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Abstract—In this paper, we study the two-user one-sided inter-
ference channel with confidential messages. In this interference
channel, in addition to the usual selfishness of the users, the
relationship between the two pairs of users is further adversarial
in the sense of both receivers’ desires to eavesdrop on the
communication of the other pair. We develop a game-theoretic
model to study the information-theoretic secure communications
in this setting. We first start with a game-theoretic model where
each pair’s payoff is their own secrecy rate. The analysis of
the binary deterministic interference channel with this payoff
function shows that self-jamming of a transmitter, which injures
the eavesdropping ability of its own receiver, is not excluded
by the Nash equilibria. We propose a refinement for the payoff
function by explicitly accounting for the desire of the receiver
to eavesdrop on the other party’s communication. This payoff
function captures the adversarial relationship between the two
pairs of users better. We determine the Nash equilibria for the
binary deterministic channel for both payoff functions.

I. INTRODUCTION

In the interference channel, multiple users share the trans-
mission medium, and simultaneously wish to have reli-
able communication with their respective receivers. The
information-theoretic capacity region of the interference chan-
nel is mostly unknown; it is known only in certain special
cases, e.g., a class of deterministic interference channels [1],
a class of strong interference channels [2]–[4], and a class
of degraded interference channels [5]. In order to achieve a
particular rate point on the capacity region of the interference
channel, the transmitter-receiver pairs need to jointly choose
encoding and decoding schemes, and cooperate to agree on the
particular operating rate point, and coordinate their actions,
e.g., time-sharing.

In actual interference networks, such kinds of cooperations
may not be practical or agreeable by the users. It is reasonable
to assume that all transmitter-receiver pairs in the network
are selfish and rational. Moreover, each pair is only interested
in transmitting their messages at the maximum reliable rate.
Consequently, the information-theoretic capacity region may
not be fully achievable. Reference [6] made this intuition
precise by considering the interference channel from a game-
theoretic point of view, and found the Nash equilibrium
operating points on the capacity region, especially focusing on
the binary deterministic interference channel and the Gaussian
interference channel. Taking the reliable communication rate
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Fig. 1. One-sided interference channel with confidential messages.

for each transmitter as its payoff function, [6] showed that, in a
non-cooperative game, two transmitters agree only on a subset
of the capacity region of the interference channel, which forms
the set of Nash equilibria.

In this paper, we consider an interference channel with
confidential messages, where two transmitters communicate
with two receivers, while each receiver eavesdrops on the
other pair’s communication. Information-theoretic security
was first introduced by using the wiretap channel by Wyner
[7], in which the transmitter wishes to send a message to
the receiver secret from the eavesdropper. If the quality of
the transmitter-receiver channel is better than that of the
transmitter-eavesdropper channel, Wyner showed that the mes-
sages can be transmitted securely at a positive rate. Later, this
result was generalized by Csiszar and Korner [8] to broadcast
channels with confidential messages and extended by Leung-
Yan-Cheong and Hellman [9] to Gaussian wiretap channels. In
recent years, many research works studied secure communica-
tions in multi-user channels, including the interference channel
[10]–[12].

In this paper, we focus on the two-user one-sided inter-
ference channel with confidential messages, in which one
transmitter-receiver pair is interference-free as shown in Fig. 1.
The best known achievable secrecy rate region for the inter-
ference channel with confidential messages was developed in
[10]. As in the case of interference channels without secrecy
constraints, in [10], the two transmitter-receiver pairs need to
jointly choose encoding and decoding schemes and further
cooperate and coordinate their actions to achieve a secrecy
rate pair in this region. In addition, the achievable scheme
in [10] requires that the parties trust each other in that they
will not unilaterally change their encoding-decoding schemes.
Hence, even if it was known, secrecy capacity region might not
be sufficient to understand the adversarial relationship in this



network. Reference [11], addressed the issue of trust. In [11],
the transmitters can deviate from their transmit strategies. In
their definition of robust-secrecy [11], a transmitter can deviate
from its strategy, however, arbitrary deviations are not allowed;
a transmitter can only deviate to a strategy if the new strategy
does not injure the performance of the other transmitter-
receiver pair in terms of reliability. When the transmitters are
selfish, such kind of behavior may not be guaranteed. Selfish
transmitters would care only about their own reliability and
secrecy of their own messages. Such selfish transmitters may
choose any strategy to maximize the secrecy rate of their own
private message, which may hurt the other user’s performance.

