
Experiment 3

Digital Filters

The major goal of this experiment is to learn how to implement using real-time hardware
the discrete-time filtering techniques usually presented in a typical required Electrical Engi-
neering undergraduate course on signals and sytems and a Senior elective course on digital
signal processing. Discrete-time filtering is often called digital filtering. In the process, you
will learn more about the TMS320C30 and the EVM.

3.1 Discrete-Time Convolution and Frequency Responses

The output y[n] of a linear, time-invariant, discrete-time system (LTI) can be computed by
convolving its input x[n] with its unit pulse response h[n]. The equation for this discrete-time
convolution is

y[n] =
∞
∑

k=−∞

x[k]h[n − k] =
∞
∑

k=−∞

h[k]x[n − k] (3.1)

The z-transform of a discrete-time convolution is the product of the transforms, that is,

Y (z) =
∞
∑

n=−∞

y[n]z−n = X(z)H(z) (3.2)

The response of an LTI system to a sinusoid after the transients have become negligible
is called its sinusoidal steady-state response. To determine this response, let the input be
the sampled complex sinusoid

x[n] = CejωnT

According to (3.1), the output is

y[n] =
∞
∑

k=−∞

h[k]Cejω(n−k)T = CejωnT
∞
∑

k=−∞

h[k]e−jωkT = x[n]H(z)|z=ejωT (3.3)

Thus, the output is a sinusoid at the same frequency as the input but with its amplitude
scaled by the complex number

H∗(ω) = H(z)|z=ejωT (3.4)

The function H∗(ω) is called the frequency response of the system. The function A(ω) =
|H∗(ω)| is called the amplitude response of the system and θ(ω) = argH ∗(ω) is called its
phase response. Notice that all of these responses are periodic as functions of ω with period
ωs = 2π/T . In polar form

H∗(ω) = A(ω)ejθ(ω) (3.5)

40

so, according to (3.3), the output can be expressed as

y[n] = CA(ω)ej[ωnT+θ(ω)] (3.6)

When the input is the real sinusoid

x[n] = C cos(ωnT + φ) = <e{CejφejωnT}

the ouput is

y[n] = <e{H∗(ω)CejφejωnT} = CA(ω) cos[ωnT + θ(ω) + φ]

In otherwords, the system scales the magnitude of the sinusoidal input by the amplitude
response and shifts its phase by the phase response. This is the basis for digital filtering.

3.2 Finite Duration Impulse Response (FIR) Filters

3.2.1 Block Diagram for Most Common Realization

If the unit pulse response is identically zero outside the set of integers {0, 1, · · · , N − 1}, the
convolution (3.1) becomes

y[n] =
N−1
∑

k=0

h[k]x[n − k] =
n
∑

k=n−N+1

x[k]h[n − k] (3.7)

A filter of this type is called an N-tap finite duration impulse response (FIR) filter, nonrecur-
sive filter, transversal filter, or moving average filter. A block diagram for the most common
method of implementing FIR filters is shown in Fig. 3.1 on page 42. It consists of a delay
line represented by the chain of blocks labelled z−1 and a set of taps into the delay line with
weights equal to the unit pulse response samples.
The block diagram of an FIR shown in Fig. 3.1 could represent the physical layout of

a hardware implementation or just the structure of a software algorithm. In a software
implementation, the delay line would just be an array in memory. Entering a new sample
into an array by shifting the entire array is inefficient. In the exercises described below, you
will learn how to implement the “shift register” by forming a circular array using the C mod
operator (%) and the hardware circular addressing capabilities of the TMS320C30.

3.2.2 Two Methods for Finding the Filter Coefficients to Achieve a Desired
Frequency Response

Two programs for designing digital filters are included in the directory C:\DIGFIL. Both
methods design filters with exactly linear phase which is a reason FIR filters are sometimes
preferred over IIR filters.
Historically, the first method for designing digital filters was the Fourier series and

window function method. (See [II.C.14, Chapter 8] for the theory.) The program WIN-
DOW.EXE implements this method. It was taken from the IEEE Press book, Programs for

41

±°
²¯

±°
²¯

±°
²¯

±°
²¯

?

