
Relay Placement for Minimizing Congestion in
Wireless Backbone Networks*

Abhishek Kashyap, Fangting Sun, Mark Shayman
Department of Electrical and Computer Engineering, University of Maryland, College Park MD 20742

Email: {kashyap, ftsun, shayman}@glue.umd.edu

Abstract— Wireless optical networks are being increasingly
used in the backbone of hierarchical ad hoc networks. We
consider the problem of minimizing the congestion in wireless
optical (FSO) backbone networks by placing controllable relay
nodes. We propose algorithms for placement of relays in the
network under node interface constraints. The interfaces at each
backbone node are limited, thus limiting the number of neighbors
a node can have. We come up with algorithms to formulate
the problem as a constrained knapsack problem, and propose
algorithms to solve it. We use the mathematical technique of
rollout to achieve better performance than the heuristics. We
show by simulations that our algorithms significantly outperform
some greedy algorithms, and a small number of relay nodes
(when placed using our algorithms) can lead to a significant
reduction in the congestion in the network.
Keywords: FSO Networks, Congestion Control, Topology Control,
Rollout, Multi-Commodity Flow, Constrained Knapsack.

I. INTRODUCTION

Hierarchical ad hoc networks have been proposed to provide
scalability to ad hoc networks [1], [2], [3]. A hierarchical ad
hoc network consists of mobile nodes grouped into clusters
with some nodes (or a single node) designated as cluster-
heads for each cluster. Such a network consists of two layers,
one for intra-cluster communication, and one for inter-cluster
communication through cluster-heads (which form a backbone
network). Typical deployment of hierarchical networks are
battlefield networks and extension of MANs (last mile). Wire-
less optical links are gaining a lot of attention for use in ad
hoc backbone networks due to their attractive characteristics.
Free-space optics (FSO) technology provides unprecedented
bandwidth, massive carrier reuse, ultra-low inter-channel in-
terference, low power consumption, and cost savings where
electrical wires and optical fibers are too expensive to deploy
and maintain [4]. These characteristics make them more suit-
able for wireless backbone networks than RF and wireline
optical links, as RF links do not offer the high bandwidth
required for backbone networks, while wireline optical links
cannot be setup quickly and thus cannot be used in a mobile
network.

In a wireless backbone network with mobile nodes, the
topology of the network needs to be reconfigured as nodes
move, to maintain the network performance at a desired level.
FSO links offer the flexibility of fast tracking and setup of

*This research was partially supported by AFOSR under grant
F496200210217 and NSF under grant CNS-0435206.

links [5]. Thus, the topology can be modified quickly to suit
the current backbone node locations. Also, in a backbone
network designed according to an estimated traffic profile
(aggregate traffic), the traffic profile may change over time.
Thus, it is necessary to adapt the network topology to achieve
the desired performance for the modified traffic profile. This
is known as topology control. There has been recent work on
topology control in wireless optical networks [6], [7], [8], [9],
[10]. The papers address the problem of topology control and
routing for a given traffic profile. They consider the problem
of changing the topology of the whole network to maximize
the throughput or minimize congestion for a given traffic
profile. The objective of finding a minimum congestion and
minimum physical layer cost network (defined as total BER
in the network) is considered in [9].

We assume we have no control over the backbone nodes.
In such a network, even if the topology design is optimal
initially, the performance is expected to degrade over time as
nodes move and traffic patterns change. There are transmission
range and interface constraints on the backbone nodes. A node
can connect only to nodes within its transmission range. The
interface constraint is due to the limited number of transmit
and receive interfaces the nodes have, which limits the number
of links each node can have. Thus, desired links cannot always
be established. We propose the use of relays to counter trans-
mission range constraints and propose algorithms to position
them in the network to improve the network performance.
They are used for forming additional links between backbone
nodes. The relays are added such that they form links with
backbone nodes without violating the interface constraints.
We can change their placement and links to do topology
control and improve the network performance. We measure
the network performance in terms of the maximum link load
(which we call congestion) in the network for the current
traffic profile.