To develop a model to characterize the adversarial relation-
ship between the two pairs, we only assume that the two
transmitter-receiver pairs are selfish and rational; other than
these two, they are free to choose any transmission strategy
to maximize their own payoff. Under these assumptions, we
give a formal definition of the game on interference channels
with confidential messages and define the Nash equilibrium
in the secrecy rate region. We first consider the case where
the payoff function is the reliable secrecy rate of each user.
We analyze the binary deterministic interference channel for
this payoff function. This analysis reveals that some of the
Nash equilibrium secrecy rate pairs are achieved only by self-
jamming of a transmitter of its own receiver. This hurts the
eavesdropping ability of its own receiver, which in fact is
one of the interests of the receivers. Among all the strategies
achieving the same secrecy rate, a transmitter-receiver pair
is more likely to choose the one that allows the receiver
to more strongly eavesdrop on the other pair. To overcome
this difficulty, we propose a refinement to the equilibrium.
Specifically, we modify the payoff function by incorporating
an information leakage measure to it in addition to the secure
reliable rate. We find the Nash equilibria with both payoff
functions.

II. PROBLEM FORMULATION

We consider a two-user one-sided interference channel,
where each transmitter is free to choose a transmission strat-
egy, which is defined as follows.

Definition 1 (Strategy si) is the encoding method at trans-
mitter i, such that:

• the number of information bits of equiprobable messages
Wi is log(Mi), and the block length of codewords is n;

• the stochastic encoding function fi : {1, 2, · · · ,Mi} →
Ci maps the message wi to an n-length codeword xni
which belongs to the codebook Ci;

• the corresponding rate of this encoder is Ri = log(Mi)
n .

We assume that the receiver i performs maximum-likelihood
decoding on the received signal to get an estimate of the
message ŵi. We denote the resulting probability of error as
Pe,i = P [Wi 6= Ŵi]. The decoding error probability Pe,i
is jointly determined by both strategies s1 and s2 due to

interference. To characterize information-theoretic secrecy, we
define the measure of information leakage of transmitter i as

Li =
1
n
I(Wi;Y nj ) (1)

where j = ī, i.e., i = 1, j = 2 or i = 2, j = 1, and Y nj is the
n-length symbol observed at receiver j.

Then, for any fixed threshold ε > 0, which is small enough,
given s1 and s2, we define the payoff of each transmitter as

πi(s1, s2) =
{
Ri, Pe,i ≤ ε and Li ≤ ε
0, otherwise (2)

for i = 1, 2. It is important to emphasize that, as defined above,
s1 and s2 jointly determine the payoff πi of transmitter i. In
order to improve πi, transmitter i can deviate from si to any
other strategy s′i, and the only criteria for this improvement
are Pe,i and Li, not Pe,j or Lj . This implies that such a
deviation may affect the performance of the other transmitter j.
To model the behavior of transmitters, who have the freedom
to choose their strategies, it is reasonable to assume that each
transmitter is selfish. Furthermore, each transmitter i is rational
and intelligent, i.e., its objective is to find the best strategy
si to maximize corresponding payoff πi (given the other
transmitter’s strategy sj), and each transmitter understands the
situation, including the fact that another transmitter is also an
intelligent rational decision maker.

Based on the above consideration and assumptions, the
definition of the Nash equilibrium secrecy rate region Cs,NE
is given as follows:

Definition 2 (Nash equilibrium secrecy rate region) Nash
equilibrium secrecy rate region Cs,NE is the closure of all
rate pairs (Rs1, Rs2) such that, there exists a ε̄ > 0 such that
for all ε ∈ (0, ε̄), there exists a strategy pair (s∗1, s

∗
2) which

achieves the payoffs πi(s∗1, s
∗
2) = Rsi for i = 1, 2 and s∗i is

the best response to s∗j in the sense that

πi(s∗i , s
∗
j ) ≥ πi(s′i, s∗j ), ∀s′i (3)

By this definition, if any transmitter i unilaterally attempts
to deviate from the equilibrium strategy while the other
transmitter j’s strategy remains the same, the corresponding
payoff πi of transmitter-receiver pair i will not be improved,
i.e., there is no incentive for each transmitter to deviate from
the equilibrium strategy. Such a secrecy rate pair achieved by
the best response strategy pair is an equilibrium in the secrecy
rate region.

