PROBLEMS

Basic Problems with Answers

4.1. The signal

$$x_c(t) = \sin(2\pi(100)t)$$

was sampled with sampling period T = 1/400 second to obtain a discrete-time signal x[n]. What is the resulting signal x[n]?

4.2. The sequence

$$x[n] = \cos\left(\frac{\pi}{4}n\right), \quad -\infty < n < \infty,$$

was obtained by sampling a continuous-time signal

$$x_c(t) = \cos(\Omega_0 t), \quad -\infty < t < \infty.$$

at a sampling rate of 1000 samples/s. What are two possible positive values of Ω_0 that could have resulted in the sequence x[n]?

4.3. The continuous-time signal

$$x_c(t) = \cos{(4000\pi t)}$$

is sampled with a sampling period T to obtain a discrete-time signal

$$x[n] = \cos\left(\frac{\pi n}{3}\right).$$

- (a) Determine a choice for T consistent with this information.
- **(b)** Is your choice for T in Part (a) unique? If so, explain why. If not, specify another choice of T consistent with the information given.
- 4.4. The continuous-time signal

$$x_c(t) = \sin(20\pi t) + \cos(40\pi t)$$

is sampled with a sampling period T to obtain the discrete-time signal

$$x[n] = \sin\left(\frac{\pi n}{5}\right) + \cos\left(\frac{2\pi n}{5}\right).$$

- (a) Determine a choice for T consistent with this information.
- **(b)** Is your choice for T in Part (a) unique? If so, explain why. If not, specify another choice of T consistent with the information given.
- **4.5.** Consider the system of Figure 4.11, with the discrete-time system an ideal lowpass filter with cutoff frequency $\pi/8$ radians/s.
 - (a) If $x_c(t)$ is bandlimited to 5 kHz, what is the maximum value of T that will avoid aliasing in the C/D converter?
 - **(b)** If 1/T = 10 kHz, what will the cutoff frequency of the effective continuous-time filter be?
 - (c) Repeat Part (b) for 1/T = 20 kHz.
- **4.6.** Let $h_c(t)$ denote the impulse response of a linear time-invariant continuous-time filter and $h_d[n]$ the impulse response of a linear time-invariant discrete-time filter.