We model the problem as a constrained knapsack prob-
lem [11]. A constrained knapsack problem is to pick a subset
of items to maximize the total profit while obeying capacity
constraints, and constraints on set of items which can be
picked together. The profit and weight values are defined for
each item, and capacity is a bound on the total weight. We
define a set of items for our problem, propose algorithms to
calculate the item profits, and propose greedy heuristics to find
a maximum profit solution. We improve the heuristics consid-
erably by using the technique of rollout [12] on the heuristics.

The rollout algorithms are mathematically guaranteed to work
better than the heuristics. The simulation results show that a
significant reduction in congestion can be achieved by placing
a small number of relay nodes using our algorithms.

The paper is organized as follows: Section 2 presents the
network model and problem statement. Section 3 describes
the framework and algorithms for placement of relay nodes.
Section 4 describes the proposed rollout algorithms. Section 5
gives the simulation results and Section 6 concludes the paper.

II. NETWORK MODEL AND PROBLEM DEFINITION

We model the network as a graph G = (V,E), where
V is the set of nodes and E is the set of links between
them. We consider wireless backbone networks in which each
wireless node is equipped with point-to-point wireless optical
interfaces. By the term ‘node’ we implicitly mean “backbone
node”. Each node has the capability to perform routing. We
assume that it does not move very frequently. We also assume
that wireless links can be set up in any direction with all
nodes within transmission range. We assume the transmission
range of all nodes to be the same. The wireless links are
unidirectional. The number of transmitters and receivers at
each node is limited (which we call an interface constraint),
thereby restricting the number of nodes to which it can
connect. Two nodes can connect only if there is a free transmit
interface at the tail node and a free receive interface at the head
node. We assume the topology is given, and it is connected.

We assume we are given an estimate of the aggregate traffic
between the backbone nodes. We call the estimated traffic
matrix as the traffic profile, where each profile entry is a
traffic demand between a source-destination pair. We are given
K relay nodes (with same transmission range and interface
constraints as the backbone nodes), which we can position
anywhere in the network. We address the problem of locating
the relays in the given topology to minimize the maximum
link load (which we call congestion) in the network for the
given traffic profile. Let the graph formed by adding relays
(and deciding which additional links to form) to the network
G = (V,E) be denoted by G′ = (V ′, E′), V ⊆ V ′, E ⊆ E′.
We do not allow breaking any existing edges of G. Let the
location of each relay node rk, k ∈ {1, ..,K} be denoted by
(Xk, Yk). Let the routing being used be denoted by f , and
the congestion for the routing f on the graph computed by
adding the relays to G be denoted by σ(G′,f). The routing f
in our model is multi-path routing, and it specifies the flow on
each link for each profile entry. The problem we solve is to
find the locations of the relays to achieve the objective stated
in Equation 1, subject to the interface constraints. Note that
the problem also includes connecting the relay nodes with
the appropriate backbone nodes (to get G′) once the relay
nodes are placed in the network. Also, the routing output is
integrated with the placement of nodes as the routing changes
as G′ changes.

min
(Xk,Yk),∀k

σ(G′,f) (1)

Periodically, as the positions of the backbone nodes change,
new positions for the relays are calculated, and they are moved
to their new locations. Their current locations are not taken
into account while calculating the new positions.

III. FRAMEWORK AND ALGORITHMS

Since nodes cannot connect to nodes outside the transmis-
sion range, we use relays to form additional links between
backbone nodes outside each other’s range. More than one
relay may be required to form an additional link between two
backbone nodes, depending on the distance between them.
We restrict the placement of the relays to the lines joining
the backbone nodes, so minimum number of relays is needed
to form each link. As the number of interfaces is scarce, we
allow the relays only to form a link between the two backbone
nodes for which they are added. We do not allow the relays
to form links with other backbone nodes and relays in their
transmission range. We use new relays every time we add a
link between two backbone nodes, i.e., we do not allow relays
already connecting two backbone nodes to form additional
links. Thus, the resulting topology can be modelled to have
the same vertices as G (backbone nodes), and additional edges
(formed by using relays). The resulting graph is denoted by
G′ = (V,E′), E ⊆ E′.