III. BINARY DETERMINISTIC CHANNELS WITH
CONFIDENTIAL MESSAGES

In this section, we consider the binary deterministic one-
sided interference channel with confidential messages to ana-
lyze the Nash equilibrium secrecy rate region with the payoff
function defined above. The channel model shown in Fig. 2
is:

Y1a = X1a, Y1b = X1b (4)
Y2a = X1b ⊕X2a, Y2b = X2b (5)
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Fig. 2. Binary deterministic one-sided interference channel with confidential
messages.

where ⊕ is modulo-2 addition. This is a simple example to
analyze the equilibrium. However, it is not difficult to see that
it could be easily extended to the general one-sided binary
deterministic channel which was used in [12].

Based on the capacity results of deterministic interference
channels [1], the capacity region of this channel is the follow-
ing region

C = {(R1, R2)|R1 ≤ 2, R2 ≤ 2, R1 +R2 ≤ 3} (6)

In fact, it is also easy to check to see that each corner point
of this pentagon is an achievable secrecy rate pair also, and
therefore, the unconstrained capacity region is equal to the
secrecy capacity region. In addition, if we do not consider the
secrecy constraint Li in the payoff function, then [6] already
found the unique Nash equilibrium rate pair (R∗1, R

∗
2) to be

R∗1 = 2 and R∗2 = 1. The explanation for this is the following:
Since there is no secrecy constraint, transmitter 1 can always
transmit unencoded messages on both sub-channels with max-
imum rate 2 bits, and due to the interference, transmitter 2 can
only achieve 1 bit as the maximum rate. It can be shown that
neither user will have any incentive to deviate from this point,
and there exists no other such point. The capacity region is
shown in Fig. 3. The unique Nash equilibrium with no secrecy
constraints is shown with a filled circle.

With secrecy constraints, we will show that the Nash
equilibrium secrecy rate region is not a unique point. We give
the precise form of the Nash equilibrium secrecy rate region
of this channel with the following theorem.

Theorem 1 (Nash equilibrium secrecy rate region Cs,NE)

Cs,NE = {(Rs1, Rs2)|Rs1 ∈ [1, 2], Rs2 = 1} (7)

Proof: First, note that Rs1 ≥ 1 and Rs2 ≥ 1. This is
because, given any strategy s2, transmitter 1 can at least em-
ploy independent encoding on two sub-channels and transmit
unencoded information on sub-channel a with zero decoding
error probability and without any information leakage. The
same argument can be applied to sub-channel b of transmitter
2. Next, note that Rs1 ≤ 2 is trivial. To prove Rs2 = 1, it
suffices to prove that Rs2 ≤ 1.

Assume that (s1, s2) is an equilibrium strategy, which is
the best response to each other and public to both transmitter-
receiver pairs. The reliable transmission rate for transmitter 2

2

Rs2

Rs110

1

2

Fig. 3. The (secrecy) capacity region. Unique Nash equilibrium point (filled
circle) and Nash equilibrium secrecy rate region (blue wide line including the
two end points) with the first payoff function, and the unique Nash equilibrium
secrecy rate point (filled square) for the second payoff function.

is upper bounded by

nRs2 = nR2 (8)
≤ max
P (Xn

2 )
I(Xn

2 ;Y n2 ) (9)

≤ max
P (Xn

2 )
[I(Xn

2a;Y n2a) +H(Xn
2b)] (10)

where the inequality in (10) is proved in Appendix with X2b =
Y2b. This could always (but not limited to) be achieved by
independently encoding on both sub-channels. The necessary
condition for the equality in (10) is

I(Y n2a;Xn
2b) = 0 (11)

Considering s1, the channel X1 → Y1, Y2 is a degraded
wiretap channel with the following upper bound for the secrecy
rate:

nRs1 ≤ max
P (Xn

1 )
I(Xn

1 ;Y n1 )− I(Xn
1 ;Y n2 ) (12)

