A, θ1]]

= min
θ,XM −◦− θ1,X A −◦− YB

�[dθ1(X A, YB)] by (8)

= �
[
�[ min

yB∈YB

dθ1(X A, yB)|θ1]
]

and

�max = min
θ,XM −◦− θ1,X A −◦− YB

PX AYB |θ1=τ1
=PX A |θ1=τ1

PYB |θ1=τ1
,τ1∈�1

�[d(X B, YB)]

= �
[

min
PX AYB |θ1=PX A |θ1 PYB |θ1

�[dθ1(X A, YB)|θ1]
]

= �
[

min
yB∈YB

�[dθ1(X A, yB)|θ1]
]
.

Now, consider a partition �1 of � as in Section III. Based
on the sampler output Xn

A, the encoder forms an ML estimate
of θ1 as

τ̂1,n = τ̂1,n(Xn
A) � arg max

τ1∈�1

PXn
A |θ1(Xn

A|τ1).
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For each τ1 in �1, observe that {X At }∞t=1 is a DMMS with
pmf Pτ1 � PX A |θ1=τ1 . As shown in Appendix D, the sequence
of ML estimates

{̂τ1,n}n converges to τ1 in Pτ1 -probability, τ1 ∈ �1, (39)

so that for every � > 0 and τ1 in �1, there exists an N1(�, τ1)
such that

Pτ1 (̂τ1,n =τ1)= Pτ1 (̂τ1,n(Xn
A) =τ1)≤ �

2 dmax
, n ≥ N1(�, τ1),

where dmax = max
xB∈XB , yB∈YB

d(xB, yB). By the finiteness

of �1, there exists an N(�) such that simultaneously for all
τ1 ∈ �1,

Pτ1 (̂τ1,n = τ1) ≤ �

2 dmax
, n ≥ N(�)

and consequently

P (̂τ1,n = θ1) =
∑

τ1∈�1

μθ1(τ1)Pτ1 (̂τ1,n = τ1)

≤ �

2dmax
, n ≥ N(�). (40)

For a fixed �min ≤ � ≤ �max, let {�τ1, τ1 ∈ �1}
yield the minimum in (13). For each τ1 in �1, for the
DMMS {XMt }∞t=1 with pmf PXM|θ1=τ1 and distortion measure
dτ1 , there exists by Lemma 2 – with Q = PXM|θ1=τ1 and
dA = dτ1 – a fixed-set sampling rate distortion code ( fτ1 , ϕτ1),
fτ1 : X n

A → {1, . . . , J } and ϕτ1 : {1, . . . , J } → Yn
B of rate

1
n log J ≤ max

τ1∈�1
ρB

A (�τ1, τ1) + �
2 = RA(�) + �

2 and with

expected distortion

�[dτ1(Xn
A, ϕτ1( fτ1(Xn

A)))|θ1 = τ1] ≤ �τ1 + �

2

for all n ≥ N2(�, τ1).
A code ( f, ϕ), with f taking values in J � {1, . . . , |�1|}×

{1, . . . , J } is constructed as follows. Order (in any manner)
the elements of �1. The encoder f , dictated by the estimate
τ̂1,n , is

f (xn
A) � (̂τ1,n(xn

A), fτ̂1,n (xn
A)), xn

A ∈ X n
A.

The decoder is

ϕ(̂τ1,n, j) � ϕτ̂1,n ( j), (̂τ1,n, j) ∈ J .

The rate of the code is

1

n
log |J | = 1

n
log |�1| + 1

n
log J ≤ RA(�) + �, (41)

for all n large enough, by the finiteness of �1.
The code ( f, ϕ) is seen to satisfy

�[d(Xn
B, ϕ( f (Xn

A)))]
≤ �[�(̂τ1,n = θ1)d(Xn

B, ϕτ̂1,n ( fτ̂1,n (Xn
A)))]

+ P (̂τ1,n = θ1)dmax

= �[�(̂τ1,n = θ1)d(Xn
B, ϕθ1( fθ1(Xn

A)))]
+ P (̂τ1,n = θ1)dmax

≤ �
[
d(Xn

B, ϕθ1( fθ1(Xn
A)))

]+ P (̂τ1,n = θ1)dmax. (42)

The first term on the right-side of (42) is

�

[1

n

n∑

t=1

d
(
X Bt , (ϕθ1( fθ1(Xn

A)))t
)]

= �

[1

n

n∑

t=1

�
[
d(X Bt , (ϕθ1( fθ1(Xn

A)))t )|Xn
A, θ

]]

= �

[1

n

n∑

t=1

�
[
d(X Bt , (ϕθ1( fθ1(Xn

A)))t )|X At , θ
]]

,

since PXn
M|θ =

n∏

t=1

PXMt |θ

= �

[1

n

n∑

t=1

�
[
d(X Bt , (ϕθ1( fθ1(Xn

A)))t )|X At , θ1
]]

,

since θ −◦− θ1 −◦− Xn
A

= �

[1

n

n∑

t=1

dθ1

(
X At , (ϕθ1( fθ1(Xn

A)))t
)]

, by(8)

= �[dθ1(Xn
A, ϕθ1( fθ1(Xn

A)))]. (43)

Combining (42) and (43),

�[d(Xn
B, ϕ( f (Xn

A)))]
≤ �[dθ1(Xn

A, ϕθ1( fθ1(Xn
A)))] + P (̂τ1,n = θ1)dmax

≤ �
[
�θ1

]+ � ≤ � + �, (44)

by (40) for all n large enough. Finally, we note that
(41) and (44) hold simultaneously for all n large enough.