We assume the initial topology is given. The backbone
nodes have limited interfaces. Thus, the number of free
interfaces in the network is very small and the pairs of
nodes between which we can form additional links is much
smaller than N2, N being the number of backbone nodes. We
enumerate the pairs of nodes between which we can form
additional links. We call this list as the candidate list L.
The tail node of a link in the candidate list should have a
free transmit interface, and the head node should have a free
receive interface. We denote each link l by a triplet: {t, h, c},
t represents the tail node of the link, h represents head node
of the link and c represents the minimum number of relays
needed to form the link. The cost c can be calculated as in
Equation 2, where TR is the transmission range of each node
and |l| is the length of link l.

c = � |l|
TR

� − 1 (2)

The problem reduces to finding a set of links from the
candidate list such that adding those links minimizes the
congestion in the network, and the total cost of the set is
within K, the given number of relays. The set of links should
be chosen such that adding it does not violate the interface
constraints. If we could assign a profit to each pair in the
set L, which represents the reduction in congestion by adding
that link, the problem would reduce to a constrained knapsack
problem. The items to be packed are the links in L, and the
capacity of the knapsack is the number of relays K. The
constraints of this problem are the number of free interfaces at
backbone nodes. In this knapsack problem, depending on the
number of free interfaces at nodes, there is a restriction on the
links which can be co-formed. As an example, if a node has

TABLE I

NOTATION

Symbol Definition
K Number of relay nodes
L Number of links in the network
N Number of backbone nodes
M Number of traffic profile entries

TIn Number of free transmit interfaces at node n
RIn Number of free receive interfaces at node n
bi Traffic demand for profile entry i
xl

i Demand of profile entry i routed on link l
σ Maximum link utilization

si, di Source and destination nodes for profile entry i
On, In Set of outgoing and incoming edges at node n

two free transmit interfaces, and it is a tail node for four pairs
in the candidate list, only two of those pairs may be present
in the final solution. An easier version of this problem [11], in
which constraints are only on pairs of items, is NP-Hard [13].

The reduction in the congestion in the network by adding
each link in L depends on the other links that are added
to the network as the routing changes depending on the
combination of links being added to the network. Thus, there is
no optimal way to assign independent profit values to the links
to formulate the problem as a constrained knapsack problem.
Later in this section, we propose heuristics which model the
problem as constrained knapsack by assigning heuristically
calculated profit values.

We start by describing the routing we use: the routing
minimizes our performance measure of a topology, i.e., the
congestion in the network.

A. Minimum Congestion Routing on a Fixed Topology

The objective of the algorithm for finding relay locations
is to minimize the congestion in the network. Thus, we use a
routing algorithm that minimizes the congestion while routing
the whole traffic profile on the network.

We formulate the routing problem as a multi-commodity
flow (MCF) problem [14], treating each profile entry as a
commodity, which can be split over multiple paths. The
notations are given in Table I, and explained below. Let there
be M commodities (the value of commodity i is the profile
entry demand bi), N nodes and L links in the network. Let
xl

i be the amount of commodity i routed through link l. Let
the set of outgoing and incoming links at node j be denoted
by Oj and Ij respectively. Let si and di represent the source
and destination of profile entry i. Equation 3a achieves the
objective of minimizing the congestion value (σ), along with
the constraints of Equation 3b. Equation 3b ensures that total
traffic on any link does not exceed σ. Equations 3c, 3d and 3e
represent the flow conservation laws at transit nodes, source
node and destination node respectively for each commodity.
Equation 3f gives the bounds on the variables. As we try to
minimize σ, σ will take the maximum value of link load in
the network (due to constraints of Equation 3b).

minimize σ (3a)

s.t.
M∑

i=1

xl
i ≤ σ, ∀ l ∈ {1, .., L} (3b)

∑

l∈Ij

xl
i =

∑

l∈Oj

xl
i,

∀j ∈ {1, .., N} − {si, di},∀i ∈ {1, ..,M} (3c)

