Comm, Control & Sig Process Seminar: Karim Banawan, Capacity of PIR from Byzantine & Colluding DBs

Thursday, September 6, 2018
5:00 p.m.-6:30 p.m.
AVW 2168
Ajaykrishnan Nageswaran
301 405 3661
ajayk@umd.edu

The Capacity of PIR from Byzantine and Colluding Databases

Abstract
We consider the problem of single-round private information retrieval (PIR) from $N$ replicated databases. We consider the case when $B$ databases are outdated (unsynchronized), or even worse, adversarial (Byzantine), and therefore, can return incorrect answers. In the PIR problem with Byzantine databases (BPIR), a user wishes to retrieve a specific message from a set of $M$ messages with zero-error, irrespective of the actions performed by the Byzantine databases. We consider the $T$-privacy constraint in this paper, where any $T$ databases can collude, and exchange the queries submitted by the user. We derive the information-theoretic capacity of this problem, which is the maximum number of \emph{correct symbols} that can be retrieved privately (under the $T$-privacy constraint) for every symbol of the downloaded data. We determine the exact BPIR capacity to be $C=\frac{N-2B}{N}\cdot\frac{1-\frac{T}{N-2B}}{1-(\frac{T}{N-2B})^M}$, if $2B+T < N$. This capacity expression shows that the effect of Byzantine databases on the retrieval rate is equivalent to removing $2B$ databases from the system, with a penalty factor of $\frac{N-2B}{N}$, which signifies that even though the number of databases needed for PIR is effectively $N-2B$, the user still needs to access the entire $N$ databases. The result shows that for the unsynchronized PIR problem if the user does not have any knowledge about the fraction of the messages that are mis-synchronized, the single-round capacity is the same as the BPIR capacity. Our achievable scheme extends the optimal achievable scheme for the robust PIR (RPIR) problem to correct the \emph{errors} introduced by the Byzantine databases as opposed to \emph{erasures} in the RPIR problem. Our converse proof uses the idea of the cut-set bound in the network coding problem against adversarial nodes.

Audience: Graduate  Undergraduate  Faculty  Post-Docs 

remind we with google calendar

 

April 2024

SU MO TU WE TH FR SA
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Submit an Event