In the nonBayesian setting, the achievability proof follows
by adapting the steps above with the following differences.
For each τ1 in �1, a fixed-set sampling rate distortion
code ( fτ1 , ϕτ1) is chosen now with expected distortion
�[d(Xn

B, ϕτ1( fτ1(Xn
A)))|θ = τ ] ≤ �+ �

2 for every τ in �(τ1)

and of rate 1
n log || fτ1 || ≤ RA(�) + �

2 , where RA(�) is the
nonBayesian USRDf for a fixed-set sampler.

Theorem 2: In the Bayesian setting, for a given �min ≤ � ≤
�max, consider the PS, {�τ2 , τ2 ∈ �2} that attain the (outer)
minimum in (25). For the corresponding minimizing PYB |S X Sθ2

in (25) (by way of (23))

max
τ2∈�2

ρB
ı (�τ2 , PS, τ2)

= max
τ2∈�2

∑

Ai ∈Ak

PS(Ai )I (X Ai ∧ YB |S = Ai , θ2 = τ2) (45)

and let

�Ai ,τ2 ��[d(X B, YB)|S = Ai , θ2 = τ2], Ai ∈Ak , τ2 ∈�2.

The second expression in (45) suggests an achievability
scheme using an IRS code (see [4]) governed by θ2. Our
achievability proof comprises two phases. In the first phase
an estimate τ̂2 of θ2 is formed based on the output of a k-IRS
that chooses each Ai in Ak repeatedly for N time instants.
The second phase, of length n, entails choosing each St = Ai

repeatedly for ≈ n PS(Ai ) time instants and an IRS code
governed by τ̂2 of expected distortion

∑

i

PS(Ai )�Ai ,̂τ2



BODA AND NARAYAN: UNIVERSAL SAMPLING RATE DISTORTION 7751

is applied to the output of the sampler. This predetermined
selection of sampling sets obviates the need for the decoder
to be additionally informed.

Denote |Ak | by Mk = (m
k

)
. Fix � > 0 and 0 < �� < �.

In the first phase, a k-IRS is chosen to sample each Ai ∈ Ak

over disjoint time-sets μi of length N . The union of the
time-sets μi , i ∈ Mk � {1, . . . , Mk} is denoted by μ �
{1, . . . , Mk N}. Based on the sampler output, an ML estimate
τ̂2,N = τ̂2,N (Sμ, Xμ

S ) of θ2 is formed with

P (̂τ2,N = θ2) ≤ ��

2dmax
, (46)

for N ≥ N�� , say.
In the second phase, we denote the next set of n time

instants, i.e., {Mk N + 1, . . . , Mk N + n} simply by ν �
{1, . . . , n}. Further, for each i in Mk , define the time-sets
νAi ⊂ ν, made up of consecutive time instants, as

νAi =
{

t : �n
i−1∑

j=1

PS(A j )� + 1 ≤ t ≤ �n
i∑

j=1

PS(A j )�
}
,

and note that the union of νAi s is ν, and
∣∣∣∣
|νAi |

n
− PS(Ai )

∣∣∣∣ ≤ 1

n
, i ∈ Mk .

In this phase, the k-IRS is now chosen (deterministically) as
follows:

St = st = Ai , t ∈ νAi , i ∈ Mk .

For each DMMS {XMt }∞t=1 with pmf PXM|θ2=τ2 , τ2 ∈ �2,
and for each Ai in Ak and its corresponding distortion measure
dτ2, there exists by Lemma 2 – with Q = PXM|θ2=τ2 and dA =
dτ2 – a fixed-set sampling rate distortion code ( f τ2

Ai
, ϕ

τ2
Ai

), f τ2
Ai

:
X νAi

Ai
→ {1, . . . , J τ2

Ai
} and ϕ

τ2
Ai

: {1, . . . , J τ2
Ai

} → YνAi
B of rate

1
|νAi | log J τ2

Ai
≤ I (X Ai ∧ YB |S = Ai , θ2 = τ2) + ��

4 (cf. (45))

and with

�

[
dτ2

(
X

νAi
Ai

, ϕτ2
Ai

( f τ2
Ai

(X
νAi
Ai

))
)∣∣θ2 = τ2

]
≤ �Ai ,τ2 + ��

2
,

for all |νAi | ≥ NAi (�
�, τ2). Note that

∑

τ2∈�2

μθ2(τ2)

Mk∑

i=1

PS(Ai )�Ai ,τ2 ≤ �

and

Mk∑

i=1

PS(Ai )I (X Ai ∧ YB |S = Ai , θ2 = τ2) ≤ Rı (�)

for every τ2 in �2.
Consider a (composite) code ( f, ϕ) as follows. Denote n� �

|μ| + |ν| = Mk N + n, and the encoder f consisting of a
concatenation of encoders is defined by

f (sn�
, xn�

) �
(
τ̂2,N , f

τ̂2,N
A1

(x
νA1
A1

), . . . , f
τ̂2,N
AMk

(x
νAMk
AMk

)
)
.

The decoder ϕ, which is aware of the predetermined sequence
of sampling sets, is defined by

ϕ(sn�
, τ̂2,N , j1, . . . , jMk )

= ϕ (̂τ2,N , j1, . . . , jMk )

�
(

y1, . . . , y1︸ ︷︷ ︸
first phase

, ϕ
τ̂2,N
A1

( j1), . . . , ϕ
τ̂2,N
AMk

( jMk )
︸ ︷︷ ︸

second phase

)
,

for each encoder output (̂τ2,N , j1, . . . , jMk ), where y1 ∈ YM
is an arbitrary symbol. Clearly, |�2| × max

τ2∈�2

Mk∏
i=1

J τ2
Ai

indices

would suffice to describe all possible encoder outputs.
The rate of the code is

1

n� log |�2|+ max
τ2∈�2

1

n�
Mk∑

i=1

log J τ2
Ai

≤ max
τ2∈�2

Mk∑

i=1

|νAi |
n

1

|νAi |
log J τ2

Ai
+ 1

n� log |�2|

≤ max
τ2∈�2

Mk∑

i=1

(
PS(Ai )+ 1

n

)

×
(
I (X Ai ∧ YB |S = Ai ,θ2 = τ2)+ ��

4

)

+ 1

n� log |�2|

≤ max
τ2∈�2

Mk∑

i=1

PS(Ai)I (X Ai ∧ YB |S = Ai , θ2 = τ2) + ��

< Rı (�) + �, (47)

where the previous inequality holds for all n large enough.