∑

l∈Oj

xl
i −

∑

l∈Ij

xl
i = bi, j = si,∀i ∈ {1, ..,M} (3d)

∑

l∈Oj

xl
i = 0, j = di,∀i ∈ {1, ..,M} (3e)

σ ≥ 0, 0 ≤ xl
i ≤ bi (3f)

B. Greedy Algorithm

We start with a natural greedy algorithm for placing the
relays in the network. The algorithm attempts to form the links
in increasing order of cost (number of relays needed) without
violating the interface constraints (TIn, RIn being the number
of free transmit and receive interfaces at node n) while free
relays are available. This algorithm maximizes the number of
additional links formed in the network. The algorithm is as
follows:

Algorithm 1 Greedy Algorithm

1: G′(V,E′) = G(V,E)
2: Sort the candidate list L by increasing cost
3: Set number of free relays R = K
4: For all links l = {t, h, c} ∈ L:

• if R ≥ c, TIt > 0, RIh > 0
– E′ = E′ ⋃{t, h}
– TIt = TIt − 1
– RIh = RIh − 1
– R = R − c

5: Output G′

This heuristic does not take the traffic profile into account.
The traffic profile affects the importance of the links in the
candidate list as we are minimizing the congestion value for
a given traffic profile. In the next subsection, we propose a
heuristic which takes the traffic profile into account.

C. Traffic Based Greedy Algorithm

Traffic Based Greedy Algorithm (TBGA) assigns profit
values to links in the candidate list L based on the traffic
profile. Then it sorts L in decreasing order of profit/cost and
forms the links in that order. For each link l = {t, h, c} ∈ L,
cost is the number of relays required to form a link (c), and
profit represents the total traffic entering the tail node t that is
destined for the head node h. The traffic from node t to node
h is calculated using flow decomposition [15] for all traffic
demands, which gives a set of paths (and corresponding flow

values) for each traffic demand. This decomposition is non-
unique, but any solution gives the correct value of traffic going
from node t to node h. Adding a link between the tail and head
nodes of the link l is expected to divert a significant part of this
traffic through the added link, thus we assign this as the profit.
Once the profit values have been calculated, the algorithm
is the same as a common greedy heuristic for constrained
knapsack problems [11]. TBGA is given in Algorithm 2.

Algorithm 2 Traffic Based Greedy Algorithm (TBGA)

1: G′(V,E′) = G(V,E)
2: Solve the MCF of Equation 3 on the initial topology G

to get a routing f
3: For each link l = {t, h, c} ∈ L:

1) Perform flow decomposition [15] to get paths for
each profile entry. Let the set of paths for profile
entry i be Pi, and let xp

i denote the demand routed
on path p ∈ Pi.

2) Find the paths (for all profile entries) containing t
and h in that order. Denote the set of paths as P l.

3) Set profit (rl) of the link as the total traffic flowing
through the paths in P l (Equation 4). Here, I{E} is
one if event E is true, zero otherwise.

rl =
M∑

i=1

|Pi|∑

p=1

xp
i I{p∈P l} (4)

4: Sort the candidate list by decreasing r/c ratio
5: Set number of free relays R = K
6: For all links l = {t, h, c} ∈ L:

• if R ≥ c, TIt > 0, RIh > 0
– E′ = E′ ⋃{t, h}
– TIt = TIt − 1
– RIh = RIh − 1
– R = R − c

7: Output G′

D. Extended Traffic Based Greedy Algorithm

We extend TBGA by changing the scheme of assigning
the profit to each link. The profit is assigned according to
the reduction in congestion achieved by forming the links
in the topology independently. The procedure is as explained
below:

1: Solve the MCF of Equation 3 on the initial topology G.
Let the optimal congestion value returned be σ.