?

?

-

- -

6

6

6

-
?

6

-

z−1

z−1

z−1

+

+

+

+
x[n] y[n]

h[N − 1]

h[N − 2]

h[2]

h[1]

h[0]

Fig. 3.1. Type 1 Direct Form Realization

Digital Signal Processing [II.C.5] and modified to make it more user friendly. The program
presents a selection of seven different window types. The Hamming window (3) and Kaiser
window (6) are the ones you will most likely find best. Five different filter types are available:
(1) lowpass, (2) highpass, (3) bandpass, (4) bandstop, and (5) bandpass Hilbert transform.
To use this program, first copy it to your working directory and then typeWINDOW. As
an example of how to use the program, suppose the sampling rate is 8 kHz, and a 21 tap
bandpass filter with a lower cutoff frequency of 1 kHz and an upper cutoff frequency of 3 kHz
is desired using the Hamming window. The program screen output and typical responses are
shown below. The text written by the program is in capital letters and the user responses
are shown in lower case letters but they can be entered as either capital or lower case letters.
The lower case functions after window types 3, 4, and 5 are displayed by the program.

ENTER NAME OF LISTING FILE: junk.lst

ENTER FILENAME FOR COEFFICIENTS: junk.cof

ENTER SAMPLING FREQUENCY IN HZ: 8000

WINDOW TYPES

1 RECTANGULAR WINDOW

2 TRIANGULAR WINDOW

3 HAMMING WINDOW 0.54 + 0.46 cos(theta)

4 GENERALIZED HAMMING WINDOW alpha + (1-alpha) cos(theta)

5 HANNING WINDOW 0.5 + 0.5 cos(theta)

6 KAISER (I0-SINH) WINDOW

42

7 CHEBYSHEV WINDOW

FILTER TYPES

1 LOWPASS FILTER

2 HIGHPASS FILTER

3 BANDPASS FILTER

4 BANDSTOP FILTER

5 BANDPASS HILBERT TRANSFORM

ENTER FILTER LENGTH, WINDOW TYPE, FILTER TYPE: 21,3,3

SPECIFY LOWER, UPPER CUTOFF IN HZ: 1000,3000

CREATE (FREQUENCY,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat

LINEAR (L) OR DB (D) SCALE ?: d

The LISTING FILE is where the number of taps, filter type, window type, sampling
frequency, and filter coefficients are written. The FILENAME FOR COEFFICIENTS has one
entry per line. The first line is the number of coefficients. The remaining lines are the
coefficients in order of increasing index and in floating point format. This file is useful for
using the coefficients in another program. The (FREQ, RESPONSE) file is a listing of the
amplitude response of the filter on a linear or dB scale. Each line contains a pair of numbers
consisting of the frequency and corresponding amplitude response. The frequency increment
is automatically selected to show the ripples in the amplitude response. If the program
GRAPHER is going to be used to plot the response, this file should be given the extension
DAT.
The second program for designing digital filters is REMEZ87.EXE. It is a modified

version of the program in the IEEE book, Programs for Digital Signal Processing. The
program was developed by J. McClellan and T. Parks who were at Rice University at the
time. It uses the Remez algorithm to design filters that are optimum in the Chebyshev sense,
that is, the maximum absolute error is minimized and causes the error to be equal ripple.
The program can design (1) multiple passband/stopband filters, (2) differentiators, and (3)
Hilbert transform filters.
Use of REMEZ87 will be demonstrated by an example. Suppose the sampling rate is 8

kHz and a 21 tap bandpass filter with a passband extending from 1000 to 3000 Hz is desired.
Using the conventions of this program, three bands must be specified. They are: (1) a
lower stopband, (2) the passband, and (3) an upper stopband. Let the lower stopband edges
extend from 0 to 500 Hz, the passband edges extend from 1000 to 3000 Hz, and the upper
stopband edges extend from 3500 to 4000 Hz. Values must be specified for the amplitude in
each of the bands. Let the values in the two stopbands be 0 and the value in the passband be
1. Also, weights for each band must be specified. The weight values scale the error in each
band. Since the algorithm generates an equal ripple weighted error, larger weights result in
bands with smaller unweighted ripple. For this example let the bands be equally weighted
with the value 1.