Denoting the output of the decoder by Y n�
B � ϕ( f (Sn�

, Xn�
S ))

�[d(Xn�
B , Y n�

B )]
= 1

n��
[∑

t∈μ

d(X Bt , YBt ) +
∑

t∈ν

(
�(̂τ2,N = θ2)d(X Bt , YBt )

+�(̂τ2,N = θ2)d(X Bt , YBt )
)]

. (48)

The first two terms on the right-side of (48) are

�

[ 1

n�
∑

t∈μ

d(X Bt , YBt ) + �(̂τ2,N = θ2)

n�
∑

t∈ν

d(X Bt , YBt )
]

≤ Mk Ndmax

n� + ��

2
, (49)

by (46) for N large enough, and the last term on the right-side
of (48) is

�

[
�(̂τ2,N = θ2)

n�
∑

t∈ν

d(X Bt , YBt )
]

≤
Mk∑

i=1

|νAi |
n
�

[
�(̂τ2,N = θ2)d

(
X

νAi
B , ϕ

τ̂2,N
Ai

( f
τ̂2,N
Ai

(X
νAi
Ai

))
)]

≤
Mk∑

i=1

|νAi |
n
�
[
d
(
X

νAi
B , ϕθ2

Ai
( f θ2

Ai
(X

νAi
Ai

))
)]



7752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 12, DECEMBER 2018

=
Mk∑

i=1

|νAi |
n
�
[
dθ2

(
X

νAi
A , ϕθ2

Ai
( f θ2

Ai
(X

νAi
Ai

))
)]

≤
Mk∑

i=1

(
PS(Ai ) + 1

n

)
�
[
�Ai ,θ2 + ��

2

]

≤ � + ��

2
+ 1

n

Mk∑

i=1

�[�Ai ,θ2] + Mk

n

��

2
. (50)

From (48)-(50), we have

�[d(Xn�
B , Y n�

B )] ≤ � + �, (51)

for n and N large enough. Finally, we note that (47) and (51)
hold simultaneously for all n and N large enough.

The Corollary is immediate by the choice of codes with
“uninformed” decoder in the proof above.

For the nonBayesian setting, achievability follows by adapt-
ing the proof above in a manner similar to that for a k-FS in
Theorem 1.

Theorem 3: The achievability proof relies on the deter-
ministic sampler justified by Proposition 1. In the Bayesian
setting, for a given �min ≤ � ≤ �max, let PU , PS|XMU =
δw, {�τ, τ ∈ �} attain the minimum in (37). For the
corresponding minimizing PYB |S X SUθ in (29), the right-side
of (37) is

max
τ∈�

ρB
m (�τ , PU , δw, τ )

= max
τ∈�

∑

u∈U
PU (u)I (X S ∧ YB |S, U = u, θ = τ ) (52)

and we set

�Ai ,u,τ � �[d(X B, YB)|S = Ai , U = u, θ = τ ],
Ai ∈ Ak, τ ∈ �, u ∈ U .

Our achievability proof uses a k-MRS in two distinct modes.
First, a deterministic k-MRS is chosen so as to form an
estimate τ̂ of θ from the sampler output. Next, for each U = u,
a suitable deterministic k-MRS is chosen in accordance with
w(xM, u), and an MRS code (see [4]) governed by τ̂ of
expected distortion

∼≤
∑

Ai

PS|Uθ (Ai |u, τ̂ )�Ai ,u ,̂τ

is applied to the sampler output. Concatenation of such codes
corresponding to various u ∈ U yields, in effect, time-
sharing that serves to achieve (52). To simplify the notation,
the conditioning on U = u will be suppressed except when
needed.

Fix � > 0 and 0 < �� < �.
(i) We devise a deterministic k-MRS on a time-set μ, based

on whose output an estimate τ̂N = τ̂N (Sμ, Xμ
S ) = τ̂N (Sμ) of

θ is formed with

P (̂τN = θ) ≤ ��

4dmax
, (53)

for N ≥ N�� . The estimate τ̂N is formed from only the
sampling sequence Sμ and thus is available to the encoder

as well as the decoder. The k-MRS is chosen on the time-
set μ, to signal the occurrences of each x ∈ XM to the
encoder and decoder through Sμ above; for each x ∈ XM, a
distinct A ∈ Ak is chosen. If |Ak | ≥ |XM|, a trivial one-to-
one mapping from XM to Ak enables Sμ to determine Xμ

M,
where Sμ is of length N , say. Then τ̂N is taken to be the ML
estimate of θ based on Xμ

M, which satisfies (53).
When |Ak | < |XM|, a k-MRS is chosen attuned variously

to disjoint subsets of XM, of size |Ak |− 1, on corresponding

disjoint time-sets μl of length N , l = 1, . . . ,
⌈ |XM|

|Ak |−1

⌉
,

as follows. In each μl , the k-MRS signals the occurrence
(or not) of XMt = x in the lth-subset of XM in a
(deterministic) manner by choosing |Ak |−1 distinct sampling
sets in Ak ; the nonoccurrence of symbols from this lth-subset
of XM is indicated by the remaining (dummy) sampling set
in Ak . We denote

⋃
l

μl by μ. Finally, τ̂N is taken as the ML

estimate of θ based on the sampling sequence Sμ of length⌈ |XM|
|Ak |−1

⌉
N = N �, say.