The difference can be maximized by

I(Xn
1 ;Y n1 )− I(Xn

1 ;Y n2 )
≤ H(Xn

1a) + I(Xn
1b;Y

n
1b)− I(Xn

1 ;Y n2 ) (13)
= H(Xn

1a) + I(Xn
1b;Y

n
1b)− I(Xn

1a, X
n
1b;Y

n
2 ) (14)

= H(Xn
1a) + I(Xn

1b;Y
n
1b)

− I(Xn
1b;Y

n
2 )− I(Xn

1a;Y n2 |Xn
1b) (15)

= H(Xn
1a) + I(Xn

1b;Y
n
1b)− I(Xn

1b;Y
n
2 ) (16)

= H(Xn
1a) + I(Xn

1b;Y
n
1b)

− I(Xn
1b;Y

n
2a)− I(Xn

1b;Y
n
2b|Y n2a) (17)

where (13) is proven in Appendix with X1a = Y1a, (16) is
due to the Markov chain Xn

1a → Xn
1b → Y n2 . The fourth item

in (17) is equal to

I(Xn
1b;Y

n
2b|Y n2a) = H(Y n2b|Y n2a)−H(Y n2b|Xn

1b, Y
n
2a) (18)

= H(Xn
2b|Y n2a)−H(Xn

2b|Xn
1b, Y

n
2a) (19)

= H(Xn
2b)−H(Xn

2b|Xn
1b, Y

n
2a) (20)

= H(Xn
2b)−H(Xn

2b|Xn
2a, Y

n
2a) (21)

= H(Xn
2b)−H(Xn

2b|Xn
2a) (22)

= I(Xn
2a;Xn

2b) (23)

where (20) is due to (11) and (22) is due to the Markov chain



Xn
2b → Xn

2a → Y n2a. Substituting (23) in (17), we get

I(Xn
1 ;Y n1 )− I(Xn

1 ;Y n2 )
≤ H(Xn

1a) + I(Xn
1b;Y

n
1b)

− I(Xn
1b;Y

n
2a)− I(Xn

2a;Xn
2b) (24)

= H(Xn
1a) +H(Xn

1b)−H(Y n2a)
+H(Y n2a|Xn

1b)− I(Xn
2a;Xn

2b) (25)
= H(Xn

1a) +H(Xn
1b)−H(Y n2a)

+H(Xn
2a)− I(Xn

2a;Xn
2b) (26)

= H(Xn
1a) +H(Xn

1b|Xn
2a)−H(Y n2a) +H(Xn

2a|Xn
2b)

(27)
= H(Xn

1a) +H(Y n2a|Xn
2a)−H(Y n2a) +H(Xn

2a|Xn
2b)

(28)
= H(Xn

1a)− I(Xn
2a;Y n2a) +H(Xn

2a|Xn
2b) (29)

≤ H(Xn
1a) +H(Xn

2a|Xn
2b) (30)

≤ n+H(Xn
2a|Xn

2b) (31)

where (26) is due to H(Y n2a|Xn
1b) = H(Xn

2a|Xn
1b) = H(Xn

2a)
and (30) is due to I(Xn

2a;Y n2a) ≥ 0. When s2 is given,
H(Xn

2a|Xn
2b) is a fixed item for transmitter 1. (31) could

always (but not limited to) be achieved by a wiretap code
with independent and uniform distributions for Xn

1a and Xn
1b.

The necessary condition is

I(Xn
2a;Y n2a) = 0 (32)

which means that, under the condition that transmitter 1
achieves the maximum secrecy rate, the upper bound for the
reliable transmission rate (10) for transmitter 2 is only

nRs2 ≤ max
P (Xn

2 )
[I(Xn

2a;Y n2a) +H(Xn
2b)] (33)

≤ max
P (Xn

2 )
H(Xn

2b) (34)

≤ n (35)

which is achievable. Therefore, the reliable secrecy rate Rs2
is upper bounded by 1.

Finally, we prove the achievability here. Assume that s2 is
the following: transmit unencoded information on sub-channel
b, but pure noise with input distribution P (X2a = 0) = 1 −
P (X2a = 1) = p, for some 0 ≤ p ≤ 1/2 on sub-channel a.
Then, Rs2 = 1.

