Credits:

Semesters Offered

Learning Objectives

  • Understand the basic rules for manipulating probability densities in the computation of event probabilities, functions of random variables and expected values
  • Understand pairs of random variables, random vectors and their marginal, joint and conditional probability distributions, conditional expectations
  • Understand concepts of correlation and independence
  • Understand sums of random variables, use of moment generating functions, central limit theorem
  • Understand how means can be estimated using the sample mean; understand confidence intervals

Topics Covered

  • Sample space and events
  • Axioms of probability
  • Computing probabilities
  • Conditional probability and independence
  • Sequential experiments
  • Random variables
  • Some important random variables
  • Functions of a random variable and expected value
  • Moment generating functions
  • Multiple random variables
  • Joint, marginal and conditional probability distributions
  • Conditional expectation
  • Covariance, correlation matrices
  • Functions of multiple random variables
  • Sums of independent random variables
  • Central limit theorem
  • Sample mean
  • Introduction to parameter estimation via sample mean, confidence intervals