(ii) Next, for each U = u, a k-MRS is chosen according to
PS|XM,U=u = δw (·,u) for n time instants. Then, for a DMMS
{XMt }∞t=1 with pmf PXM|θ=τ̂N an MRS code comprising
a concatenation of fixed-set sampling rate distortion codes
corresponding to the Ai s in Ak is applied to the sampler
output.

Denote the set of n time instants {N �+1, . . . , N �+n} simply
by γ � {1, . . . , n}. Define time-sets γSn(Ai ) � {t : 1 ≤ t ≤ n,
St = Ai }, i ∈ Mk, and note that γSn(Ai )s cover γ , i.e.,

γ =
⋃

Ai ∈Ak

γSn(Ai ).

Denote the set of the first max{� (n PS|θ (Ai |̂τN ))−���, 0} time
instants in each γSn(Ai ) by νAi (suppressing the dependence
on τ̂N ). Defining the (typical) set for each τ in �

T (n)(��, τ ) �
{

sn ∈ An
k :

∣∣∣
|γsn (Ai )|

n
− PS|θ (Ai |τ )

∣∣∣ ≤ ��,

i ∈ Mk

}
,

we have that

P(Sγ /∈ T (n)(��, τ̂N )) = P(Sγ /∈ T (n)(��, τ̂N ), τ̂N = θ)

+ P(Sγ /∈ T (n)(��, τ̂N ), τ̂N = θ)

≤ ��

2dmax
(54)

for all n large enough.
By Lemma 2, for each DMMS {XMt }∞t=1 with pmf

PXM|S=Ai ,θ=τ , i ∈ Mk, τ ∈ �, there exists a code
( f τ

Ai
, ϕτ

Ai
), f τ

Ai
: X νAi

Ai
→ {1, . . . , J τ

Ai
} and ϕτ

Ai
:

{1, . . . , J τ
Ai

} → YνAi
B of rate

1

|νAi |
log J τ

Ai
≤ I (X Ai ∧ YB |S = Ai , θ = τ ) + ��

2
(55)

and with

�

[
d
(
X

νAi
B , ϕτ

Ai
( f τ

Ai
(X

νAi
Ai

))
)∣∣SνAi = A

νAi
i , θ = τ

]

≤ �Ai ,τ + ��

4
(56)
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for all |νAi | ≥ NAi (�
�, τ ). Such codes are considered for each

U = u.
Consider a (composite) code ( f, ϕ) as follows. Denoting

N � + n by n�, an encoder f consisting of a concatenation of
encoders is defined as

f (sn�
, xn�

s )

�
{(

f τ̂N
A1

(x
νA1
A1

), . . . , f τ̂N
AMk

(x
νAMk
AMk

)
)
, sγ ∈ T (n)(��, τ̂N )

(1, . . . , 1), sγ /∈ T (n)(��, τ̂N ).

For t = 1, . . . , n�, and each encoder output ( j1, . . . , jMk ),
the decoder ϕ, which can recover the estimate τ̂N from its
knowledge of the sampling sequence Sn� = sn�

, is given by
(
ϕ (sn�

, j1, . . . , jMk )
)

t

�
{(

ϕ
τ̂N
Ai

( ji)
)

t
, sγ ∈ T (n)(��, τ̂N ) and t ∈ νAi , i ∈ Mk

y1, otherwise,

where y1 is a fixed but arbitrary symbol in YM.
Finally, for N and n large enough, the codes ( f, ϕ) cor-

responding to each U = u are concatenated so as to effect
the time-sharing prescribed by PU , in a standard manner. It is
shown in Appendix A that the rate of the resulting code is

∼≤
(

max
τ∈�

∑

u∈U
PU (u)

∑

Ai ∈Ak

PS|Uθ (Ai |u, τ )

I (X Ai ∧ YB |S = Ai , U = u, θ = τ )
)

+ ��
∼≤ Rm(�) + �, (57)

using (55) and the expected distortion is
∼≤ �[�S,U,θ] + �
∼≤ � + �, (58)

from (53), (54), (56) and the definition of �Ai ,u,τ .

B. Converse Proof

In contrast with the achievability proofs, we present a
unified converse proof for Theorems 3, 2 and 1 according to
successive weakening of the sampler, viz. k-MRS, k-IRS and
fixed-set sampler. We begin with the technical Lemma 3 that
is used subsequently in the converse proof.

Lemma 3: Let finite-valued rvs C, Dn , En, Fn, be such that
(Dt , Et ), t = 1, . . . , n, are conditionally mutually indepen-
dent given C, i.e.,

PDn En |C =
n∏

t=1

PDt Et |C (59)

and satisfy

C, Dn −◦− En −◦− Fn. (60)

For any function g(C) of C, such that

En −◦− g(C) −◦− C and PEn |g(C) =
n∏

t=1

PEt |g(C), (61)

it holds that

C, Dt −◦− g(C), Et −◦− Ft , t = 1, . . . , n. (62)
Proof: First, from (60), we have

0 = I (C, Dn ∧ Fn |En)

= I
(
C ∧ Fn |En) + I

(
Dn ∧ Fn |En, C

)

= I
(
C, g(C) ∧ Fn |En) + I

(
Dn ∧ Fn |En, C

)

≥ I (C ∧ Fn |En, g(C)) + I (Dn ∧ Fn|En, C). (63)

Now, the second term on the right-side of (63) is

0 = I (Dn ∧ Fn|En, C)