Given s2, the channel X1 → Y1 → Y2 is a degraded wiretap
channel with the optimal encoder s∗1 which independently
encodes the signals on two sub-channels. On sub-channel
a, unencoded message is transmitted, and on sub-channel
b, encoder transmits the secure message via a wiretap code
with the optimal distribution P ∗(X1b = 0) = 1/2. It is
straightforward to see that s∗1 and s2 jointly determine the
achievable secrecy rate for transmitter 1 as Rs1a+Rs1b = 1+
I(X1b;Y1b)−I(X1b;Y2a) = 1+{1−[1−h2(p)]} = 1+h2(p),
where h2 is the binary entropy function.

It is easy to check that, to maximize the payoff π2, s2 is
also the best response s∗2 to s∗1, i.e., (s∗1, s

∗
2) are best responses

to each other, and therefore form an equilibrium, by definition.

Then, the corresponding payoffs are

Rs1 = 1 + h2(p), Rs2 = 1 (36)

where 0 ≤ p ≤ 1/2, which means Rs1 ∈ [1, 2] and Rs2 = 1.
The Nash equilibrium line is shown as the blue line going
from [1, 1] to [2, 1] in Fig. 3. �

IV. REFINEMENT OF THE EQUILIBRIUM

Achieving the Nash equilibrium pairs in the previous section
required transmitter 2 to transmit artificial noise on sub-
channel a to self-jam its own receiver. Since all of the
equilibrium points yield the same payoff for pair 2, a rational
transmitter 2 would rather help its receiver eavesdrop on the
other pair than self-jam its own receiver. However, the self-
jamming scheme is not excluded by the Nash equilibrium in
Section III.

We now modify the payoff function of the game in order
for the resulting Nash equilibrium to reflect the adversarial
relationship between the two pairs of user better in this inter-
ference channel with confidential messages. Here we explicitly
account for the desire of the receiver to eavesdrop on the other
party’s communication by including the leakage of the other
user’s message in the payoff function of a user together with
its own secret rate.

Definition 3 (Refinement of the game and equilibria) The
equilibrium secrecy rate region C̃s,NE is the closure of all
rate pairs (Rs1, Rs2) such that there exists a ε̄ > 0 such that
for all ε ∈ (0, ε̄), there exists a strategy pair (s∗1, s

∗
2) which

achieves the payoffs πi(s∗1, s
∗
2) = Rsi for i = 1, 2, and s∗i is

the best response to s∗j in the sense that

πi(s∗i , s
∗
j ) ≥ πi(s′i, s∗j ), ∀s′i (37)

In addition, (s∗1, s
∗
2) is also the best responses with respect to

the following payoff

π̃i(si, sj) =
{
Ri + β · Lj , Pe,i ≤ ε and Li ≤ ε
0, otherwise (38)

for any β > 0 and for all i = 1, 2 with j = ī.

We emphasize a few points here. First, any rate pair in
C̃s,NE must also belong to Cs,NE . Secondly, we include the
information leakage Lj defined in (1) into the definition of
π̃i in addition to the Ri to further limit the rational behavior
of the selfish transmitters and receivers, i.e., eavesdropping
is at least not bad for the receiver. Lastly, for any rate pair
(Rs1, Rs2) ∈ C̃s,NE , by the definition of payoff π, there
must exist a strategy pair which does not violate the secrecy
constraint even though it is also an equilibrium with respect
to the payoff π̃, which includes the information leakage in the
definition.

We again examine the channel in Section III to illustrate
the idea of the refined payoff function and the resulting
equilibrium. With the new definition, the equilibrium rate
pairs in the secrecy rate region are modified as stated in the
following theorem.



Theorem 2 (Nash equilibrium secrecy rate region C̃s,NE)

C̃s,NE = {(1, 1)} (39)

Proof: (1, 1) ∈ C̃s,NE . This is because each transmitter trans-
mits unencoded information on the private sub-channel, e.g.,
sub-channel a of transmitter 1 and sub-channel b of transmitter
2. Transmitter 1 sends pure noise with uniform distribution on
sub-channel b. Transmitter 2 keeps silent. Here by silence,
we mean that transmitter 2 sends a constant symbol which is
known to everyone in this network, i.e., the corresponding rate
is zero. Since no information is transmitted on the interfered
sub-channel, there is no information leakage which implies
that (1, 1) ∈ C̃s,NE .