2: For each link l = {t, h, c} ∈ L:
• G′′(V,E′′) = G(V,E)
• E′′ = E

⋃{t, h}
• Solve the MCF on G′′. Let the optimal congestion

value returned be σ′.
• Assign profit rl as σ − σ′

ETBGA is computationally more expensive than TBGA,
but gives better results as the profit values used are more
accurate. The step of calculating profit for each link takes

O(MNE) time in TBGA, while it takes O((MN + E)3.5)
in ETBGA, as the MCF needs to be solved in ETBGA for
each profit calculation, which is a linear program (LP) (we
use interior point methods for solving the LP [16]). Here, N
is the number of vertices, E is the number of edges and M is
the number of profile entries in the network. Thus, the worst
case time complexity of ETBGA is much worse than TBGA.
In practice however, the LP solving algorithms are much faster
than the worst case bound suggests. Thus, ETBGA is slower
than TBGA, but it has a reasonable running time in practice
for networks of moderate size. As the simulations will show,
ETBGA performs better than TBGA.

IV. ROLLOUT BASED ALGORITHMS

We propose another set of heuristics that use the rollout [12]
technique to extend the heuristics proposed in the previous
section. We start by explaining the basic rollout algorithm,
followed by the application of the technique to our problem.

A. Basic Rollout Algorithm

Rollout is a general method for obtaining an improved
policy for a Markov decision process starting with a base
heuristic policy [12]. The rollout policy is a one step look-
ahead policy, with the optimal cost-to-go approximated by
the cost-to-go of the base policy. We use the specialization
of rollout to discrete multistage deterministic optimization
problems. Consider the problem of maximizing G(u) over
a finite set of feasible solutions U. Suppose each solution
u consists of N components u = (u1, · · ·, uN). We can
think of the process of solving this problem as a multistage
decision problem in which we choose one component of
the solution at a time. Suppose that we have a heuristic
algorithm, the so-called “base heuristic”, that given a partial
solution (u1, · · ·, un), (n < N), extends it to a complete
solution (u1, · · ·, uN). Let H(u1, .., un) = G(u1, · · ·, uN).
In other words, the value of H on the partial solution is the
value of G on the full solution resulting from application of
the base heuristic. The rollout algorithm R takes a partial
solution (u1, · · ·, un−1) and extends it by one component
to R(u1, · · ·, un−1) = (u1, · · ·, un) where un is chosen to
maximize H(u1, ···, un). Thus, the rollout algorithm considers
all admissible choices for the next component of the solution
and chooses the one that leads to the largest value of the
objective function if the remaining components are selected
according to the base heuristic.

It can be shown that under reasonable conditions, the rollout
algorithm will produce a solution whose value is at least as
great as the solution produced by the base heuristic. Note
that the heuristic may be a greedy algorithm, but the rollout
algorithms are not greedy as they make a decision based on
the final expected value of the objective function, and not the
increment to the value of the objective function at that decision
step.

1) Index Rollout Algorithm: Index rollout seeks to optimize
the order in which links in the candidate list are formed, as the
order changes the number of free interfaces and the number

of relays left. We use the rollout on all the heuristics we
proposed in the last section. When using TBGA and ETBGA,
we calculate the profit values for all links in the candidate
list L only initially (before the start of index rollout), and
not each time the heuristic is used. We use the term (base)
heuristic to refer to all heuristics in this section. The index
rollout algorithm works as follows: In the first step, the rollout
algorithm forms a link l1 ∈ L determined by the requirement
that it minimizes the congestion when the base heuristic is
used to complete the topology starting with l1. The congestion
value is computed for the topology output of the base heuristic
using the MCF formulation of Equation 3.

Now, suppose that the links (l1, · · ·, ln−1) have been formed
in this order by the rollout algorithm. In the next step, the
rollout algorithm forms the link ln determined by the require-
ment that it minimize the congestion when the base heuristic
is used to complete the topology starting with (l1, · · ·, ln).
After forming a link at each step of index rollout, the number
of free interfaces and relays is updated. At any decision step,
a link that cannot be formed due to lack of interfaces at tail
and head nodes or due to insufficient relays is discarded from
the candidate list.