= H (Dn|En, C) − H (Dn|En, Fn, C)

=
n∑

t=1

(H (Dt |Et , C)−H (Dt |Dt−1, En, Fn, C)), by (59)

≥
n∑

t=1

(
H (Dt |Et , C) − H (Dt |Et , Ft , C)

)

=
n∑

t=1

I (Dt ∧ Ft |Et , C). (64)

Next, the first part of (61) along with (63) implies that

0 = I
(
C ∧ En |g(C)

)+ I
(
C ∧ Fn|En, g(C)

)

= I
(
C ∧ En, Fn |g(C)

)
,

and hence

I
(
C ∧ Et , Ft |g(C)

) = 0, t = 1, . . . , n. (65)

Now, by (64) and (65), for t = 1, . . . , n,

I
(
C, Dt ∧ Ft |Et , g(C)

)

= I
(
C ∧ Ft |Et , g(C)

) + I
(
Dt ∧ Ft |Et , C

) = 0,

which is the claim (62).

Converse: In the Bayesian setting, we provide first a con-
verse proof for Theorem 3, which is then refashioned to give
converse proofs for Theorems 2 and 1.

Let ({PSt |XMtθ = PSt |XMt }∞t=1, f, ϕ) be an n-length k-
MRS block code of rate R and with decoder output Y n

B =
ϕ(Sn, f (Sn, Xn

S)) satisfying �[d(Xn
B, Y n

B)] ≤ �. The hypoth-
esis of Lemma 3 is met with C = θ, Dn = Xn

M, En =
(Sn, Xn

S), Fn = Y n
B and g(θ) = θ , since

PXn
MSn|θ = PXn

M|θ PSn |Xn
M

=
n∏

t=1

PXMt |θ PSt |XMt =
n∏

t=1

PXMt St |θ , (66)

while

θ, Xn
M −◦− Sn, Xn

S −◦− Y n
B

holds by code construction. Also, (66) implies, upon summing
over all realizations of Xn

Sc , that

PSn Xn
S|θ =

n∏

t=1

PSt X St |θ . (67)
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Then the claim of the lemma implies that

θ, XMt −◦− θ, St , X St −◦− YBt , t = 1, . . . , n. (68)

Let �τ denote �[d(Xn
B, Y n

B)|θ = τ ] = 1
n

n∑
t=1
�[d(X Bt , YBt )|

θ = τ ] for each τ in � and note that �[�θ ] ≤ �. For every
τ in �, the following holds:

R = 1

n
log || f || ≥ 1

n
H ( f (Sn, Xn

S)|θ = τ )

≥ 1

n
H ( f (Sn, Xn

S)|Sn, θ = τ )

≥ 1

n
H (ϕ(Sn, f (Sn, Xn

S))|Sn, θ = τ )

= 1

n
H (Y n

B|Sn, θ = τ )

= 1

n
I (Xn

S ∧ Y n
B |Sn, θ = τ )

= 1

n

n∑

t=1

(
H (X St |Sn, Xt−1

S , θ = τ )

− H (X St |Sn, Xt−1
S , Y n

B , θ = τ )
)

≥ 1

n

n∑

t=1

(
H (X St |Sn, Xt−1

S , θ = τ )

− H (X St |St , YBt , θ = τ )
)

= 1

n

n∑

t=1

(
H (X St |St , θ = τ ) − H (X St |St , YBt , θ = τ )

)
,

by (67)

= 1

n

n∑

t=1

I (X St ∧ YBt |St , θ = τ ). (69)

By (68),

((1

n

n∑

t=1

�[d(X Bt , YBt )|θ = τ ],

1

n

n∑

t=1

I (X St ∧ YBt |St , θ = τ )
)
, τ ∈ �

)

lies in the convex hull of

C �
{(

(�[d(X B, YB)|θ = τ ], I (X S ∧ YB |S, θ = τ )), τ ∈ �
)

: Pθ XMSYB =μθ PXM|θ PS|XM PYB |S X Sθ

}⊂�2|�|.

By the Carathéodory Theorem [5], every point in the convex
hull of C can be represented as a convex combination of at
most 2|�| + 1 elements in C. The corresponding pmfs are
indexed by the values of a rv U with

PUθ XMSYB = PU μθ PXM|θ PS|XMU PYB |S X SθU , (70)

where the pmf of U has support of size ≤ 2|�| + 1. Then,
in a standard manner, (69) leads to

R ≥ min
PYB |S X SU,θ=τ

�[d(X B ,YB )|θ=τ ]≤�τ

I (X S ∧ YB |S, U, θ = τ ) (71)

= ρB
m (�τ , PU , PS|XMU , τ ). (72)

Now, (72) holds for every τ ∈ �, and hence

R ≥ max
τ∈�

ρB
m (�τ , PU , PS|XMU , τ )

≥ min
PU ,PS|XMU ,{�τ , τ∈�}

�[�θ ]≤�

max
τ∈�

ρB
m (�τ , PU , PS|XMU , τ )

= Rm(�) (73)

for � ≥ �min.
Turning next to Theorems 2 and 1, an n-length k-IRS

code or a fixed-set sampling block code can be viewed as
restrictions of a k-MRS code. Specifically, in Theorem 2, for
a k-IRS code of rate R with PSt , g(θ) = θ2 instead of
PSt |XMt , g(θ) = θ (for a k-MRS), the hypothesis of Lemma 3
holds. Denote �[d(Xn

B, Y n
B)|θ2 = τ2] by �τ2 , τ2 ∈ �2. Then,

the pmfs in (70) satisfy

PUθ XMSYB = PU μθ PXM|θ PS|U PYB |S X SθU . (74)