43

REMEZ87 uses a variable GRID DENSITY to determine the frequency increment for
computing the frequency response error with larger numbers corresponding to closer spaced
frequencies. Values in the range of 16 to 32 seem to work well with little difference observed
in the results. The smaller number requires less computation and uses smaller arrays. The
program computes the frequency response of the resulting filter and asks the user to enter
the lower and upper frequency limits to use for the response. Program screen prompts are
in capital letters. User responses can be in either upper or lower case. The prompts and
responses for this example are shown below.

ENTER LISTING FILENAME: junk.lst

ENTER COEFFICIENT STORAGE FILENAME: junk.cof

LINEAR OR DB AMPLITUDE SCALE FOR PLOTS? (L OR D): d

ENTER SAMPLING FREQUENCY (HZ): 8000

ENTER START AND STOP FREQUENCIES IN HZ FOR

RESPONSE CALCULATION (FSTART,FSTOP): 0,4000

FILTER TYPES AVAILABLE:

1 MULTIPLE PASSBAND/STOPBAND FILTER

2 DIFFERENTIATOR

3 HILBERT TRANSFORM

ENTER: FILTER LENGTH, TYPE, NO. OF BANDS, GRID DENSITY: 21,1,3,32

ENTER THE BAND EDGES (FREQUENCIES IN HERTZ)

0,500,1000,3000,3500,4000

SPECIAL USER DEFINED AMPLITUDE RESPONSE(Y/N)? n

SPECIAL USER DEFINED WEIGHTING FUNCTION(Y/N)? n

ENTER (SEPARATED BY COMMAS):

1. VALUE FOR EACH BAND FOR MULTIPLE PASS/STOP BAND FILTERS

2. SLOPES FOR DIFFERENTIATOR (GAIN = Ki*f -> SLOPE = Ki

WHERE Ki = SLOPE OF i-TH BAND, f IN HERTZ)

3. MAGNITUDE OF DESIRED VALUE FOR HILBERT TRANSFORM

0,1,0

ENTER WEIGHT FOR EACH BAND. (FOR A DIFFERENTIATOR

THE WEIGHT FUNCTION GENERATED BY THE PROGRAM FOR THE i th

BAND IS WT(i)/f WHERE WT(i) IS THE ENTERED BAND WEIGHT AND

f IS IN HERTZ.)

1,1,1

STARTING REMEZ ITERATIONS

DEVIATION = .159436E-03

.

.

.

CALCULATING IMPULSE RESPONSE

44

CALCULATING FREQUENCY RESPONSE

CREATE (FREQ,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat

The files requested by REMEZ87 are essentially the same as forWINDOW. However,
the LISTING file contains more information, such as, the frequencies where the peak errors
occur, a frequency response listing in linear and dB form, and a crude plot of the response
used in the days when only line printers without graphics capabilities were available.
REMEZ87 asks if you want a SPECIAL USER DEFINED AMPLITUDE RESPONSE

or a SPECIAL USER DEFINEDWEIGHTING FUNCTION. You can write your own special
subroutines for a special desired amplitude response and/or weighting function and link them
into the main program. No special functions are included in this version of the program.

3.2.3 Using Circular Buffers to Implement FIR Filters

For an N-tap FIR filter with coefficients nonzero only for indices in the set {0, . . . , N − 1},
the convolution sum (3.1) becomes

y[n] =
n
∑

k=n−(N−1)

x[k]h[n− k] = x[n− (N − 1)]h[N − 1] + · · ·+ x[n− 1]h[1] + x[n]h[0] (3.8)

