Credits:
Semesters Offered
Learning Objectives
- Consolidate and apply key concepts in semiconductor devices, analog circuits and digital circuits, introduced earlier in the electrical and computer engineering curricula
- Analyze and design complex CMOS integrated circuits including: DC, transient and small signal responses of components such as current mirrors and differential pairs and circuits such as op-amps
- Optimize complex analog circuits in terms of performance characteristics such as phase margin, gain, and frequency response trade-offs, and optimize digital circuits in terms of fan-out and minimum propagation delay
- Use circuit simulators to confirm analysis and predict performance
- Understand how semiconductor physics influences chip design rules and sets limits on integrated circuit performance
Topics Covered
- Device models for analog and digital design
- The inverter and static logic gates
- Clocked circuits: latches, transmission gates, flip-flops
- Current mirrors: basic and cascode
- Amplifiers: fundamental configurations
- Differential amplifiers: passive and active loads
- Frequency response
- Operational amplifiers
- Feedback
- Stability compensation
- Data converters