The counterpart of (71) is

R ≥ min
PYB |S X SU,θ2=τ2

�[d(X B ,YB )|θ2=τ2]≤�τ2

I (X S ∧ YB |S, U, θ2 = τ2)

= min
PYB |S X SU,θ2=τ2

�[d(X B ,YB )|θ2=τ2]≤�τ2

∑

A,u

PS(A)PU |S(u|A)

×I (X A ∧ YB |S = A, U = u, θ2 = τ2),

noting from (74) that PU |S,θ2 = PU |S . Using the convex-
ity of the mutual information terms above with respect to
PYB |S X SUθ2 , we get

R ≥ min
PYB |S X SU,θ2=τ2

�[d(X B ,YB )|θ2=τ2]≤�τ2

∑

A

PS(A)I (X A ∧ YB |S = A, θ2 =τ2)

= ρB
ı (�τ2, PS , τ2). (75)

Since (75) holds for every τ2 ∈ �2

R ≥ max
τ2∈�2

ρB
ı (�τ2 , PS, τ2)

≥ min
PS ,{�τ2 , τ2∈�2}
�[�θ2

]≤�

max
τ2∈�2

ρB
ı (�τ2, PS , τ2)

= Rı (�),

i.e., R ≥ Rı (�), � ≥ �min, completing the converse proof
of Theorem 2.

In a manner analogous to a k-IRS, in Theorem 1 for a fixed-
set sampler the hypothesis of Lemma 3 holds with PSt =
�(St = A), g(θ) = θ1. Defining �τ1 � �[d(Xn

B, Y n
B)|θ1 =

τ1], τ1 ∈ �1, the counterpart of the right-side of (73) reduces
to max

τ1∈�1
ρB

A (�τ1, τ1). It then follows that

R ≥ min
{�τ1 , τ1∈�1}
�[�θ1

]≤�

max
τ1∈�1

ρB
A (�τ1, τ1), � ≥ �min

providing the converse proof for Theorem 1.
In the nonBayesian setting, the analog of Lemma 3 is

obtained similarly with C = c, g(C) = g(c), and (59)–
(62) expressed in terms of appropriate conditional pmfs. The
converse proofs for a k-MRS, k-IRS and k-FS are obtained as
above but by excluding the outer minimizations over {�τ, τ ∈
�}, {�τ2, τ2 ∈ �2} and {�τ1, τ1 ∈ �1}, respectively.
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V. DISCUSSION

Our formulation of universality requires optimum sampling
rate distortion performance when the “true” underlying pmf
of the DMMS belongs to a finite family P = {PXM|θ=τ ,
τ ∈ �}. The assumed finiteness of � affords two benefits in
addition to mathematical ease: (i) simple proofs of estimator
consistency uniformly over �1, �2 or �; and (ii) rate-free
conveyance of corresponding estimates τ̂1, τ̂2 or τ̂ to the
decoder. General extensions to the case when � is an infinite
set (countable or uncountable) remain open.

Unlike for a k-IRS, the assumption in a k-MRS that the
decoder is informed of the sampling sequence Sn plays an
important role. Specifically, embedded information regarding
Xn
M is conveyed implicitly to the decoder through Sn . Also,

as a side-benefit, the decoder can replicate the estimate of θ
formed by the encoder based on Sn alone, obviating the need
for explicitly transmitting it. However, if the decoder were
denied a knowledge of Sn , what is the USRDf? This question,
too, remains unanswered.

Underlying our achievability proofs of Theorems 2 and 3 for
a k-IRS and k-MRS, are schemes for distribution-estimation
based on (Sn, Xn

S). A distinguishing feature from classical
estimation settings is the additional degree of (spatial) freedom
in the choice of the sampling sequence Sn . This motivates
questions of the following genre: How should Sn , consisting
of (possibly different) k-sized subsets, be chosen to form
“best” estimates of the underlying joint pmf? How does
the degree of the allowed dependence of Sn on Xn

M affect
estimator performance? For instance, our choice of sampling
sequence and estimation procedure in the achievability proof
of Theorem 3 is a simple starting point. How must we
devise efficient sampling mechanisms to exploit an implicit
embedding of DMMS realization in the sampler output? These
questions are of independent interest in statistical learning
theory.

APPENDIX

A. Proof of (57) and (58)

For the code formed by concatenating ( f, ϕ) for each u ∈ U ,
the rate is

∼≤ max
τ∈�

∑

u∈U
PU (u)

1

n�
Mk∑

i=1

log J u,τ
Ai

≤ max
τ∈�

∑

u∈U
PU (u)

( Mk∑

i=1

|νu,τ
Ai

|
n

1

|νu,τ
Ai

| log J u,τ
Ai

)

≤ max
τ∈�

∑

u∈U
PU (u)

( Mk∑

i=1

PS|Uθ (Ai |u, τ )

×
(

I (X Ai ∧ YB |S = Ai , U = u, θ = τ )+ ��

2

))
, by (55)

≤ max
τ∈�

∑

u∈U
PU (u) I (X S ∧ YB |S, U = u, θ = τ ) + ��

≤ Rm(�) + �,

for all n large enough.

For each U = u, let �u �
∑

τ∈�, Ai ∈Ak

μθ(τ)PS|Uθ (Ai |u, τ )

�Ai ,u,τ . Denoting the output of the decoder by Y n�
B , we get

�[d(Xn�
B , Y n�

B )]
≤ P (̂τN = θ)dmax +�[�(̂τN = θ)d(Xn�

B , Y n�
B )]

≤ P (̂τN = θ)dmax + P(Sγ /∈ T (n)(��, τ̂N ))dmax

+�[�[�(̂τN = θ, Sγ ∈ T (n)(��, τ̂N ))d(Xn�
B , Y n�

B )|Sγ , θ ]]
(76)

≤ �[�S,U,θ |U = u] + �

= �u + � (77)

for all n, N large enough, where the previous inequality is
shown below. Then, expected distortion for the code formed
by concatenating ( f, ϕ) for each u ∈ U , is

∼≤ �[�U ] + � ≤ � + �.