Notice that the oldest input sample x[n − (N − 1)] is multiplied by the impulse response
sample h[N − 1] with the largest index and the newest sample x[n] is multiplied by the
impulse response sample h[0] with the smallest index. This equation is shown schematically
in Fig. 3.1 where the N required signal samples are shown stored in a delay line. In a
software implementation, the delay line represents an array in memory. Entering the newest
sample into the “delay line” by shifting the elements in the entire array is inefficient for a
software implementation and a better approach is to use circular buffers. Circular buffers
can be implemented in C by using the mod operator %. The TMS320C30 has hardware
support that can be accessed by assembler instructions to implement circular buffers even
more efficiently.
The concept of a circular buffer is illustrated in Fig. 3.2 on page 46. The filter coefficients

are stored in the N element array hr in reverse order, that is, hr[k] = h[N − 1 − k] for
k = 0, . . . , N − 1. A variable, oldest, points to the location in the circular buffer array
that contains the oldest shift register sample. When a new sample is received at time n,
it is written over the sample at location oldest. In a physical implementation using a shift
register, this sample would be shifted out of the end of the shift register when the new one
is shifted in. Next, the variable oldest must be incremented modulo N to point to the new
oldest sample. Notice that when oldest initially has the value N − 1, it becomes 0 when
incremented modulo N . Thus, data samples are written into the array in a circular fashion.
Finally, the filter output can be calculated as

y[n] =
N−1
∑

k=0

hr[k]xcirc[(oldest+ k) mod N] (3.9)

45

.word _hr ; Base address of filter coefficients

.word _xcirc ; Base address of circular buffer

; Now begin convolution function instructions

.text

.global _convol ; Make entry point available to C.

_convol LDI N,BK ; Set circular buffer block size.

LDF 0.0,R2 ; Clear convolution sum.

LDI @ADDRESSES+0,AR0 ; Make AR0 point to hr[0].

LDI @ADDRESSES+1,AR1 ; Make AR1 point to xcirc[0].

ADDI @_oldest,AR1 ; Make AR1 point to xcirc[oldest].

MPYF3 *AR0++,*AR1++%,R0 ; Put hr[0]*xcirc[oldest] in R0.

RPTS RC1 ; Repeat next instruction RC1+1 times.

MPYF3 *AR0++,*AR1++%,R0 ; put hr[i]*xcirc[(oldest+i)%N] in R0.

|| ADDF3 R0,R2,R2 ; Accumulate previous product in R2.

ADDF3 R0,R2,R0 ; Add final product to R2 and return

; result to C in R0.

RETS ; Return to C

.END

3.3 Infinite Duration Impulse Response (IIR) Filters

A filter with an impulse response, h(n), that has infinite duration is known as an IIR filter.
When h(n) is the sum of damped exponentials, its z-transform, H(z), which is also called
its transfer function, is a rational function of z. That is, it is the ratio of two finite degree
polynomials. We will use a rational function of the form

H(z) =
b0 + b1z

−1 + b2z
−2 + · · ·+ bNz

−N

1 + a1z−1 + a2z−2 + · · ·+ aMz−M
=
B(z)

A(z)
(3.10)

3.3.1 Realizations for IIR Filters

Rational transfer functions can be realized in many ways. Three common realizations will
be described below. The first realization will be called a type 0 direct form. The ratio of
the z-transforms of the filter output and input is

Y (z)

X(z)
= H(z) =

B(z)

A(z)
(3.11)

55

Cross multiplying gives

Y (z)A(z) = X(z)B(z) or Y (z)

(

1 +
M
∑

k=1

akz
−k

)

= X(z)
N
∑

k=0

bkz
−k (3.12)

Taking all except the Y (z) term to the righthand side yields

Y (z) =
N
∑

k=0

bkX(z)z
−k −

M
∑

k=1

akY (z)z
−k (3.13)

The time domain equivalent is the difference equation

y[n] =
N
∑

k=0

bkx[n − k]−
M
∑

k=1

aky[n − k] (3.14)

This equation shows how to compute the current filter output from the current and N past
inputs and M past outputs. A filter implemented in this way is also called a recursive filter
since past outputs are used to calculate the current output. It is called a direct form because
the coefficients in the transfer function appear directly in the difference equation.
Another realization which we will call a type 1 direct form is based on observing that

(3.11) can be rearranged into the cascade form

Y (z) =
X(z)

A(z)
B(z) = V (z)B(z) (3.15)

where

V (z) = X(z)
1

A(z)
(3.16)

This is illustrated in Fig. 3.3.