(2, 1) /∈ C̃s,NE . The only scheme to achieve this rate
pair is that transmitter 1 transmits unencoded information on
both sub-channels as s1. And, for s2 transmitter 2 transmits
unencoded information on sub-channel b but sends pure noise
(uniform distribution) on sub-channel a. Obviously, if trans-
mitter 2 deviates from s2 to one special strategy s′2 which
keeps silent on sub-channel a, then the payoff π̃2 will increase
due to the information leakage L1.

(Rs1, 1) /∈ C̃s,NE for any Rs1 > 1. We prove this by
contradiction. Assume that this rate pair is in the set C̃s,NE
and is achieved by some strategy pair (s1, s2). Rs1 > 1 means
that H(W1) ≥ n(1+4) for a positive constant value4 > 0. It
is not difficult to see that transmitter 2 could always deviate to
s′2, i.e., keeping silent on sub-channel a, then the secrecy rate
Rs2 remains the same but the information leakage increases:

nL1 = I(W1;Y n2 ) = I(W1;Y n2a) (40)
= I(W1;Xn

1b) (41)
= I(W1;Y n1b) (42)
= I(W1;Y n1a, Y

n
1b)− I(W1;Y n1a|Y n1b) (43)

= H(W1)−H(W1|Y n1a, Y n1b)− I(W1;Y n1a|Y n1b) (44)
≥ H(W1)− I(W1;Y n1a|Y n1b)− nε′ (45)
≥ n(1 +4)−H(Y n1a)− nε′ (46)
≥ n(4− ε′) (47)

where by Fano’s inequality, H(W1|Y n1a, Y n1b) ≤ nε′ for some
negligible ε′. Hence, the payoff π̃2(s1, s′2) = Rs2 + βL1 >
Rs2 = π̃2(s1, s2) which means that s2 is not the best response
to s1 with respect to π̃, which implies that (Rs1, 1) /∈ C̃s,NE .

Therefore, we conclude that the Nash equilibrium contains
only a single rate pair: C̃s,NE = {(1, 1)}, which is shown
with the filled square in Fig. 3. �

This theorem shows that all the secrecy rate pairs in the
set Cs,NE but not in the set C̃s,NE are only achieved by the
strategies employing self-jamming. The modified definition for
the payoff and the resulting equilibrium are essential to rule
out such rate pairs.

V. CONCLUSIONS

In this paper, we studied the one-sided interference channel
with confidential messages. To model the adversarial relation-

ship between two transmitter-receiver pairs, we considered a
scenario where each transmitter has the freedom to choose
any strategy, and the only objective is to maximize a certain
given payoff. To this end, we formally developed a game
theory model and studied its equilibria. When we defined the
payoff function to be only the secrecy rate of each user, the
resulting Nash equilibria did not reject the behavior of self-
jamming, in which a transmitter jams its own receiver. To
improve the modeling of the adversarial relationship between
the two pairs better, we defined a refined payoff function to
explicitly incorporate the receiver’s desire to eavesdrop on the
other user. The equilibrium achieved with this payoff function
excluded the possibility of self-jamming, for the deterministic
binary channel considered here.

APPENDIX

For independent parallel channel P (Yα, Yβ |Xα, Xβ) =
P (Yα|Xα)P (Yβ |Xβ) with Yβ = Xβ , the upper bound of the
mutually information I(X;Y ) is the following:

I(X;Y ) = I(Xα, Xβ ;Yα, Yβ) (48)
= I(Xβ ;Yα, Yβ) + I(Xα;Yα, Yβ |Xβ) (49)
= H(Xβ) + I(Xα;Yα|Xβ) (50)
= H(Xβ) +H(Yα|Xβ)−H(Yα|Xα, Xβ) (51)
≤ H(Xβ) +H(Yα)−H(Yα|Xα, Xβ) (52)
= H(Xβ) +H(Yα)−H(Yα|Xα) (53)
= H(Xβ) + I(Xα;Yα) (54)

where the (53) is due to the Markov chain Xβ → Xα → Yα.
The equality holds iff I(Ya;Xβ) = 0.
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