It remains to show (77). Now, (77) follows from the following:
In (76), for each τ ∈ � and sn ∈ T (n)(��, τ̂N ),

�[�(̂τN = θ)d(Xn�
B , Y n�

B )|Sγ = sn, θ = τ ]
= �

[
�(̂τN = θ)

n�
∑

t∈μ

d(X Bt , YBt )

+ �(̂τN = θ)

n�
∑

t∈γ

d(X Bt , YBt )
∣∣Sγ = sn, θ = τ

]

≤ N �

n� dmax

+ 1

n
�

[ Mk∑

i=1

∑

t∈γsn (Ai )\νAi

d(X Bt , YBt )|Sγ = sn, θ = τ
]

+
Mk∑

i=1

�

[ |νAi |
n
�(̂τN = θ)

d (X
νAi
B , ϕθ

Ai
( f θ

Ai
(X

νAi
Ai

)))
∣∣SνAi = A

νAi
i , θ = τ

]

≤ d
N �

n� dmax + Mk�
�dmax

+
Mk∑

i=1

PS|Uθ (Ai |u, τ )
(
�Ai ,u,τ + ��

4

)
, by (56)

≤ �[�S,U,θ |U = u, θ = τ ] + Mk�
�dmax + N �

n� dmax + ��

4
≤ �[�S,U,θ |U = u, θ = τ ] + �,

for all n large enough and �� chosen appropriately.

B. Proof of Proposition 1

First, for the Bayesian setting, by Theorem 3, the claim
entails showing that

min
PU ,PS|XMU ,

{�τ ,τ∈�}, �[�θ ]≤�

max
τ∈�

min
PYB |S X SU,θ=τ

�[d(X B ,YB )|θ=τ ]≤�τ

I (X S ∧ YB |S, U, θ = τ )

(78)

= min
PU ,δw,{�τ ,τ∈�}
�[�θ ]≤�

max
τ∈�

min
PYB |S X SU,θ=τ

�[d(X B ,YB )|θ=τ ]≤�τ

I (X S ∧ YB |S, U, θ = τ ),

(79)
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for �min ≤ � ≤ �max. Denote the expressions in (78)
and (79) by q(�) and r(�), respectively. Now, from the
conditional version of Topsøe’s identity [6, Lemma 8.5],
observe that q(�) equals

min
PU ,PS|XMU ,{�τ , τ∈�}

�[�θ ]≤�

max
τ∈�

min
PYB |S X SU,θ=τ

�[d(X B ,YB )|θ=τ ]≤�τ

min
QYB |SU,θ=τ

(
D
(
PYB |S X SU,θ=τ

∣∣∣∣QYB |SU,θ=τ

∣∣PS X SU |θ=τ

) )
.

(80)

Note that the inner max and min can be interchanged
in (80). Denoting D

(
PYB |S X SU,θ=τ

∣∣∣∣QYB |SU,θ=τ

∣∣PS X SU |θ=τ

)

by Dτ , τ ∈ �, we write (80) as

min
PU ,PS|XMU ,{�τ , τ∈�}

�[�θ ]≤�

min
PYB |S X SUθ ,QYB |SU,θ=τ
�[d(X B ,YB )|θ=τ ]≤�τ , τ∈�

max
τ∈�

Dτ

= min
PU ,PS|XMU ,PYB |S X SUθ ,QYB |SU,θ=τ

�[d(X B ,YB )]≤�

max
τ∈�

Dτ

= min
t,PU ,PS|XMU ,PYB |S X SUθ ,QYB |SU,θ=τ

Dτ ≤t, τ∈�
�[d(X B,YB )]≤�

t, (81)

which is the epigraph form. Also, r(�) can be expressed in a
similar manner. Based on (81), we define Gq(α, {λτ , τ ∈ �})
and Gr (α, {λτ , τ ∈ �}) in terms of the Lagrangians of q(�)
and r(�), respectively, in a standard way. Specifically,

Gq(α, {λτ , τ ∈ �})
= min

t,PU ,PS|XMU
PYB |S X SUθ ,QYB |SUθ

t +
∑

τ∈�

λτ (Dτ − t) + α� [d(X B , YB)]

= min
t,PU ,PS|XMU

PYB |S X SUθ ,QYB |SUθ

t (1−
∑

τ∈�

λτ )+
∑

τ∈�

λτ Dτ +α� [d(X B, YB)]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
PU ,PS|XMU

PYB |S X SUθ ,QYB |SUθ

∑
τ∈�

λτ Dτ +α� [d(X B, YB)] ,

if
∑
τ∈�

λτ = 1,

−∞, otherwise.