At the first step, the congestion for rollout is the same as that
for the heuristic as we construct the whole topology according
to the heuristic. The rollout algorithm works at least as well
as the heuristic, as at each decision step, it always has the
choice of going according to the heuristic which gives the
congestion that was calculated at the previous step. Thus, the
rollout performs at least as well as the heuristic in terms of
the objective function (congestion).

The rollout runs the base heuristics O(|L|2) times (except
profit calculations, which are done once), where |L| is the
number of links in the candidate list L. Thus, the time taken by
the rollout algorithms is O(|L|2) times the base heuristics. The
increase in computation time is justified by the improvement
in results, as we will demonstrate by simulations. We do not
give the worst case time complexity of any algorithm as it
is dominated by the time complexity of LP solvers, which
is O(N10.5) for the MCF in the worst case. In practice, LP
solvers like CPLEX [17] are very fast and thus the worst case
time complexity is misleading.

V. SIMULATION RESULTS

We generate a random network and a random traffic profile
with the following parameters.

• Size of the network = 3km x 3km.
• Number of backbone nodes in the network = 20.
• Location of each node: Chosen uniformly randomly
• Transmission range of each node = 1km.
• Number of transmit interfaces at each node = 5 (same

number of receive interfaces)
• Demand between each source-destination pair: Uniform

random between 0 and 1
As the network is a wireless backbone network, a 20 node

network is considerably big, considering the applications of
FSO backbone networks. The results presented here should be

the same if the number of backbone nodes, relays and network
area are increased proportionally. We use one of the matching-
based algorithms of [6] to generate the initial topology of the
network. The algorithm does not take the traffic profile into
account, and outputs a topology which maximizes the number
of links in the network. As the number of links is maximized,
the topology is expected to work well with most traffic profiles.
Also, maximizing the number of links is expected to yield a
routing with less congestion. We consider only the simulations
where the initial topology in connected. We used CPLEX [17]
to solve the multi-commodity flow linear program.

A. Evaluation for Varying Number of Relays

We first evaluate the performance of the algorithms for
varying number of relays. The number of relays is varied from
one to five. The simulations are performed 10 times, and the
values are averaged over the 10 runs (where initial topology
was connected). The number of profile entries is varied from
10 to 50. They are selected uniformly randomly from all
possible source-destination pairs. We average the performance
over the number of profiles as well (which represents the
load in the network). Table II shows the average normalized
congestion for different algorithms, averaged over all the sim-
ulations and over different number of profile entries (10-50).
The normalization is done with respect to the congestion value
in the initial topology for the given traffic profile for each run.
Thus, the values represent the reduction in congestion achieved
by each of the relay placement algorithms. TBGA works much
better than the Greedy Algorithm, and ETBGA works much
better than TBGA. The index rollout (which we also call
rollout) gives a considerable improvement in performance for
all the heuristics, with the rollout with ETBGA working the
best, followed by rollout with TBGA and rollout with Greedy
Algorithm. The rollout algorithms have a similar performance
as the number of relays required is increased to five, as then
the base heuristic used does not matter much because the
number of relays is large. Also, using just one relay can bring
the congestion down to 85% of the initial value, using two
nodes can bring it down to 70% for rollout with TBGA, and
to 60% if we use four relays. The decrease in congestion is
much faster with the addition of relays initially, and then the
decrease becomes slower. Thus, only a few relays are sufficient
to reduce the congestion considerably.

Fig. 1 shows the variation of average normalized congestion
values with respect to the number of relays when the number
of traffic profile entries is fixed at 40. As in the average
results presented before, the decrease in congestion values
is fast initially, and slows down as the number of relays is
increased. Also, all the rollout algorithms perform much better
the corresponding base heuristics.

