Credits: 3
Description
An introduction to the design and deployment of machine learning models optimized for edge devices and energy-efficient hardware accelerators. The course covers advanced model reduction techniques, such as quantization and pruning, to streamline complex models for deployment onresource-constrained platforms. Students will gain hands-on experience with Cadence Virtuoso to build circuits and systems that leverage in-memory computing architectures, facilitating efficient computation and reduced energy consumption.Semesters Offered
Fall 2021, Spring 2024, Fall 2025