(82)

Let Pτ � PXM|θ=τ . When
∑
τ∈�

λτ = 1, from (82),

Gq(α, {λτ , τ ∈ �}) equals

min
PU ,QYB |SUθ ,

PYB |S X SUθ

∑

u,xM
PU (u) min

PS|XMU

∑

s∈Ak

PS|XMU (s|xM, u)

×
(
�

[∑

τ∈�

λτ Pτ (xM)log
PYB |S X SUθ (YB |s, xs, u, τ )

QYB |SUθ (YB |s, u, τ )

+ α
∑

τ∈�

μθ(τ )Pτ (xM)d(xB, YB)
∣∣∣

S = s, X S = xs, U = u, θ = τ
])

,

where the expectation above is with respect to
PYB |S=s,X S=xs ,U=u,θ=τ . Noting that the term

(
· · ·

)
above is

a function of s, xM, u, we get

Gq(α, {λτ , τ ∈ �})
= min

PU ,QYB |SUθ
PYB |S X SUθ

∑

u,xM
PU (u)

×min
s∈Ak

(
�

[∑

τ∈�

λτ Pτ (xM) log
PYB |S X SUθ (YB |s, xs, u, τ )

QYB |SUθ (YB |s, u, τ )

+ α
∑

τ∈�

μθ(τ )Pτ (xM)d(xB, YB)
∣∣∣

S = s, X S = xs, U = u, θ = τ
])

= min
PU ,QYB |SUθ
PYB |S X SUθ

∑

u,xM
PU (u) min

δw (·,·)

∑

s∈Ak

δw(xM,u)(s)

×
(
�

[∑

τ∈�

λτ Pτ (xM) log
PYB |S X SUθ (YB |s, xs , u, τ )

QYB |SUθ (YB |s, u, τ )

+α
∑

τ∈�

μθ(τ )Pτ (xM)d(xB, YB)
∣∣∣

S = s, X S = xs, U = u, θ = τ
])

= min
PU ,QYB |SUθ

PYB |S X SUθ ,δw

[(∑

τ∈�

λτ

×D
(
PYB |S X SU,θ=τ

∣∣∣∣QYB |SU,θ=τ

∣∣PS X SU |θ=τ

) )

+ α� [d(X B , YB)]

]

= Gr (α, {λτ , τ ∈ �}).
Since q(�) and r(�) are convex in �, they can be

expressed in terms of their respective Lagrangians as

q(�) = max
α≥0, {λτ ≥0, τ∈�}Gq(α, {λτ , τ ∈ �}) − α�

and

r(�) = max
α≥0,{λτ≥0, τ∈�}Gr (α, {λτ , τ ∈ �}) − α�. (83)

Thus,

q(�) = max
α≥0, {λτ ≥0, τ∈�}Gq(α, {λτ , τ ∈ �}) − α�

= max
α≥0, {λτ ≥0, τ∈�}∑

τ∈�
λτ =1

Gq (α, {λτ , τ ∈ �}) − α�

= max
α≥0, {λτ ≥0, τ∈�}∑

τ∈�
λτ =1

Gr (α, {λτ , τ ∈ �}) − α�

= r(�),

upon observing that the maxima in (83) are attained when∑
τ∈�

λτ = 1.

The proof for the nonBayesian setting is similar.

C. Proof of Lemma 1

Clearly, for each τ1 ∈ �1, ρB
A (δ, τ1) and ρnB

A (δ, τ1) are
finite-valued and, hence, so are the right-sides of (13) and (14).
Also, they are also nonincreasing in �. The convexity of the
right-sides of (13) and (14) follows from the convexity of
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ρB
A (δ, τ1) and ρnB

A (δ, τ1) in δ along with a standard argument
shown below; continuity for � > �min is a consequence.
Continuity at �min holds, for instance, as in [6, Lemma 7.2].
The claimed properties of the right-sides of (25), (26),
(31) and (33) follow in a similar manner.

The convexity of the right-side of (13) can be shown
explicitly as follows. Let τ1(1) and τ1(2) attain the maximum
in (13) at � = �1 and � = �2, respectively, where �1 < �2.
The corresponding minimizing {�τ1, τ1 ∈ �1} are denoted by
{�1

τ1
, τ1 ∈ �1} and {�2

τ1
, τ1 ∈ �1}, respectively. For any

0 < α < 1, for i = 1, . . . , |�1|
αRA(�1) + (1 − α)RA(�2)

= αρB
A (�1

τ1(1), τ1(1)) + (1 − α)ρB
A (�2

τ1(2), τ1(2))

≥ αρB
A (�1

τ1(i), τ1(i)) + (1 − α)ρB
A (�2

τ1(i)
, τ1(i))

≥ ρB
A (α�1

τ1(i) + (1 − α)�2
τ1(i), τ1(i)), (84)

where the inequality above follows by Remark (iii) preceding
Theorem 1 in Section III. Now, (84) holds for every i =
1, . . . , |�1|, hence

αRA(�1) + (1 − α)RA(�2)

≥ max
i

ρB
A (α�1

τ1(i) + (1 − α)�2
τ1(i), τ1(i))

≥ min
{�τ1 ,τ1∈�1}

�[�θ1
]≤α�1+(1−α)�2

max
τ1∈�1

ρB
A (�τ1, τ1)

= RA(α�1 + (1 − α)�2).

D. Proof of (39)

Since for each τ1 in �1 and xn
A in X n

A ,

PXn
A |θ1(xn

A|τ1)=exp
[
− n

(
D(Qn(xn

A)||Pτ1)+H (Qn(xn
A))

)]

where Qn(xn
A) is the type of xn

A (cf. e.g., [6], Lemma 2.6), we
have

τ̂1,n(Xn
A) = arg max

τ1∈�1

PXn
A|θ1(Xn

A|τ1)

= arg min
τ1∈�1

D(Qn(Xn
A)||Pτ1). (85)

Next, for each τ �
1 in �1, we know by the strong law of

large numbers that lim
n

Qn(Xn
A) = Pτ �

1
, Pτ �

1
-a.s. (cf. e.g., [7],

Corollary 2.1). Since each Pτ1, τ1 in �1, has (full) support
XA, D(·||Pτ1) is continuous so that

lim
n

D(Qn(Xn
A)||Pτ1) = D(Pτ �

1
||Pτ1) Pτ �

1
-a.s. (86)

It follows from (85) and (86) that

lim
n

τ̂1,n(Xn
A) = τ �

1 Pτ �
1
-a.s.,

which implies (39).
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