B. Evaluation for Varying Traffic Load

We now evaluate the algorithms under varying load con-
ditions. The load is varied by varying the number of traffic
profile entries (source-destination pairs) from 10 to 50. The
number of relays is fixed at four. Fig. 2 shows the congestion

TABLE II

AVERAGE NORMALIZED CONGESTION

Relays Greedy Rollout Greedy TBGA Rollout TBGA ETBGA Rollout ETBGA

1 0.9985 0.8470 0.9428 0.8470 0.8470 0.8470

2 0.9316 0.7110 0.8979 0.7070 0.7585 0.6791

3 0.8860 0.6522 0.8469 0.6775 0.7262 0.6357

4 0.8292 0.6563 0.8207 0.6201 0.7291 0.5973

5 0.8143 0.6024 0.7682 0.5907 0.6405 0.5782

1 2 3 4 5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

#Controllable Nodes

A
ve

ra
ge

 N
or

m
al

iz
ed

 C
on

ge
st

io
n

Greedy
Rollout Greedy
TBGA
Rollout TBGA
ETBGA
Rollout ETBGA

Fig. 1. Normalized congestion vs. number of relays for 40 profile entries

values for different algorithms normalized by the congestion
on initial topology. The values shown are the average over 10
runs. There is no apparent relationship with the number of
profile entries, which is a measure of the load on the network.
Thus, the fractional reduction in the congestion achieved with
respect to the case of no relays is similar for all load conditions
considered.

VI. CONCLUSION

The problem of minimizing congestion in a backbone net-
work by using relays has been considered. The relay placement
problem is formulated as a constrained knapsack problem, and
algorithms are proposed to compute the knapsack item profit
values and compute the solution to the knapsack problem.
We use the technique of rollout to improve the performance.
The simulations show that there is a significant drop in
congestion values by placing a small number of relays using
our algorithms. The rollout algorithms can be used to obtain
good solutions for constrained knapsack problems as well.

REFERENCES

[1] E. Perkins, Ad Hoc Networking. Addison-Wesley, 2001.
[2] S. Banerjee and S. Khuller, “A clustering scheme for heirarchical control

in multi-hop wireless networks,” IEEE INFOCOM, 2001.
[3] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with mobile

backbones,” IEEE ICC, 2002.
[4] N. A. Riza, “Reconfigurable optical wireless,” IEEE LEOS, vol. 1, pp.

70–71, 1999.

10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

#Profile Entries

A
ve

ra
ge

 N
or

m
al

iz
ed

 C
on

ge
st

io
n

Greedy
Rollout Greedy
TBGA
Rollout TBGA
ETBGA
Rollout ETBGA

Fig. 2. Normalized congestion vs. number of profile entries for four relays

[5] T.-H. Ho, S. D. Milner, and C. C. Davis, “Fully optical real-time
pointing, acquisition, and tracking system for free space optical link,”
SPIE, Free-Space Laser Communication Technologies XVII, G. Stephen
Mecherle, Ed., vol. 5712, pp. 81–92, 2005.

[6] A. Kashyap, S. Khuller, and M. Shayman, “Topology control and routing
over wireless optical backbone networks,” Conference on Information
Sciences and Systems, 2004.

[7] A. Kashyap, M. Kalantari, K. Lee, and M. Shayman, “Rollout algorithms
for topology control and routing of unsplittable flows in wireless optical
backbone networks,” Conference on Information Sciences and Systems,
2005.

[8] M. Kalantari, A. Kashyap, K. Lee, and M. Shayman, “Network topology
control and routing under interface constraints by link evaluation,”
Conference on Information Sciences and Systems, 2005.

[9] J. Zhuang, M. J. Casey, S. D. Milner, S. A. Gabriel, and G. Baecher,
“Multi-objective optimization techniques in topology control of free
space optical networks,” IEEE MILCOM, 2004.

[10] A. Desai and S. Milner, “Autonomous reconfiguration in free-space
optical sensor networks,” IEEE JSAC Optical Communications and
Networking Series, vol. 23, no. 8, pp. 1556–1563, 2005.

[11] T. Yamada and S. Kataoka, “Heuristic and exact algorithms for the
disjunctively constrained knapsack problem,” Information Processing
Society of Japan Journal, vol. 43, no. 9, pp. 2864–2870, 2002.

[12] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2000, vol. 1.

[13] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
theory of NP-Completeness. Freeman and Company, 1979.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Application. Prentice-Hall, 1993.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2003.

[17] CPLEX, http://www.cplex.com.

