Credits: 3


Prerequisite: Minimum grade of C- in ENEE303.
Restriction: Must be in one of the following programs (Engineering: Electrical; Engineering: Computer) ; and must have permission of the department.
Examination of analog and digital device models for analysis, design, and simulation of transistor level electronic circuits, emphasizing Metal Oxide Silicon Field Effect Transistors (MOSFETs); fundamental single transistor configurations; frequency response, feedback, and stability of multi-transistor circuits, such as current mirrors, differential amplifiers, voltage references, operational amplifiers and data converters; complementary Metal Oxide Silicon (CMOS) implementations of static and clocked digital as well as mixed signal circuits.

Semesters Offered

Fall 2017, Fall 2018, Fall 2019, Fall 2020, Summer 2021, Fall 2021, Summer 2022, Fall 2022, Summer 2023, Fall 2023, Fall 2024, Summer 2024

Learning Objectives

  • Consolidate and apply key concepts in semiconductor devices, analog circuits and digital circuits, introduced earlier in the electrical and computer engineering curricula
  • Analyze and design complex CMOS integrated circuits including: DC, transient and small signal responses of components such as current mirrors and differential pairs and circuits such as op-amps
  • Optimize complex analog circuits in terms of performance characteristics such as phase margin, gain, and frequency response trade-offs, and optimize digital circuits in terms of fan-out and minimum propagation delay
  • Use circuit simulators to confirm analysis and predict performance
  • Understand how semiconductor physics influences chip design rules and sets limits on integrated circuit performance

Topics Covered

  • Device models for analog and digital design
  • The inverter and static logic gates
  • Clocked circuits: latches, transmission gates, flip-flops
  • Current mirrors: basic and cascode
  • Amplifiers: fundamental configurations
  • Differential amplifiers: passive and active loads
  • Frequency response
  • Operational amplifiers
  • Feedback
  • Stability compensation
  • Data converters