-

1

A(z)
- B(z) -

X(z) V (z) Y (z)

Fig. 3.3. First Step in Finding Type 1 Direct Form Realization

The intermediate signal v[n] can be computed using the direct form 0 realization

v[n] = x[n]−
M
∑

k=1

akv[n − k] (3.17)

Then, the output can be computed as

y[n] =
N
∑

k=0

bkv[n − k] (3.18)

56

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

- - -

?

?

? 6

?

6

6

6

-

-

-¾

¾

¾

6

6

6

6

6 6

z−1

z−1

z−1

x[n] v[n] b0 y[n]

−a1

−a2

−aN−1

−aN

b1

b2

bN−1

bN

...

+

+

+ +

+

+

+

+

Fig. 3.4. Type 1 Direct Form Realization

A block diagram for these equations is shown in Fig. 3.4 on page 57 where it is assumed that
M = N . This form requires less storage than the type 0 direct form.

Another realization called the type 2 direct form can be found by rearranging (3.12).
For simplicity, let M = N . Then

Y (z) = b0X(z) +
N
∑

k=1

[bkX(z)− akY (z)]z
−k (3.19)

A block diagram for this realization is shown in Fig. 3.5 on page 58. It requires essentially
the same storage and arithmetic as direct form 1.

3.3.2 A Program for Designing IIR Filters

The program, C:\DIGFIL\IIR.EXE, designs IIR filters by using the bilinear transforma-
tion [II.C.14, pp. 212-219] with a Butterworth, Chebyshev, inverse Chebyshev, or elliptic
analog prototype filter. It can design lowpass, highpass, bandpass, or bandstop filters. The
form of the resulting filter is a cascade (product) of sections, each with a second order nu-
merator and denominator with the leading constant terms normalized to 1, possibly a first
order section normalized in the same way, and an overall scale factor. These second order

57

-±°
²¯
+

z−1z−1

±°
²¯

z−1

±°
²¯

±°
²¯

z−1

-

- ¾

- ¾

- ¾

6

6

6

6

6

6

6

x[n] y[n]b0

b1

b2

bN

−a1

−a2

−aN

+

+

+

Fig. 3.5. Direct Form 2 Realization

sections are also know as biquads. The sections can be realized by any of the three direct
forms described above or other structures that can be found in DSP books.
Care must be taken to prevent overflows and underflows when digitial filters are imple-

mented with fixed point DSP’s. This problem is significantly reduced with floating point
DSP’s. Sometimes the overall scale factor generated by IIR is quite small and to maintain
numerical accuracy it should be split among the different sections.
An example of how to use IIR is shown below. The program prompts are shown in

upper case letters and the user responses in lower case letters or numbers. In this example,
a bandpass filter is designed based on an elliptic analog prototype filter. The nominal lower
stopband extends from 0 to 600 Hz, the passband extends from 1000 to 2000 Hz, and the
upper stopband extends from 3000 to 4000 Hz. The questions and answers are explained
more fully after the dialog.

SAVE RESULTS IN A FILE (Y OR N): y

58

ENTER LISTING FILENAME: junk.lst

ENTER 1 FOR ANALOG, 2 FOR DIGITAL: 2

ENTER SAMPLING RATE IN HZ: 8000

ENTER NUMBER OF FREQS TO DISPLAY: 100

ENTER STARTING FREQUENCY IN HZ: 0

ENTER STOPPING FREQUENCY IN HZ: 4000

ENTER 1 FOR BW, 2 FOR CHEBY, 3 FOR ICHEBY, 4 FOR ELLIPTIC: 4

ENTER 1 FOR LOWPASS, 2 FOR HP, 3 FOR BP, OR 4 FOR BR: 3

ENTER F1,F2,F3,F4 FOR BP OR BR FREQS: 600,1000,2000,3000

ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN +DB: 0.2,40

ELLIPTIC FILTER ORDER = 4

CREATE FREQ, LINEAR GAIN FILE (Y,N)? n

CREATE FREQ, DB GAIN FILE (Y,N)? Y

ENTER FILENAME: junkdb.dat

CREATE FREQ, PHASE FILE (Y,N)? n

CREATE FREQ, DELAY FILE (Y,N)? y

ENTER FILENAME: JUNKDEL.DAT

The first line of the dialog asks if you want to save the results in in a disk file. If the answer
is Y or y, you are prompted for the name of a file. If the answer is N or n, the results appear
on the screen (usually too fast to be read). The program computes the frequency response of
the designed filter at the number of points specified which are equally spaced over the range
of frequencies selected. You are then prompted for the type of analog prototype filter desired
and the frequency selectivity type of the digital filter. In the case of a bandpass (BP) filter,
four critical frequencies, F1 < F2 < F3 < F4, must be entered. The frequency F1 is the
upper edge of the lower stopband, F2 is the lower edge of the passband, F3 is the upper edge
of the passband, and F4 is the lower edge of the upper stopband. In the case of an elliptic
filter, you are then prompted for the desired maximum passband ripple and the minimum
stopband attenuation. The program then computes the order of the required analog lowpass
prototype filter which in this example is 4. The actual order of the digital filter is double this
number for bandpass and band reject filters. The user is given the option of choosing the
filter order or letting IIR choose the order for some of the other prototype filters. Finally
you are prompted for the types of frequency response files you wish to generate which can
then be plotted with your favorite graphing program.
The RESULTS file for this example is shown below. First, the z-plane zeros and poles

are displayed in rectangular form. Then they are shown in polar form. The radius is the
magnitude of the pole or zero and the frequency is fsθ/(2π) where θ is the angle and fs is
the sampling frequency. Notice, that for this bandpass filter, the zeros are all exactly on the
unit circle with frequencies in the stop bands. The pole frequencies are in the passband.
The coefficients of the numerators and denominators of the second order sections are

given and they can be realized by the direct forms. It is shown in many DSP books that it
is computationally better to realize an IIR filter by splitting it into low order sections rather
than by one high order section.

59

Finally, the amplitude response on a linear scale, the amplitude response on a dB scale,
the phase response, and the envelope delay are listed for the chosen range. This data also
appears in separate files if selected in the dialog.

DIGITAL BANDPASS ELLIPTIC FILTER

FILTER ORDER = 8

Z PLANE

ZEROS POLES

.977149 +- j .212554 .173365 +- j .761580

.902015 +- j .431705 -.028463 +- j .919833

-.538154 +- j .842847 .683010 +- j .651915

-.873779 +- j .486323 .482595 +- j .656484

RADIUS FREQUENCY RADIUS FREQUENCY

.100000E+01 .272712E+03 .781063E+00 .171502E+04

.100000E+01 .568352E+03 .920273E+00 .203939E+04

.100000E+01 .272351E+04 .944190E+00 .970348E+03

.100000E+01 .335335E+04 .814782E+00 .119288E+04

4 CASCADE STAGES, EACH OF THE FORM:

F(z) = (1 + B1*z**(-1) + B2*z**(-2)) / (1 + A1*z**(-1) + A2*z**(-2))

B1 B2 A1 A2

-1.954298 1.000000 -.346731 .610059

-1.804029 1.000000 .056927 .846903

1.076307 1.000000 -1.366019 .891495

1.747559 1.000000 -.965191 .663870

SCALE FACTOR FOR UNITY GAIN IN PASSBAND: 1.8000479016654E-002

FREQUENCY RESPONSE

FREQUENCY GAIN GAIN (dB) PHASE DELAY (SEC)

.0000 2.1048E-03 -5.3536E+01 .00000 .13458E-03

40.0000 2.0557E-03 -5.3741E+01 -.03385 .13493E-03

80.0000 1.9093E-03 -5.4382E+01 -.06789 .13600E-03

120.0000 1.6681E-03 -5.5556E+01 -.10228 .13780E-03

60

